城市地表灰尘—降雨径流系统污染物迁移过程与环境效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市作为一个受人类活动影响的地域综合体,其自然地理过程、机制与范式等极为复杂,是人地关系演变新阶段的重要表现,也是当前自然地理学与全球变化研究的典型区域,倍受人们关注。有关城市环境问题的研究已成为当前多学科联合攻关研究的核心问题之一。IHDP(全球环境变化人文因素计划)于2004年提出了两项新的IGBP-IHDP联合研究计划,其中之一即为“城市化与全球环境变化(Urbanization and Global Environmental Change)”。
     城市第二自然地理格局的出现使不透水地面成为下垫面格局的主要单元和影响物质循环的重要因素,越来越多的地理学者开始思考有关“城市自然地理学”的议题。近年来,本课题组已就城市自然地理系统的主要物质循环和环境过程进行了一系列初步的、探索性的理论和实证研究,取得了诸多可借鉴的成果。论文在前人及原有研究成果的基础上,尝试进一步从物质循环的角度,对城市自然要素开展系统性研究,丰富自然地理学内容,探讨城市自然地理研究方法学,为城市自然地理与全球变化区域响应提供实证。
     物质尤其是污染物质在城市环境系统多介质、多界面的循环是城市自然地理过程研究的关键切入点。论文以上海中心城区为例,从多介质的角度开展典型污染物(营养盐、重金属)在城市地表灰尘-降雨径流系统内的时空格局、迁移过程与环境效应研究,重点探讨了以不透水地面为特征的城市地表环境对污染物迁移转化的影响与控制,初步建立了城市“第二自然格局”背景下的物质循环研究框架。论文主要认识与结论如下:
     (1)初步建立了污染物在以“不透水地面”为主要特征的城市地表环境系统迁移循环模式。提出了“城市地表灰尘—降雨径流”的系统概念,认为城市汇水域(Urban Catchment)是物质循环的基本单元,不透水地面的累积和冲刷是污染物迁移转化的关键过程,颗粒物是影响污染物整个迁移过程的主要因子。
     (2)研究了城市地表灰尘负荷量及其污染物的时空分布特征,发现上海地表灰尘累积量无明显的季节性变化,与国内外研究比较属于中等水平。地表灰尘重金属含量在国内城市中较高,显示出冬春季节较高,夏秋季节较低的特征。
     (3)研究了城市地表灰尘污染粒级效应及其生物有效性。发现地表灰尘污染物粒级效应显著,低于75μm是其主要的污染粒径级别,重金属粒级效应顺序为Cr>Pb>Cd>Zn>Ni>Cu。通过地表灰尘重金属赋存形态研究表明,Zn、Cd和Ni主要以碳酸盐结合态存在,Pb主要为铁锰氧化物结合态,Cu主要为有机结合态存在,Cr主要以残渣态存在,地表灰尘重金属非稳定形态含量由大到小顺序依次为Zn>Pb>Ni>Cd>Cu>Cr。
     (4)研究了地表灰尘污染物累积过程的输入-输出机制。发现地表灰尘对大气环境污染的贡献率不可忽视,低于75μm粒径级别颗粒物是地表灰尘与大气悬浮物进行物质交换的主要来源,应用美国EPA道路颗粒物排放因子方法,计算出上海城市地表灰尘对PM2.5、PM10和TSP的排放因子为0.99、7.64和9.17 g/VKT,排放量分别为1.7、13.1和69.6万吨/年。
     (5)在国内首先开展了地表污染物累积过程的实证研究。揭示了土地利用类型和道路交通行为是影响地表灰尘大气环境“源-汇”效应的重要因素。在高交通流量地区,地表灰尘重金属表现出对大气悬浮颗粒物的“源”效应,而交通流量相对较低的区域则显示出其对大气悬浮物的“汇”效应。对地表污染物累积过程研究表明,随着无雨期天数增加,地表灰尘负荷量总体上表现出增大趋势,颗粒物粒径逐渐增大;持续时间长、雨强较大的降雨对颗粒物和污染物负荷有明显的削减作用;重金属负荷累积过程符合S型增长曲线。
     (6)对污染物径流冲刷过程研究表明,径流粒径曲线多呈双峰或多峰分布。降雨类型是影响污染物冲刷过程的重要因素。不同土地利用类型冲刷过程研究表明,Zn和Cu,Pb和Cd,Cr和Ni在EMC值空间分异特征上都显示出了较明显的一致性。不同降雨事件冲刷过程研究表明,Zn,Pb和Cu表现出了相似的环境行为,Cd与其相差不大,Cr和Ni也比较相似,认为这种比较固定的组合特征在一定程度上反映出了重金属来源和环境行为的相似性。
     (7)提出了初始冲刷效应的定量表征方法,发现上海城市径流初始冲刷属于中等强度,强度指数b值在0.185~0.896之间。重金属总量初始冲刷强度顺序为Ni>Pb>Zn>Cd>Cu>Cr,溶解态重金属初始冲刷强度不明显。最大雨强及出现时间是影响污染物初始冲刷强度的重要因素。
     (8)提出径流水体“固-液”界面过程的重要性,认为“固-液”界面过程对于污染物在径流水体中存在相态的改变和量的时空分布具有重要影响。径流冲刷过程中,颗粒物是控制污染物迁移转化的重要因素,重金属Zn、Pb和Cu与颗粒物相关性最大,Cd和Cr相关性依次降低,Ni不显著相关。在溶解态重金属含量比值的空间分异上,Pb和Cu,Ni和Cr,Zn和Cd各表现出相似的分布趋势。重金属分配系数从大到小依次为Pb>Cd>Zn>Ni>Cu>Cr。
     (9)污染物“地表灰尘—降雨径流”多介质系统分配特征研究表明,上海城市大气湿沉降对径流污染的贡献不可忽视,雨水中重金属Zn浓度达到了国外研究的上限值,值得关注。对地表灰尘和径流水体重金属含量因子分析表明,由于干湿沉降过程影响,径流水体的因子分析对重金属来源解释得更全面,而地表灰尘因子分析则要相对散乱,更多反映了其污染物粒级效应的相关。径流水体因子分析中,Pb、Zn和Cu明显聚为一类,Cd处于外围,Cr和Ni则距离较远。排水系统特征是影响污染物在雨水管道中物理化学变化的重要因素,分流制排水系统初始冲刷效应不明显。
     (10)研究了重金属在“地表灰尘-径流悬浮物-雨水口沉积物-河流沉积物”系统中的分配特征和生物有效性。发现径流悬浮颗粒物和河流沉积物是重金属迁移过程中“非稳定形态”比例最高的环节,一定程度上增加了降雨径流污染的水体毒性和潜在生态风险。Zn和Cd在径流颗粒物中都占有最高的含量浓度和非稳定态比例,Pb、Cu、Cr和Ni则在河流沉积物占有较高的非稳定形态比例。
     (11)应用美国EPA人体暴露风险评价方法对上海城市地表灰尘重金属进行健康风险评价。发现手-口接触行为是儿童摄入地表灰尘重金属的最主要途径,其次为皮肤吸收量和吸入空气量。总体而言,重金属非致癌危害指数和致癌因子指数都在控制范围内,不会对人体造成健康危害。在六种重金属中,Pb的非致癌因子排在首位,其次为Cr和Ni;在三种致癌重金属中,Cr和Ni致癌因子也排在Cd之前,其潜在生态危害值得重视。对污染物在“地表灰尘—降雨径流”系统中环境生态效应作出总体评价,指出要特别关注低于75μm粒径级别灰尘颗粒物的环境效应和健康安全。
By the end of this decade, more than half of the world's population will live in cities. It is clear that the development of urban areas hold the key of many of the challenges we face in our interactions with the environment. Urban areas are complex and dynamic systems that reproduce within their territory the interactions, among geographical and environmental processes on a local, regional, and global scale. This is one of the reasons why urban areas have become an increasing focus for the IGBP and IHDP.
