循环流化床回路流动及颗粒分层特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
循环流化床具有良好的气固混合、传质、传热特性,是目前商业化程度最好的清洁煤燃烧技术。目前的研究和工程实践表明,对于循环流化床,还存在很多的问题亟待解决:比如在工业锅炉中物料循环流率的测定、立管中气体流动对于系统物料平衡的影响以及宽筛分颗粒的分层特性等等。
     本文通过搭建冷态循环流化床试验台,基于循环流化床系统回路的角度,系统研究了窄筛分颗粒床料条件下,操作参数对于各部件的压降特性影响。根据冷态测量结果,得出了各部件压降和循环流率之间的变化关系,绘制了提升管床压降-循环流率图谱,给出了保证快速流态化的床压降区间,用以指导提升管内的流态重构;发现旋风分离器的压降呈现出非线性的变化规律,随着循环流率增大先下降后上升,压降-循环流率的转捩点与风速、颗粒物性相关;返料阀水平段的阻力随循环流率增加上升,竖直段阻力随着循环流率增加而下降,阀总压降呈现下降趋势,表征输送物料的能力增加;同时,采用压力梯度、气体示踪和光导纤维等测量方式,直接测量了立管中的气体流动规律,并与移动床理论计算结果进行了对比,验证了立管内气固流动处于黏性滑移流动状态;立管通过调节气固滑移速度来得到不同压差梯度,实现低料封-高压头的特性,从而吸收其它部件的压力波动,维持整个循环流化床系统的压力平衡。
     在单组元颗粒回路特性的基础上,本文研究了双组元体系在循环流化床内的颗粒分层特性,以及物料在提升管和立管之间的分配规律。实验结果表明,提升管内的颗粒分层随着流化风速、循环流率的增大而减弱,在较高的风速(6.0 m/s)和循环流率情况下,颗粒分层消失,系统达到完全混合的状态;根据文献中的实验结果,提出了端头结构对于系统颗粒分层的影响,并在冷态实验中得到了验证。由于端头强约束形式的存在,会使得较多粗颗粒在炉膛出口发生返混,更多的粗颗粒停留在提升管侧,直接影响了双组元颗粒在提升管、立管之间的分配。根据物料平衡的基本理论,本文还建立了循环流化床内宽筛分颗粒的流动和分层模型,并针对冷态实验值中的实验工况进行了计算,计算值较好的吻合了实验结果,验证了模型的可靠性。
Circulating fluidized bed (CFB), as one of the best commercialized clean-coal technologies, has good advantages in gas-solid mixing, mass and heat transfer in the boiler. However, current researches and engineering experience show that lots of issues remained unsolved in the area, such as the measurement of solid circulating rate (Gs) in industry boiler, the impact of gas flow in standpipe on material balance in whole CFB system, particle segregation in the furnace and so on.
     In this paper, a cold test rig of CFB was constructed to study the gas-solid flow in the CFB loop. In the view of system loop, the impacts of operation parameters on the pressure drops of each component with narrow size range of particles were investigated. From the experimental results, the influence of Gs on each component’s pressure drop was obtained. The relationship between riser pressure drop and Gs was drawn. The relationship helps to choose the pressure drop in the riser to ensure the fast bed flow regime in the riser, which can be used to guide the reconstruction of flow state. The pressure drop of the cyclone firstly decreases and then increases with solid concentration increasing. The transition point of the variation was influenced by the gas velocity and particle prosperity. The pressure drop of the horizonal section part of the Loop seal increases with Gs, while that of the vertical section part decreases. The overall pressure drop of Loop seal that indicates the ability of transporting particles decreases with Gs. Combination with the pressure gradient measurement, lacer optic probe and direct gas trace method, the flow state in the standpipe was also studied. The packed flow state in the standpipe was verified by the comparison of experimental result and the theoretical calculation. By adjusting the relative gas-solid slip velocity, different pressure gradient of gas-solid flow is achieved. The special feature with low seal height to provide high pressure head helps to maintain the mass and pressure balance of the whole loop system.
