机动车排放PM_(2.5)和NO_x的特征与减排对策
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
控制机动车排气污染是我国城市大气污染控制中最为迫切与重要的工作之一。机动车排气污染已经成为我国影响城市大气环境质量的主要因素,其中PM2.5、NOx是当前大气环境中的主要污染因子,研究机动车排气的PM2.5、NOx排放特征与污染物减排策略具有重大科学意义与应用背景。
     本论文以杭州市为主要案例,通过典型道路边人行呼吸带的PM2.5与NOx采样监测,并对采集的样品进行了理化分析和源解析研究;结合基于杭州市排气定期机动车检测/维修制度(I/M计划)的机动车状况研究和道路网特征调查分析,利用修正的IVE模型计算分析了机动车污染物排放清单;以LEAP2011模型为计量工具,预测了未来10年内(2011-2020年)浙江省机动车保有量的变化情况与PM2.5和NOx的排放量。根据以上研究结果,提出了浙江省机动车的PM2.5和NOx减排措施与策略。
     杭州市呼吸带PM2.5的理化性质研究表明,城市路边与环境空气PM2.5组分相比,具有无机组分含量低、有机组分高的特征。路边PM2.5中NO3-的绝对浓度、NO3-/总阴离子、NO3-/SO42均大于环境点,说明机动车直接排放的颗粒物及气态污染物转化形成的二次颗粒物已经是影响城市路边PM2.5浓度的主要因素。而路边两侧SO2转化率和NOx的转化率超过了0.1,表明有光化学反应发生。富集因子分析表明,机动车污染是道路两侧土壤和灰尘中重金属污染的主要来源。PM2.5中Pb仍维持着较高的富集水平,路边大气污染已经对人体健康有潜在的危害。
     对城市呼吸带NOx的理化性质研究表明,路边NO2浓度明显高于环境点,路边NO2日变化规律与车流量变化相似,机动车尾气排放是造成道路两侧NO2污染的主要来源,促使市区环境空气污染向煤烟.机动车尾气复合型转变。
     针对上述机动车排气污染情况,应对排放高的车辆进行筛选及控制。杭州市10多年的I/M数据分析表明,超过50%的机动车车龄在6年以内,25%的轻型客车车龄超过10年,90%的货车车龄在8年以内;NOx等污染物以及烟度值与车龄呈正相关,随着车龄的增加检测车辆的污染物排放越严重。
     车辆和路况对机动车的排放有重大影响。车辆类型调查表明,杭州市区各车型中乘用车的比例不断增加且比例最大,占到了74.1%,出租车比例基本不变,货车比例有所下降;路况调查则表明杭州市区道路平均行驶速度25.86km/h,高速路、快速路、主干道和民用支路分别为48.61km/h.27.1km/h、15.78km/h和16.76km/h,市区路网中民用支路(65.9%)和主干道路(26.1%)比例较大,快速路不足,主干道上红绿灯频繁,交通拥挤严重,加减速或怠速状态比例高,而匀速比例较低,交通拥堵导致机动车排放大量增加。
     利用修正的IVE模型计算了杭州市2010年机动车排放的NOX和PM2.5的清单。机动车NOX年排放4.43万吨,PM2.5年排放0.54万吨。NOX和PM2.5的最大贡献车型都是重型柴油车。国I标准前和国I标准车是NOX和PM2.5排放的主要来源,国Ⅲ标准车保有量巨大,但排放量最小,说明通过提高排放标准能够显著减少轻型车排放。机动车污染物排放强度的空间分布整体上呈现由城市中心向城市边缘扩展的递减趋势,中心城区各污染物排放量均占总排放量的70%以上。
     应用LEAP2011模型预测了浙江省2011~2020年间机动车保有量的变化和机动车污染物排放总量。模型分析显示,至2020年,浙江省城区机动车总保有量从2010年的538.1万辆增至1457.1万辆,年均增长率为10.47%;至2020年浙江省PM2.5和NOX排放分别为5.92万吨和54.45万吨,年均增长率分别为5.37%和8.24%,届时NOX减排、大气PM2.5污染防治的形势将更加严峻。
     减排措施与策略控制策略研究表明,大力发展公共交通、优化城市道路网、落实检查/维护(I/M)制度、加快老旧车辆更新淘汰、限制高污染车行驶,推行新排放标准,提升油品质量管理,是减少机动车PM2.5及NOX排放的有效措施。从长远来看,控制机动车数量、发展绿色交通、倡导绿色出行是必然选择。
Regulating vehicle emission is one of the most urgent and critical missions in the air pollution control in China. Vehicle emission, including PM2.5and NOx, has been the major factor which affects the quality of atmospheric environment in the urban area of Chinese cities. Therefore, it is of great scientific and practical importance to investigate the characteristics of the vehicle emission including both PM2.5and NOx and make pollution reduction plans accordingly.