    Aiming to discuss the research framework and methods of Urban Physical Geography, this paper presents the main findings of a study carried out in Shanghai (China), during June 2005 to July 2006 with two main purposes: to discuss the pollutants transport processes and mechanisms in rrban surface environmental system; and to evaluate, by means of risk assessment strategies, the potential adverse health effects of the exposure of children living in Shanghai to surface dust.
    (1) Particles play a role in virtually every process of pollutant behaviors in urban environment by ①deliveringthe contaminants to roadway surfaces as dust and dirt, ②affecting howreadily the contaminants are mobilized during storms, and ③influencing thephysical, chemical and biological transformations that contaminants undergo as they aretransported to receiving waters through sanitary and roadway runoff sewer systems. ④In receiving waters, particles modulate the biological impact that contaminants haveon aquatic and benthic organisms.
    (2) An understanding of pollutant characteristics on impervious surfaces is essential to estimate pollutant wash off characteristics and to design methods to minimize the impacts of pollutants on the environment. This paper presents data on surface pollutant characteristics on different urban road surfaces in Shanghai city, from samples collected over one year period at weekly interval. Result shows that particle size distribution has the important influence on pollutant concentrations. The <75μm fraction dominates throughout the cascade since it contains the highest levels of all of the heavy metals, and the order refers to Cr>Pb>Cd>Zn>Ni>Cu.
    (3) A five-step sequential extraction of roadside sediments showed that Zn, Cd and to a lesser degree Ni occur predominantly in the carbonate bound fraction, while Pb is highest in the reducible fraction, Cu in the organic fraction, and Cr in the residual fraction. It was found that the concentrations in the readily available exchangeable fraction were generally low for most metals examined, except for Ni whose exchangeable fraction was appreciable. Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreases in the order of Zn>Pb>Ni>Cd>Cr>Cu.
    (4) The surface pollutant load data collected in this experimental study on an urban road surface indicate that pollutant buildup occurs over the dry days. The surface pollutant also becomes coarser over the dry days as it is disintegrated by traffic and other factors. The washoff of surface pollutant is dependent on the rainfall and runoff characteristics, but the results here show that common storms only remove a small proportion of the total surface pollutant load. The results also suggest that the rainfall and runoff disintegrates and dissolves more surface pollutant that they can actually remove.
    (5) Particulate emissions occur whenever vehicles travel over a paved surface such as a road or parking lot. Dust emissions from paved roads have been found to vary with what is
    termed the "silt loading" present on the road surface as well as the average weight of vehicles traveling the road. The term silt loading (sL) refers to the mass of silt-size material (equal to or less than 75 micrometers [μm] in physical diameter) per unit area of the travel surface. Emission factors of Shanghai surface dust of PM2.5、PM10 and TSP refer to 0.99, 7.64 and 9.17 g/VKT, emission quantities are 1.7,13.1 and 696 thousand t/a. High traffic volμmes in urban areas are responsible for increased Particulate contents within the breathing zone, due to the turbulence in the near-surface atmosphere and suspension of particles from the road surface.
    (6) Increased stormwater flow and the companying runoff pollution are a direct result of urbanization and the consequent increase in the proportion of land area under impervious surface. Runoff from urban areas is often presumed to be a significant contributor to nonpoint source (NPS) water pollution and has been identified as one of the major causes of the deterioration of the quality of receiving waters. And so, the objectives of this study were to investigate the characteristics of pollutants in storm events, and the relationships between pollutant load and flow-runoff patterns, and to analyze EMCs loadings of pollutants, then revealed "First Flush effect" of road runoff in different functions in Shanghai City.
    (7) Stormwater quality and quantity were investigated in urbanized catchments in the Central Shanghai city in order to characterize Temporal-spatial distribution and First Flush Effect of stormwater runoff pollution. Sampling locations selected can be grouped into at four sites with different land use categories (traffic, commercial and residential areas). The result indicates that concentration of contaminants decrease with the increasing of rainfall time. A single index known as event mean concentrations (EMC) can be used to characterize runoff constituents. Several heavy metals such as Pb-Zn-Cu and Cd, Cr-Ni groups show similar environmental behaviors during the runoff process, which reflect their sources in urban environment.
    (8) Dimensionless cumulative curves of First Flush Effect from four watershed sampling sites for selected storm events, and the magnitude of the first flush phenomenon is calculated using a method of M (V) fitting power curves, parameter b and MFF30 depending M (V) curves are used to illuminate strength of FFE. Result indicates that the magnitude of the first flush phenomenon was found to be greater for high intensity rainfall events and less for low-intensity ones, and strength of FF refers to Ni>Pb>Zn>Cd>Cu>Cr. Compared with total heavy metals, Dissolved heave metals show a less distinctive first flush phenomena
    (9) The maximum rainfall intensity, Imax, and the time between the start of the event and the occurrence of I_(max), T_(max), have the most important influence on FFE. The association between MFF30 of heavy metals and Tmax is negative and strongly linear. If rainfall intensity maximum appears earlier (T_(max) is smaller) it would cause a more distinctive first flush phonomina and therefore a negative correlation between MFF_(30) of pollutants and T_(max) is found.