     Based on the above results, this paper also studied particles segregation with binary partices with different sizes in the CFB. Experimental results showed that segregation intensity in the riser becomes weaker with increaseing gas velocity and Gs. In the case of higher gas velocity (6.0 m/s) and higher Gs, segregation disappeares and the system reaches completed mixing state. With other published literatures, this paper proposed the exit geometry may have impact on segregation in the system and verified it through the experiment. Because of the inner separation of exit geometry, more coarse particles are easily separated and flow down back into the lower riser, comparing with fine particles. Therefore, the distribution of particle between the riser and standpipe was changed, which lead to more coarse particles in the riser than in the standpipe. At last, a CFB mass balance model with wide size distribution particles, including the segregation model and pressure balance mocel, was developed. The model predicting results were in good agreement with data in present study and and literatures, which verified the reliability of the model.
引文
[1] Geldart D. Types of gas fluidization. Powder Technology. 1973, 7(5): 285-292.
    [2] Yerushalmi J, Cankurt N T. Further studies of the regimes of fluidization. Powder Technology. 1979, 24(2): 187-205.
    [3] Bi H T, Grace J R. Flow regime diagrams for gas-solid fluidization and upward transport. International Journal of Mutiphase Flow. 1995, 21(6): 1229-1236.
    [4] Yue G, Lv J, Zhang H. Design theory of circulating fluidized bed boilers.18th International Fluidized Bed Combustion Conference, Toronto,Canada, 2005:135-146
    [5]杨海瑞.循环流化床锅炉物料平衡研究[工学博士论文].北京:清华大学, 2003.
    [6] Li Y, Kwauk M. The dynamics of Fast Fluidization.Fluidization, New York, Plenum Press, 1980:537-544
    [7] Brereton C M, Grace J R. Axial gas mixing in a circulating fluidized bed.Toronto, Pergamon Press, 1986:307-314
    [8]李静海.两相流多尺度作用模型和能量最小方法[工学博士论文].北京:中国科学院化工冶金研究所, 1987.
    [9]白丁荣甘俊,金涌等.快速流态化的存在区域.石油化工. 1992, 21(5): 318-324.
    [10] Arena U, Cammarota A, Pistone L. High velocity fluidization behaviour of solids in a laboratory scale circulating fluidized bed.Toronto, Pergamon Press, 1986
    [11] Bai D, Nakagawa N, Shibuya E, et al. Axial distribution of solids holdups in binary solids circulating fluidized beds. Journal of Chemical Engineering of Japan. 1994, 27(3): 271.
    [12]金涌,俞芷青,祁春鸣,等.快速流化床出口结构形式对床层特性的影响.石油化工. 1989(02): 86-92.
    [13]金燕,郑洽余.出口几何结构对循环流化床锅炉性能影响的试验研究.工程热物理学报. 1999, 20(01): 129-132.
    [14] Yuu S, Jotaki T, Tomita Y. The reduction of pressure drop due to dust loading in a conventialal cyclone. Chemical Engineering Science. 1978(33): 1573-1580.
    [15] Kang S K, Kwon T W, Kim S D. Hydrodynamic characteristics of cyclones reactors. Powder Technology. 1989, 58(2): 211-220.
    [16] Hoffmann A C, Stein L E. Gas cyclones and swirl tubes. Berlin Springer, 2002.
    [17] Briggs L W. Effect of dust concentration on cyclone performance. Transaction of AIChE. 1946, 42: 511-526.
    [18] Dry R G, White R B, Joyce T. Correlation of solids circulation rate in circulation fluidized bed systems. Proceeding of 4th international CFB conference, 1993:732-737
    [19] Fassani L F, Leonardo G J. A study of the effect of high inlet solids loading on a cyclone separator pressure drop collection efficiency. Powder Technology. 2000, 107: 60-65.
    [20]钱付平.不同排尘结构及操作条件下旋风分离器分离特性的研究[工学博士论文].南京:东南大学, 2006.