    (10) The examination of the movement of sediment in the urban environment in terms of the four compartments has proven an effective tool in establishing some trends in the contamination of the urban environment by heavy metals. The overall trend is for the deposits to contain the highest concentrations of Ni, Cu, Cr and Pb, whilst the highest concentrations of Zn and Cd and are found in the transported sediments. Different trends in concentrations are shown by some of the heavy metals such that Cu increases in concentration from source to deposit, Cd decreases in concentration, whilst Ni peaks in value in the transported material. This may reflect the growth of antigenic material such as organic matter diluting the concentration or addition of contaminated material, which would increase it.
    (11) The use of risk assessment strategies has proved helpful in identifying the routes of exposure to urban surface dust and the trace elements therein of most concern in terms of potential adverse health effects. In Shanghai city, the highest levels of risk seem to be associated with route of ingestion of dust particles, for all the elements included in the study presents a slightly higher risk than ingestion. It appears that the exposure pathway which results in the highest levels of risk for children exposed to street dust is ingestion of this material, and that three elements — Pb, Cr and Ni—are of most concern regarding the potential occurrence of health effects. However, given the large uncertainties associated with the estimates of toxicity values and exposure factors, and the absence of site-specific biometric factors, these results should be regarded as preliminary and further research should be undertaken before any definite conclusions regarding potential health effects are drawn.
引文
[1] Adachi K, Tainosho Y. Single particle characterization of size-fractionated road sediments. Applied Geochemistry, 2005,20:849-859
    [2] Alexandrine Estebe et al. Urban runoff on particulate metal xoncentrations in river seine. Water, air and soil pollution. 1998,108:83-105
    [3] Amir Taebi, Ronald L., Drosteb. Pollution loads in urban runoff and sanitary wastewater. Science of the Total Environment. 2004,327:175-184
    [4] Ball JE, Jenks R, Aubourg D. An assessment of the availability of pollutant constituents on road surfaces. Science of the Total Environment, 1998,209:243-254
    [5] Banerjee AD. Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution, 2003,123: 95-105
    [6] Bris FJ, Gamaud S, Apperry N, et al. A street deposit sampling method for metal and hydrocarbon contamination assessment. Science of the Total Environment, 1999,235: 211-220
    [7] Charlesworth SM, Lees JA. The distribution of heavy metals in deposited urban dusts and sediments, Coventry, England. Environmental and Geochemistry and Health, 1999,21: 97-115
    [8] Charlesworth SM, Everetta M, McCarthy R, et al. A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environment International, 2003, 29: 563-573
    [9] Day JP, Hart M, Robinson SM. Lead in urban street dust. Nature, 1975,253:343-345
    [10] Deletic Ana B, Orr DW. Pollution buildup on road surfaces. Journal of Environmental Engineering, 2005,131 (1): 49-59
    [11] Dwight Ryan h., Jan C. semenza et al. Association of urban runoff with coastal water qulity in orange country, California. Water environment research, 74(1): 82-90
    [12] Fang GC, Chang CN, Wu YS, et al. Characterization, identification of ambient air and road dust polycyclic aromatic hydrocarbons in central Taiwan, Taichung. Science of the Total Environment, 2004,327:135~146
    [13] Gomez B, Palaciosa MA, Gomez M, et al. Levels and risk assessment for humans and ecosystems of platinum-group elements in the airborne particles and road dust of some European cities. Science of the Total Environment, 2002,299:1~19
    [14] Gupta K.and Saul A.J.Specific relationships for the first flush load in combined sewer systems, Wat. Res. 1996, 30(5) : 1244-1252
    [15] Haejin Lee, Sim-Lin Lau. Seasonal first flush phenomenon of urban stormwater discharges. Water Research, 2004, 38:4153-4163
    [16] Highway Stormwater Runoff Study. The Michigan Department of Transportation, 1998.4
    [17] Huerwang Anna C. Jeng et al. Impact of urban stormwater runoff on estuarine environmental quality. Estuarine, Coastal and Shelf Science. 2005, 63:513-526
    [18] IGBP Science Series 4,A Planet under the Chinese Version),2004.[IGBP.全球变化与地球系统-一颗重负之下的行星.张雪芹译.IGBP Science 4(中文版),2004
    [19] Jeffrey Sollera, Julie Stephensona. Evaluation of seasonal scale first flush pollutant loading and implications for urban runoff management. Journal of Environmental Management. 2005,76:309-318
    [20] Karen Anna Riley. A model for nitrate mass in runoff during single storm events, 2002, UMI, PhD Thesis
    [21] Katerina Perdikak. ChristopherF.Mason. Impact of road runoff on received streams in eastern England. Water Resource, 1999,33(7): 1627~1633
    [22] Keller J, Lamprecht R. Road dust as an indicator for air pollution transport and deposition: an application of SPOT imagery. Remote Sensing of Environment, 1995,54: 1-12
    [23] Lazaro TR.Urban Hydrology: A Multidisciplinary Perspective. Ann Arbor, MI.: Ann Arbor Science Publishers. 1990
    [24] Min Liu, Jing Chang, Heyi Wang, Shiyuan Xu, Research of Urban Stormwater Runoff Pollution in Shanghai City: Loads and Effects. In Urban Dimensions of Environmental Change: Science, Exposures, Policies and Technologies, 2005,Science Press and Science Press USA Inc.