    [21] Basu P, Cheng L. An analysis of Loop seal operations in a circulating fluidized bed. Chemical Engineering Research and Design. 2000, 78(7): 991-998.
    [22]骆仲泱,倪明江,程乐鸣,等.循环流化床返料机构的研究.浙江大学学报(工学版). 1991, 25(03): 284-294.
    [23]王擎,骆仲泱,李绚天,等.非机械阀在循环流化床锅炉上的应用.电站系统工程. 1996(04): 28-33.
    [24]王俊.循环流化床立管内气固两相流曳力系数的测量[工学学士论文].北京:清华大学, 2007.
    [25] Basu P, Bulter J. Studies on the operation of loop-seal in circulating fluidized bed boilers. Applied Energy. 2009, 86 (9): 1723-1731.
    [26] Jones P J, Leung L S. Downflow of Solids through Pipes and Valves. London: Academic Press, 1985. 293-329.
    [27] Wang J, boumn H H, Dries H. An experimental study of cyclone dipleg flow in fluidized catalytic cracking. Powder Technology. 2001, 112(3): 221-228.
    [28] Rhodes M J, Geldart D. A model for the circulating fluidized bed. Powder Technology. 1987(53): 155-162.
    [29] Yang W C. A model for the dynamics of a circulating fluidized bed loop. Oxford, England: Pergamon Press, 1988: 181-191.
    [30] Breault R W, Mathur V K. High-velocity fluidized bed hydrodynamic modeling. Industrial and Engineering Chemistry Research. 1989, 28(6): 684-688.
    [31] Mori S, Yan Y, Kato K, et al. Hydrodynamics of Circulating Fluidized Bed. Oxford, England: Pergamon Press, 1991: 113.
    [32] Hannes J P, Van der Leek C M, et al. Mathematical modelling of CFBC: an overall modualr programming frame using a 1.5-dimensional riser model.12th International Conference on Fluidized Bed Combustion, San Diego, 1993:445
    [33] Lei H, Horio M A. A comprehensive pressure balance model of circulating fluidized beds. Journal of Chemical Engineering of Japan. 1998, 31(1): 83-94.
    [34] Lim K S, Peeler P, Close R, et al. Estimation of solids circulation rate in CFB from pressure loop profiles. Circulating Fluidized Bed Technology VI, Werther J, Frankfurt/main, Germany:DECHE-MA, 1999, 819.
    [35] Kim S W, Kim S D, Lee D H. Pressure balance model for circulating fluidized beds with a loop-seal. Industrial and Engineering Chemistry Research. 2002, 41(20): 4949-4956.
    [36]魏耀东,刘仁桓,孙国刚,等.负压差立管内气固两相流的流态特性及分析.过程工程学报. 2003, 3(5): 385-388.
    [37] Li Y, Lu Y, Wang F,等. Behavior of gas-solid flow in the downcomer of a circulating fluidized bed reactor with a V-valve. Powder Technology. 1997, 91(1): 11-16.
    [38] Hirschberg B, Werther J. Factors affecting solids segregation in circulating fluidized-bed riser. AIChe Journal. 1998, 44(1): 25-35.
    [39] Mitali D, Meenakshi B, Saha R K. Segregation and mixing effects in the riser of a circulating fluidized bed. Powder technology. 2007(178): 179-186.
    [40] Peeler J P, Huang J R. Segregation of wide size range particle mixtures in fluidized beds. Chemical Engineering Science. 1989, 44(5): 1113-1119.
    [41] Shannon P T. Fluid dynamics of gas fluidized batch system [Ph. D. Thesis]. Chicago: Illinois Institute of Technology, 1959.
    [42] Wen C Y, Yu Y H. A generalized method for predicting the minimum fluidization velocity. AIChE Journal. 1966, 12(3): 610-612.
    [43] Rowe P N, Nienow W. The mechanisms of solids mixing in fluidised beds. Transactions of the Institution of Chemical Engineers. 1965(50): 310.