    [25] Sabina Lisa D., Jeong Hee Lim. Contribution of trace metals from atmospheric deposition to stormwater runoff in a small impervious urban catchment. Water Research, 2005, 39: 3929-3937
    [26] Sartor JD, Boyd GB. Water Pollution Aspects of Street Surface Contaminants. Washington, DC: The United States Environmental Protection Agency, EPA-R2-72-081. 1972
    [27] Science Plan—urbanization and global environmental change. IHDP Report No. 15, ISSN 1814-7925,2005,3
    [28] St' ephane Garnaud., Heavy metal concentrations in dry and wet atmospheric deposits in Paris district: comparison with urban runoff. The Science of the Total Environment.1999, 235:235-245
    [29] Steven J. Burian, Gerald E. Streit et al. Modeling the atmospheric deposition and stormwater washoff of nitrogen compounds Environmental Modelling & Software.2001, 16:467-479
    [30] Sutherland RA, Tolosa CA. Multi-element analysis of road-deposited sediment in an urban drainage basin, Honolulu, Hawaii. Environmental Pollution, 2000, 110:483-495
    [31] Taylora Geoff D., Tim D. Fletchera. Nitrogen composition in urban runoff-implications for Storm-water management. Water Research. 2005,39:1982-1989
    [32] The Changing Nature of Physical Geography(K.J.Gregory,2000),蔡运龙等编译,中文版《变化中的自然地理学性质》,北京:商务印书馆,2006
    [33] Timothy R. Lazaro. Urban hydrology, a multidisciplinary perspective. Technomic Publishing Company, 1990
    [34] Vaze J, Francis HS. Experimental study of pollutant accumulation on an urban road surface. Urban Water, 2002, 4:379-389
    [35] Viklander M. 1998. Particle size distribution and metal content in street sediments. Journal of Environmental Engineering, 124(8): 761-766
    [36] Walker William J., The potential contribution of urban runoff to surface sediment of the Passaic river: source and chemical characteristics. Chemosphere,1999, 38 (2) : 363-377
    [37] Wang WH, Wong MH, Leharne S, et al. Fractionation and biotoxicity of heavy metals in urban dusts collected from HongKong and London. Environmental Geochemistry and Health, 1998,20:185~198
    [38] Yuan Y, Hall K, Oldham C. 2001. A preliminary model for predicting heavy metal contaminant loading from an urban catchment. Science of the Total Environment, 266: 299~307
    [39] 常静,刘敏,侯立军,许世远,林啸,Ballo Siaka.城市地表灰尘的概念、污染特征与环境效应.应用生态学报,2007,18(5):1153-1158
    [40] 常静,刘敏,许世远,侯立军,王和意,Ballo Siaka.上海城市降雨径流污染时空分布与初始冲刷效应.地理研究,2006,25(6):994-1002.
    [41] 常静,刘敏,许世远,王和意.上海城市暴雨径流污染过程、效应与管理.自然地理学与生态建设,气象出版社2006,394-400
    [42] 车伍,北京城区道路雨水径流污染指标相关性分析,城市环境与城市生态,2003,16(6):182-184
    [43] 陈丽旋,曾峰等.城市道路灰尘中邻苯二甲酸酯污染特征研究.环境科学学报,2005,25(3):410-413.
    [44] 陈述彭.《上海城市自然地图集》读图心得.地理学报,2005,60,6
    [45] 程书波.上海城市地表灰尘PAHs累积、迁移过程及生态风险评价研究.2006,华东师范大学,硕士学位论文
    [46] 杜佩轩,田晖等.城市灰尘概念、研究内容与方法.陕西地质,2004,22(1):73~79.
    [47] 杜佩轩,田晖等.城市灰尘粒径组成及环境效应—以西安市为例.岩石矿物学杂志,2003,21(1):94~98.
    [48] 高秋霞,李田,国外城市非点源径流水质模型简介,安全与环境工程,2003,10(4):9~12
    [49] 高秋霞.苏州河沿岸泵站雨天排江水质研究.2004,同济大学,硕士学位论文
    [50] 顾琦,刘敏,,蒋海燕.上海市区降水径流磷的负荷空间分布.上海环境科学,2002,21(4):213-215
    [51] 郭琳,曾光明等.长沙城市街道地表物的特性分析.中国环境监测,2003,19(6):40~42.
    [52] 韩东昱,岑况等.北京市公园道路粉尘Cu,Pb,Zn含量及其污染评价.环境科学研究,2004,12(2):10~13.
    [53] 韩秀娣.上海市西南城区降雨径流污染探讨.上海师范大学硕士学位论文,2001
    [54] 何庆慈,李立.武汉市汉阳区的暴雨径流污染特征.中国给水排水.2005,21,(2):101~103
    [55] 黄金良a,杜鹏飞,欧志丹,李梅香,赵冬泉,何万谦,王志石.澳门城市路面地表径流特征分析中国环境科学2006,26(4):469-473
    [56] 黄金良b,杜鹏飞,欧志丹,李梅香,赵冬泉,何万谦,王志石.澳门城市小流域地表径流污染特征分析.环境科学,2006,27(9):1753-1760
    [57] 蒋海燕,刘敏,顾琦.上海城市降水径流营养盐氮负荷及空间分布.城市环境与城市生态,2002,15f1):15-17
    [58] 蒋海燕,刘敏,黄沈发,沈根祥,吴健,城市土壤污染研究现状与趋势。安全与环境学报,2004,4(5):73—77。
    [59] 蒋海燕.上海城市土壤、地表灰尘环境特征分析及其管理体系研究.2005,华东师范大学,硕士学位论文
    [60] 李贺,李田.上海高密度居民区合流制系统雨天溢流水质研究.环境科学,2006,27(8):1565-1569
    [61] 刘敏,许世远,侯立军,欧冬妮,常静,城市自然地理的实践与发展,自然地理学与生态建设,气象出版社,2006。
    [62] 刘燕华,葛全胜,张雪芹.关于中国全球环境变化人文因素研究发展方向的思考.地球科学进展,2004,19(6):890~895
    [63] 刘玉燕,刘敏,刘浩峰等.城市土壤Pb污染特征及影响因素分析.干旱环境监测,2006a,20(1):8-11
    [64] 刘玉燕,刘敏,刘浩峰等.城市土壤重金属污染特征分析.土壤通报,2006b,37(1):184-188
    [65] 刘玉燕,刘敏,刘浩峰等.乌鲁木齐城市土壤中重金属分布.干旱区地理,2006c,29(1):120-124
    [66] 刘玉燕,刘敏.乌鲁木齐城市土壤性质与污染的研究.干旱区研究,2007,24(1):66-69.
    [67] 刘玉燕.城市土壤、灰尘营养盐与重金属分布及机制探讨—以乌鲁木齐与上海市为例.2005,华东师范大学,硕士学位论文
    [68] 孟飞,刘敏,张心怡.高强度人类活动下河网水系时空变化分析——以浦东新区为例.资源科学,2005a,27(6):156-161
    [69] 孟飞,刘敏,张心怡.ETM影像城镇覆盖及其背景信息的提取方法研究.华东师范大学学报,2005b,(4):59-65
    [70] 孟飞.上海土地利用/覆被变化过程、机制与环境效应.2006,华东师范大学,博士学位论文
    [71] 沈桂芬,张敬东.武汉降雨径流水质特性及主要影响因素分析.2005,21(2):57-71
    [72] 施为光.成都市街道地表物中的重金属.城市环境与城市生态,1995,8(3):25-29.
    [73] 施为光.街道地表物的累积与污染特征—以成都市为例.环境科学,1991,12(3):18-23.
    [74] 史贵涛,陈振楼,许世远,王利等.上海城市公园土壤及灰尘中重金属污染特征.环境科学,2007,28(2):238-242
    [75] 史培军,王静爱,陈婧等.当代地理学之人地相互作用研究的趋向—全球变化人类行为计划(IHDP)第六届开放会议透视.地理学报,2006,61(2):115-126
    [76] 谭琼,李田,高秋霞.上海市排水系统雨天出流的初期效应分析.中国给水排水,2005,21(11):26-31
    [77] 田晖,刘连刚.西安市灰尘来源探析.北京地质,2002,14(1):23-28.
    [78] 汪慧贞,李宪法.北京城区雨水径流的污染及控制.城市环境与城市生态,2002,15(2):16-18.
    [79] 王和意,刘敏,刘华林,程书波,汪青.城市降雨屋面径流污染分析和管理控制.长江流域资源与环境,2005a,14(3):367-371
    [80] 王和意,刘敏,刘巧梅,侯立军,城市降雨径流非点源污染分析与研究进展.城市环境与城市生态,2003,16(6):283—285
    [81] 王和意,刘敏,刘巧梅,侯立军,欧冬妮.城市暴雨径流初始冲刷效应和径流污染管理.水科学进展.2006,17(2):181-185
    [82] 王和意.上海城市降雨径流污染过程及管理措施研究.2005b,华东师范大学,硕士学位论文
    [83] 王金达,刘景双.沈阳市城区土壤和灰尘中铅的分布特征.中国环境科学,2003,23(3):300-304
    [84] 吴林祖.杭州城市径流污染特征的初步分析.上海环境科学,1987,6(6):34-36
    [85] 西部大开发面临的挑战—全球变化区域响应研讨会暨第四届CNC2IGBP 2001年年会会议纪要.国际地圈生物圈计划中国全国委员会(CNC-IGBP)秘书处,地球科学进展,2002,17(2):299-301
    [86] 许世远主编.上海城市自然地理图集,北京:中国地图出版社,2004
    [87] 张心怡,刘敏,孟飞.基于RS和GIS的地面温度和土地利用覆被关系研究进展.遥感信息,2005a,79(3):66-70
    [88] 张心怡,刘敏,孟飞.RS和GIS的近15年来上海城镇建设用地扩展动态研究.长江流域资源与环境,2005b,5(1):29-33
    [89] 张心怡.基于遥感和GIS的上海土地利用/覆盖变化及其热环境效应研究.2006,华东师范大学,硕士学位论文
    [90] 张亚东,车伍等.北京城区道路雨水径流污染指标相关性分析.城市环境与城市生态,2003,16(6):182~184
    [91] 张菊.上海城市街道灰尘重金属污染特征.2005,华东师范大学,硕士学位论文
    [92] 赵剑强,孙奇溥.城市道路路面径流水质特性及排污规律.长安大学学报,2002,22(2):21-23
    [93] 赵剑强.城市地表径流污染与控制.北京:中国环境科学出版社,2002.
    [94] 朱继业,窦贻俭.城市水环境非点源污染总量控制研究与应用.环境科学学报,1999,19(4):416-420
    [95] 卓慕宁,吴志峰等.珠海城区降雨径流污染特征初步研究.土壤学报,2003,40(5):775-778
    [96] 张伟,周永潮.城市雨水径流污染负荷计算及评价模型.湖南城市学院学报(自然科学版),2005,14(1):27-29
    [1] Adachi K, Tainosho Y. Single particle characterization of size-fractionated road sediments. Applied Geochemistry. 2005,20:849-859
    [2] Ball JE, Jenks R, Aubourg D. An assessment of the availability of pollutant constituents on road surfaces. Science of the Total Environment. 1998,209:243~254
    [3] Charlesworth SM, Lees JA. The distribution of heavy metals in deposited urban dusts and sediments, Coventry, England. Environmental and Geochemistry and Health, 1999,21: 97-115
    [4] Deletic Aria B, Orr DW. Pollution buildup on road surfaces. Journal of Environmental Engineering, 2005,131 (1): 49-59
    [5] Fang GC, Chang CN, Wu YS, et al. Characterization, identification of ambient air and road dust polycyclic aromatic hydrocarbons in central Taiwan, Taichung. Science of the Total Environment, 2004,327:135-146
    [6] Sartor JD, Boyd GB. Water Pollution Aspects of Street Surface Contaminants. Washington, DC: The United States Environmental Protection Agency, EPA-R2-72-081.1972
    [7] Viklander M. Particle size distribution and metal content in street sediments. Journal of Environmental Engineering, 1998, 124(8): 761-766
    [8] 鲍士旦主编.土壤农化分析,第三版,中国农业出版社,2000
    [9] 常静,刘敏,侯立军,许世远,林啸,Ballo Siaka.城市地表灰尘的概念、污染特征与环境效应.应用生态学报,2007,18(5):1153-1158
    [10] 杜佩轩,田晖等.城市灰尘粒径组成及环境效应—以西安市为例.岩石矿物学杂志,2003,21(1):94-98
    [11] 国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法.第四版,北京:中国环境科学出版社,2002
    [12] 上海长宁区城市建设志,上海人民美术出版社,上海市长宁区建设委员会主编,2001
    [13] 郑晓阳,基于SDSS的感潮河口城市水灾减灾辅助决策研究.华东师范大学,博士学位论文,2005
    [1] Adachi K, Tainosho Y. Single particle characterization of size-fractionated road sediments. Applied Geochemistry, 2005,20:849~859
    [2] Deletic Ana B, Orr DW. Pollution buildup on road surfaces. Journal of Environmental Engineering, 2005,131(1): 49-59
    [3] Banerjee.AD, Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution, 2003, 123: 95-105.
    [4] Ball JE, Jenksb R. Aassessment of the availability of pollutant constituents on road surfaces. Science Total Environment, 1998, 209: 243-254.
    [5] Bris FJ, Garnaud S, Apperry N, et al. A street deposit sampling method for metal and hydrocarbon contamination assessment. Science of the Total Environment, 1999,235: 211-220
    [6] Charlesworth SM, Everetta M. 2003. A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environ Int, 29: 563-573.