    [44] Rowe P, Nienow A, Agbim A. The mechanisms by which particles segregate in gas fluidized beds-binary systems of near-spherical particles. Transactions of the Institution of Chemical Engineers. 1972, 50: 310.
    [45] Wu S Y, Baeyens J. Segregation by size difference in gas fluidized beds. Powder Technology. 1998(98): 139-150.
    [46] Nienow A W, Rowe P N, Agbin A J. The mechanisms by which particles segregate in gas fluidised beds-binary systems of near-spherical particles. Transactions of the Institution of Chemical Engineers. 1973(43): 260.
    [47] Chiba S, Chiba T, Nienow A, et al. The minimum fluidization velocity, bed expansion and pressure drop profile of binary particle. Powder Technology. 1979, 22(2): 255-269.
    [48] Nienow A W, Rowe P N, Chiba T. Mixing and segregation of a small proportion of large particles in gas fluidised beds of considerably smaller ones. AIChE Symposium. 1978, 76(176): 45.
    [49] Geldart D, Baeyens J, Pope D J. Segregation in beds of large particles at high velocities. Powder Technology. 1981(30): 195-205.
    [50] Rice R W, Brainovich J R. Mixing/segregation in two-and three-dimensional fluidized beds:Binary systems of equidensity spherical particles. AIChE Journal. 1986, 32(1): 7-16.
    [51] Naimer N S, Chiba T, Nienow A W. Parameter estimation for a solids mixing/segregation model for gas fluidised beds. Chemical Engineering Science. 1982(37): 1047-1057.
    [52] Chen J, Keairns D L. Particle segregation in a fluidized bed. Coal gasification process. The Canadian Journal of Chemical Engineering. 1975, 53(4): 395-402.
    [53] Hoffmann A C, Romp E J. Segregation in a fluidised powder of a continuous size distribution. Powder Technology. 1991, 66(2).
    [54] Moritomi H, Iwase T, Chiba T. A comprehensive interpretation of solid layer inversion in liquid fluidised bed. Chemical Engineering Science. 1982, 37(12): 1751-1757.
    [55] Chiba S, Nienow A W, Chiba T. Fluidized binary mixtures in which the denser component may be flotsam. Powder Technology. 1980, 26(1): 1-10.
    [56] Hirschberg B. Solids mixing and segregation in a Circulating Fluidized Bed[Ph. D. Thesis]. Siegen University, 1997.
    [57] Johnsson F, Leckner B. Vertical distribution of solids in CFB furnace.Proceedings Of the 13th International Conference on Fluidized Bed Combustion, New York, ASME, 1995:671-680
    [58] Baeyens J, Geldart D. Gas Fluidization Technology. Chichester, UK: wiley, 1986.
    [59] Ijichi K, Tanaka Y, Uemura Y, et al. Solids holdup and concentration in a riser of circulating fluidized bed of a two-component system.Proceeding of the 3rd Asian Conference on Fluidzed bed and Three-Phase Reactors, Korea, 1992:433
    [60] Nakagawa N, Bai D, Shibuya E, et al. Segregation of particles in binary solids circulating fluidized beds. Journal of Chemical Engineering of Japan. 1994, 27(2): 194-198.
    [61] Bi H, Jiang P, Jean R, etal. Coarse particle effects in a multi-solid circulating fludized bed for cataltic reactions. Chemical Engineering Science. 1992(47):3113-3123
    [62] Bai D, Nakagawa N, Shibuya E, et al. Hydrodynamics of binary solids circulating fluidized beds.Proceedings of the 5th China–Japan Symposium on Fluidization, Nagoya, Japan, Chemical Industry Press,Beijing, 1994:166
    [63] Bodelin P, Molodtsof Y, Delebarre A. Behaviour of single solids and their binary mixtures in a circulating fluidized bed. NY: Engineering Foundation, 1996. 271-279.