    [7] Charlesworth SM, Lees JA. The application of some mineral magnetic measurements and heavy metal analysis for characterizing fine sediments in an urban catchment, Coventry, UK. Journal of Applied Geophys, 2001, 48: 113-125.
    [8] Chon HT, Alan JS, Jung MC. 1998. Seasonal variations and chemical forms of heavy metals in soils and dusts from the satellite cities of Seoul, Korea. Environ Geochem Health, 20: 77-86.
    [9] Day JP, Hart M, Robinson SM. 1975. Lead in urban street dust. Nature, 253: 343~345.
    [10] Ede Migue, Llamas JF. 1999. Sources and pathways of trace elements in urban environments a multi-elemental qualitative approach. Sci Total Environ, 235: 355-357.
    [11] Francois Jerome Brisa. 1999. A street deposit sampling method for metal and hydrocarbon contamination assessment. Sci Total Environ, 235:211-220.
    [12] Herngren L, Goonetilleke A, Ayoko, GA. Analysis of heavy metals in road-deposited sediments. Analytica Chimica Acta, 2006,571:270-278
    [13] Lee PK, Yu YH, Yun ST, et al. Metal contamination and solid phase partitioning of metals in urban roadside sediments. Chemosphere, 2005,60:672-689
    [14] Li X, Poon C, Liu, PS. Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 2001, 16:1361-1368
    [15] Rasmussen PE, Subramanian KS, Jessiman BJ. A multi-element profile of house dust in relation to exterior dust and soils in the city of Ottawa, Canada. Science of the Total Environment, 2001,267:125-140
    [16] Vaze J, Francis HS. Experimental study of pollutant accumulation on an urban road surface. Urban Water, 2002, 4:379-389
    [17] Viklander M. 1998. Particle size distribution and metal content in street sediments. Journal of Environmental Engineering, 124(8): 761-766
    [18] 杜佩轩,田晖等.城市灰尘粒径组成及环境效应—以西安市为例.岩石矿物学杂志,2003,21(1):94-98
    [19] 郭琳,曾光明等.长沙城市街道地表物的特性分析.中国环境监测,2003,19(6):40~42.
    [20] 韩东昱,岑况等.北京市公园道路粉尘Cu,Pb,Zn含量及其污染评价.环境科学研究,2004,12(2):10-13
    [21] 蒋海燕.上海城市土壤、地表灰尘环境特征分析及其管理体系研究.华东师范大学,硕士学位论文,2005
    [22] 刘玉燕.城市土壤、灰尘营养盐与重金属分布及机制探讨—以乌鲁木齐与上海市为例.华东师范大学,硕士学位论文,2005
    [23] 史贵涛,陈振楼,许世远,王利等.上海城市公园土壤及灰尘中重金属污染特征.环境科学,2007,28(2):238-242
    [24] 张菊.上海城市街道灰尘重金属污染特征.华东师范大学,硕士学位论文,2005
    [25] 朱继业,窦贻俭.城市水环境非点源污染总量控制研究与应用.环境科学学报,1999,19(4):416-420
    [1] Akula Venkatram. A critique of empirical emission factor models: a case study of the AP-42 model for estimating PM10 emissions from paved roads. Atmospheric Environment, 2000, 34:1-11
    [2] Detetic Ana B. Evaluation of water quality factors in storm in storm runoff from paved areas. Journal of environmental engineering, 1998,9:869-879
    [3] Ganey, P., Bode, R., Murchison, L., PM10 emission inventory improvement program for California. Report available from Patrick Ganey, Air Resources Board, 2020 L Street, Sacramento, and CA.95814. 1995
    [4] U.S. E PA of Air Quality Planning and Standards Emission Factor and Inventory Group, MRI Project No. 4864,Emission Factor Documentation for AP-42 Section 13.2.2 Unpaved Roads Final Report
    [5] Vaze J, Francis HS. Experimental study of pollutant accumulation on an urban road surface. Urban Water, 2002, 4:379-389
    [6] Wongpun Limpaseni, Regional Workshop Fighting Urban Air Pollution: From Plan to Action February 12-14, 2001. United Nations Conference Center, Bangkok, Thailand
    [7] Zanders JM. Road sediment—characterization and implications for the performance of vegetated strips for treating road run-off. Science of total environment, 2005,339: 41-47
    [8] Zimmer, R.A., Reeser, W.K. Evaluation of PM 10 emission factors for paved streets. PM 10 Standards and ontraditional Particulate Source Controls, 1992:131-323.
    [9] 陈长虹,周正明,朱润非.上海城市机动车辆排气污染控制战略研究.上海环境科学,1996,15(9):4-6
    [10] 黄嫣曼.城市地面扬尘的估算与分布特征研究,华东师范大学,硕士学位论文,2006
    [11] 蒋德海;蒋维楣;苗世光;城市街道峡谷气流和污染物分布的数值模拟.环境科学研究,2006,19(3):7-12
    [12] 刘立忠,张承中,李冶婷.道路人工清扫扬尘中PM10污染影响因素研究.西北大学学报(自然科学版),2005,35(3):363-366
    [13] 刘立忠.城市道路二次扬尘发生机理及量化计算模式的研究,西安建筑科技大学,硕士学位论文,2002
    [14] 吕森林,邵龙义,吴明红等.北京城区可吸入颗粒物(PM10)的矿物学研究.中国环境科学,2005,25(2):129-132.
    [15] 邱洪斌 李兴洲 赵红宇.街道扬尘粒径特征及污染贡献研究.黑龙江医药科学.2002,25:4-7
    [16] 师育新,戴雪荣,宋之光.上海春季沙尘与非沙尘天气大气颗粒物粒度组成与矿物成分.中国沙漠,2006,26(9):780-785
    [17] 王玮,叶慧海,金大善.交通来源颗粒物及其无机成分污染特征的研究.2001,14(4):16-20
    [18] 王玮,岳欣,刘红杰.源颗粒物排放因子的研究.环境科学研究.2001,14(4):36-40
    [19] 王赞红.现代尘暴降尘与非尘暴降尘的粒度特征.地理学报,2003,58(4):605-610.
    [20] 谢晓敏,黄震,王嘉松.建筑物项部形状对街道峡谷内污染物扩散影响的研究.空气动力学学报,2005,23(1):108-113
    [21] 余梓木,周红妹,郑有飞.基于遥感和GIS的城市颗粒物污染分布研究.自然灾害学报,2004,13(3):58-64
    [22] 张国宏,谈建国,郑有飞等.上海市月降尘量与气象因子间关系研究.气象科学,2006.26(3):328-333
    [97] Bertrand Krajewski JL, Chebbo G, SagetA. Distribution of pollutant mass vs volume in stormwater discharges and the first flush phenomenon. Water Research, 1998, 32(8): 2341-2356
    [98] Chen Jieyun, Barry J. Adams. A derived probability distribution approach to stormwater quality modeling. Advances in Water Resources, 2007,30: 80-100
    [99] Charbeneau R J, Barrett M E. Evaluation of Methods for Estimating Stormawater Pollutant Loads. Water Environment Research, 1998, 70(7): 1295-1302
    [100] Deletic A B, Maksimovic C T. Evaluation of Water Quality Factors in Storm Runof from Paved Areas. Journal of Environmental Engineering. 1998, 124(9): 869-879
    [101] Geiger W F. Characteristics of combined sewer runof. Proceeding of the 3fd International Conference on Urban Storm Drainage, Goteberg, Sweden. 1984, 851-860
    [102] Gupta K. SaulA J. Specific relationships for the first flush load in combined sewer flows. Water Research, 1996,30 (5): 1244-1252
    [103] Lee J-H, Bang K W. First flush analysis of urban storm runof. The Science of the Total Environment, 2002, 293:163-17
    [104] Lee JH, Bang K W. Characterization of urban stormwater runof. Water Research, 2000, 34: 1773-1780
    [105] Sager Agnes, Chebbo Ghassan, Bertr Krajewski JeanLuc. The first flush in sewer systems. Water Science Technology, 1996, 33 (9): 101-108
    [106] Sansalone JJ, Buchbergen, SG. Fractionation of heavy metals in pavement runoff. The Science of total environment. 1996,190:371-378
    [107] Sansalone JJ, Buchbergen, SG. Partitioning and first flush of metals in urban roadway stormwater, Journal of environmental engineering, 1997,123(2): 134~143
    [108] 常静,刘敏,许世远,侯立军,王和意,Ballo Siaka.上海城市降雨径流污染时空分布与初始冲刷效应.地理研究,2006,25(6):994-1002
    [109] 王和意,刘敏,刘巧梅,侯立军,城市降雨径流非点源污染分析与研究进展.城市环境与城市生态,2003,16(6):283—285
    [110] 王和意,刘敏,刘巧梅,侯立军,欧冬妮.城市暴雨径流初始冲刷效应和径流污染管理.水科学进展.2006,17(2):181-185
    [111] 王和意.上海城市降雨径流污染过程及管理措施研究.华东师范大学,硕士学位论文,2005
    [1] Charlesworth SM, Lees JA. The distribution of heavy metals in deposited urban dusts and sediments, Coventry, England. Environmental and Geochemistry and Health, 1999,21:97-115
    [2] Duzgoren-Aydin N.S., Won C.S.C. g, Aydin A. et al., Heavy metal contamination and distribution in the urban environment of Guangzhou, SE China. Environmental Geochemistry and Health, 2006, DOI 10.1007/s10653-005-9036-7
    [3] Engstrom Amy M. Characterizing Water Quality of Urban Stormwater Runoff: Interactions of Heavy Metals and Solids in Seattle Residential Catchments. PhD Thesis, University of Washington, 2004.
    [4] Gbel, P. et al. Storm water runoff concentration matrix for urban areas. Journal of Contaminant Hydrology, 2006, doi: 10.1016/j.jconhyd.2006.08.008
    [5] Glenn, Donald. Heavy Metal Distribution for Aqueous and Solid Phases in Urban Runoff, Snowmelt and Soils. Phd Thesis, 2002
    [6] Gromaire M C, Garnaud S, Saad M, et al. Contribution ofdiferent sotll-ces to the pollution of wet weatherflows in combined sewer in combined sewers. Water Research, 2001, 35(2): 521-533
    [7] Gromaire M C, Garnaud S, Saad M, et al. Contribution ofdiferent sources to the polution of wet weatherflows in combined sewers. Water Research, 2001, 35(2): 521-533
    [8] Hewitt, C. N., and Rashed, M.B. Removal rates of selected pollutants in the runoff waters from a major highway. Water Research, 1992,26(3): 311-319
    [9] Lisa D. Sabina, Jeong Hee Lim, Keith D. Stolzenbach et al. Contribution of trace metals from atmospheric deposition to stormwater runoff in a small impervious urban catchment. Water Research, 2005, 39:3929-3937
    [10] Mattias B., Ulrika, N., Karsten H., et al. Speciation of heavy metals in road runoff and roadside total deposition. Water, Air, and Soil Pollution, 2003,147:343-366
    [11] Michigan Department of Transportation, Highway Stormwater Runoff Study, 1998
    [12] Sansalone JJ, Buchberger Steven G et al. Fractionation of heavy metals in pavement runoff. The Science of the Total Environment. 1996, 371-378
    [13] Sansalone, J.J., Buchberger, S.G. and Koechling, M.T. Correlations between heavy metals and suspended solids in highway runoff: Implications for control strategies. Transportation Research Record. 1995, 1483:112-119
    [14] Stephane Garnaud, Jean-Marie Mouchel, Ghassan Chebbo. Heavy metal concentrations in dry and wet atmospheric deposits in Paris district: comparison with urban runoff. The Science of the Total Environment. 1999, 235-245
    [15] Stenstrom Michael K., Masoud Kayhanian. First Flush Phenomenon Characterization. California Department of Transportation Division of Environmental Analysis, 2005
    [16] USA EPA. Results of the Nationwide Urban Runoff Program, Final Report, U. S. Environmental Agency, NTIS Accession NO. PB842185552, December, 1983
    [17] 白月华,李怀正,傅威.雨水就地处置方式的环境风险评价.上海环境科学,2003,22(8):552-587.
    [18] 车伍,刘燕,李俊奇.国内外城市雨水水质及污染控制.给水排水,2003,29(10):37-42.