    [64] Choi J H, Sou J M, Chang I Y, et al. The effect of fine particles on the elutriation of coarse particle in a gas fluidized bed. Powder Technology. 2001(121): 190–194.
    [65] Bareschino P, Marzocchella A, Salatino P, et al. Segregation and attrition of polydisperse solids in a circulating fluidized.CFB8-8th International Conference on Circulating Fluidized Beds, Hangzhou, China, 2005
    [66] Wirth K E. Heat Transfer in circulating fludized beds. Chemcal Engineering Science. 1995, 50(13): 2137-2151.
    [67] Chen L H, Wen C Y. Fludized bed phenomena: Elutriation and entraiment. AICHE Journal. 1982, 28(1): 117-128.
    [68] Delebarre A, Duplan T, De L P, et al. Hydrodynamics of a two components mixture in a circulating fluidized bed.Proceedings of the 7th Engineering Foundation Conference on Fluidization, Brisbane, Aust, dagineering Foundation, 1992:203-203
    [69] Hua Y, Flamant G, Lu J, et al. Modelling of axial and radial solid segregation in a CFBboiler. Chemical Engineering and Processing. 2004, 43(8): 971-978.
    [70]袁竹林,徐益谦.用数值模拟对循环流化床颗粒分离特性的研究.工程热物理学报. 2001, 22(6): 185-189.
    [71] Sekret R, Nowak W. Segregation of fuel particles in a circulating fluidized bed. Inzynieria Chemiczna i Procesowa. 2002, 23(2): 229-244.
    [72] Wua W, Gerhart A L, Chen Z, et al. A device for measuring solids flowrate in a circulating fluidized bed. Powder Technology. 2001(120): 151-158.
    [73]于龙.宽筛分粗颗粒循环流化床流体动力学的实验研究[工学硕士论文].北京:清华大学, 1989.
    [74]杨海瑞,岳光溪,王宇,等.循环流化床锅炉物料平衡分析.热能动力工程. 2005, 20(3): 291-297.
    [75]李少华.循环流化床锅炉中分离器后燃现象研究[工学博士论文].北京:清华大学, 2008.
    [76] Yang S, Yang H, Zhang H, et al. A transient method to study the pressure drop characteristics of the cyclone in a CFB system. Powder Technology. 2009, 192(1): 105-109.
    [77] Baskskov A P, Dolgov Y N. Aerodynamics and heat transfer in cyclones with particle-laden gas flow. Experiment thermal fluid science. 1990, 3(6): 597-602.
    [78] Yang S, Yang H, Zhang H, et al. Impact of operating conditions on the performance of the external loop in a CFB reactor. Chemical Engineering and Processing: Process Intensification. 2009, 48(4): 921-926.
    [79] Monazam E R, Shadle L J, Mei J S. Impact of the circulating fluidized bed riser on the performance of a loopseal nonmechanical valve. Industrial & Engineering Chemistry Research. 2007, 46(6): 1843-1850.
    [80] Ergun S. Fluid flow through packed columns. Chemical Engineering Progress. 1952, 48(2): 89-94.
    [81] Li S H, Zhang H, Yang H R, et al. Determining cyclone particle holdup by pressure drop for a CFB boiler. Chemical Engineering and Technology. 2007, 30(12): 1726-1731.
    [82]李金晶.大型循环流化床动态特性研究[工学博士论文].北京:清华大学, 2008.
    [83] Yue G X, Yang H R, Zhang H. Latest development of CFB boilers in China.The 20th International Conference of Fluidized bed combustion, Xi'An, Tsinghua University Press, 2009:3-12
    [84] Li Y C, Kwauk M. The dynamics of fast fluidization. New York: Plenum Press, 1980: 537-544.
    [85] Pham H L, Mora J C, Kita J C. Expansion of multi-jet bed with large particles. International Journal of Energy Research. 1996, 20(11): 989-998.
    [86]王勤辉,骆仲泱,倪明江.循环流化床锅炉内颗粒分布平衡模型.电机工程学报. 2002,21(9): 110-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700