    [19] 陈满荣,王安宝,俞立中.扬州雨水质量分析及其利用.光谱实验室,2006,23(2):316-341
    [20] 高秋霞.苏州河沿岸泵站雨天排江水质研究.2004,同济大学,硕士学位论文
    [21] 华明,徐祖信.苏州河沿岸市政泵站放江特征分析.给水排水,2004,30(11):33~36
    [22] 黄金良,杜鹏飞,欧志丹,李梅香,赵冬泉,何万谦,王志石.澳门城市路面地表径流特征分析.中国环境科学2006,26(4):469-473
    [23] 霍文毅,陈静生.我国部分河流重金属水-固分配系数及在河流质量基准研究中的 应用.环境科学,1997,4:10-13
    [24] 李道季,张经,张利华等.长江河口悬浮颗粒表面特性的初步研究。泥沙研究,2001,5:37-41
    [25] 李贺,李田.上海高密度居民区合流制系统雨天溢流水质研究.环境科学,2006,27(8):1565-1569
    [26] 谭琼,李田,高秋霞.上海市排水系统雨天出流的初期效应分析.中国给水排水,2005,21(11):26-31
    [27] 王祖琴,李田,吴今明.上海市雨水污染控制初探.上海环境科学,2002,21(5):305-307.
    [28] 徐贵泉,陈长太,林卫青.初期雨水调蓄池控制溢流污染研究.中国给水排水,2005,21(8):19~22
    [29] 张恩仁,长江口悬浮泥沙的吸附-解吸作用对元素固-液相态转化控制的研究.博士学位论文,华东师范大学,2003
    [30] 卓慕宁,吴志峰等.珠海城区降雨径流污染特征初步研究.土壤学报,2003,40(5):775~778
    [1] Duggan, M.J., Inskip, M.J., 1985. Childhood lead exposure to lead in surface dust and soils: a community health problem. Public Health Rev. 13, 1-54.
    [2] Ferreira-Baptistaa L., E. De Miguelb, Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment 39 (2005) 4501-4512
    [3] Gomeza B, Palaciosa MA. Levels and risk assessment for humans and ecosystems of platinum-group elements in the airborne particles and road dust of some European cities. Scicence Total Environment. 2002, 299:1-19.
    [4] Janneke Hogervorst, Michelle Plusquin, Jaco Vangronsvel et al. House dust as possible route of environmental exposure to cadmium and lead in the adult general population. Environmental Research, 2007, 103 30-37
    [5] Kissel, J.C., Richter, K.Y., Fenske, R.A., Field measurements of dermal soil loading attributable to various activities: implications for exposure assessment. Risk Analysis. 1996, 16, 115-125.
    [6] Marcus A H. 1992. Use of site2specific data in models for lead risk assessment and risk management. Fundamental and Applied Toxicology, 18:10-16
    [7] Maxwell, C.M., Nelson, D.W., Development of lead emission factor for reentrained dust from paved roadways. Presented at the 71 st Annual Meeting of the Air Pollution Control Association, Houston, Texas, 1978, 25-30
    [8] Miguel AG, Cass GR, Glovsky MM, et al. Allergens in paved road dust and airborne particles. Environmental Science & Technology, 1999, 33: 4159-4168
    [9] Namdeo, A.K., Colls, J.J., Baker, C.J., Dispersion and resuspension of fine and coarse particulates in an urban street canyon. Science Total Environment. 1999,235, 3-13
    [10] Schuhmacher M, Meneses M, Xifro A, et al. 2001. The use of Monte2Carlo simulation techniques for risk assessment: study of a municipal waster incinerator. Chemosphere, 43:787-799
    [11] Sun Yele, Zhuang Guoshun, Zhang Wenjie. Characteristics and sources of lead pollution after phasing out leaded gasoline in Beijing Atmospheric Environment, 2006, 40: 2973-2985
    [12] U.S. Department of Energy, 2004. RAIS: Risk Assessment Information System, ttp://risk.lsd.ornl.gov/rap_hp.shtml
    [13] U.S. Environmental Protection Agency, 1989. Risk Assessment Guidance for Superfund, vol. Ⅰ: Human Health Evaluation Manual. EPA/540/1-89/002. Office of Soild Waste and Emergency Response. US Environmental Protection Agency. Washington, D.C. http://www.epa.gov/superfund/programs/risk/ragsa/index.htm
    [14] U.S. Environmental Protection Agency, 1996. Soil Screening Guidance: Technical Background Document. EPA/540/R- 95/128. Office of Soild Waste and Emergency Response. U.S. nvironmental Protection Agency. Washington, D.C.
    [15] U.S. Environmental Protection Agency, 2001. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24. ONce of Soild Waste and Emergency Response. U.S. Environmental Protection Agency. Washington, D.C
    [16] United States Environmental Protection Agency, 1995. Residential sampling for lead: protocols for dust and soil sampling. Final Report, March 1995, (LEAD) [EPA/747/R-95-001], Ref Type: Serial (Book, Monograph), US Environmental Protection Agency, Research Triangle
    [17] US EPA. 2004. User's guide for the integrated exposure uptake biokinetic model for lead in children (IEUBK). Jane, http:www.Epa.Gov/superfund/programs/lead
    [18] Van den Berg, R. Human exposure to soil contamination: a qualitative and quantitative analysis towards proposals for human toxicological intervention values. 1995. National Institute of Public Health and Environmental Protection (RIVM). Bilthoven, The Netherlands. http://www.rivm.nl/bibliotheek/rapporten/725201011.html
    [19] Wro' bel, A., Rokita, E., Maehaut, W., Transport of traNc-related aerosols in urban areas. Science Total Environment. 2000, 257, 199-211
    [20] 陈鸿汉,谌宏伟,何江涛等.污染场地健康风险评价的理论和方法.地学前缘,2006,13(1):216-0223
    [21] 李志博,骆永明,宋静等.土壤环境质量指导值与标准研究Ⅱ,污染土壤的健康风险评估.土壤学报,2006,43(1):142-152
    [22] 钱华.环境铅污染来源及其对人体健康的影响.环境监测管理与技术,1998,10(6):14-17.
    [23] 任慧敏,王金达,张学林等.沈阳市儿童环境铅暴露评价.环境科学学报,2005,25(9):1236-1241
    [24] 王春梅,欧阳华,王金达等.沈阳市环境铅污染对儿童健康的影响.环境科学,2003, 24,(5):17-22
    [25] 王春梅,欧阳华,王金达等.沈阳市多介质环境铅污染研究.中国环境科学,2003,23(4):358-362
    [26] 王永杰,贾东红.健康风险评价中的不确定性分析.环境工程,2003,21(6):66-72
    [27] 叶舜华.汽车排气对交通警及隧道工健康的影响.上海医科大学学报,1990,17(4):283
    [28] 赵沁娜.城市土地置换过程中土壤污染风险评价语风险管理研究.2006,华东师范大学,博士学位论文

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700