     Hangzhou was selected as a representative city in China for this study. The samples collected from the breathing belt beside typical roads were analyzed to examine PM2.5and NOx pollution. Both the physical and chemical characteristics and source decomposition analysis was performed on these samples. By investigating vehicle conditions based on the regular vehicle inspection/maintenance (I/M) program and characteristics of traffic network, the air pollutant emission inventory of vehicles was analyzed through the calculations with the modified IVE model. The number of vehicles and the emission of PM2.5and NOx in the following10years (from2011to2020) in Zhejiang province were predicted with the LEAP2011model. Based on these results, a reduction strategy and measures for the emission of PM2.5and NOx in Zhejiang province was proposed.
     The physical and chemical analysis of PM2.5on the breathing belt of Hangzhou showed that the PM2.5composition of roadside air is rich in organic constituents but lean in inorganic ones compared with that of ambient air. The absolute concentration of NO3-, the ratio of NO3-to the total anions, and the ratio of NO3-to SO42-for PM2.5in the roadside air are all larger than those in the ambient air, which suggest that the secondary particles, converted from direct vehicle emissions and pollutants in the air, were the leading factor which affected the PM2.5concentration in the roadside air. Both SO2and NOx conversion ratio in the roadside air are larger than0.1indicates the existence of photo-chemical reactions. The analysis on the enrichment factor shows that vehicle emission is the major source of heavy metal pollution observed in the soil and dust on roadsides. The relatively high enrichment level of Pb in PM2.5indicates that the roadside air pollution has posed a potential threaten to human health.
     The physical and chemical analysis of PM2.5on the breathing belt of Hangzhou showed that the concentration of NO2is1.15~1.59times higher in the roadsides than that in the ambient air. The variation of the concentration of NO2is consistent with the variation of traffic volume, which suggests that the vehicle emission is the major source of the NO2pollution in the roadside air and lead to soot-vehicle exhaust complex air pollution in downtown Hangzhou.
     In order to deal with the above mentioned pollution from vehicle emission, it is necessary to identify high emission vehicles and impose strict regulation. The analysis of data from I/M program during the past over10years, more than50%vehicles are less than6years old.25%of the light-weighted bus are more than10year old, while90%truck are less than8years old. Smoke degree and the emission of pollutants such as NOx are proportional to the age of a vehicle. The older the vehicle is, the more severe the emission of pollutants is.
     Vehicles and road conditions have strong influence on the emission of pollutants. The survey on types of vehicles shows that74.1%of vehicles were passenger cars, the number of which is still growing. The percentage of taxi among the vehicles is roughly unchanged while the percentage of truck shows a decline. The survey on traffic conditions shows that the average driving speed in the local area of Hangzhou is25.86km/h. The average driving speeds on freeways, highways, major roads, and civil branch roads are48.61km/h、27.1km/h、15.78km/h, and16.76km/h respectively. Due to the large proportion of major roads (65.9%) and civil branch roads (26.1%), the frequently switched traffic lights, and heavy traffic, many vehicles have to slow down, idle, and speed up frequently, which leads to significantly increase in the amount of vehicle emissions.
     The vehicle emission inventory of the year2010for NOx and PM2.5pollution in Hangzhou was calculated with revised IVE model. Results show that the NOx emission was44.3thousand tons while the PM2.5emission was5.4thousand tons. Heavy diesel vehicles were the largest contributor of NOx and PM2.5. From the perspective of vehicle emission standards, two types of vehicles (C I before and C I) were identified to be major sources of NOx and PM2.5. Although the number of C III vehicles was huge, the emission from these vehicles was smallest as they were regulated with high emission standards. Therefore, raising the emission standard is an effective way to reduce the emission of light-weighted vehicles. There was a decreasing trend for the vehicle emission intensity from the downtown area of Hangzhou to the suburban area. The emission of various pollutants in the downtown area is over70%of the total emission.
     The amount of vehicles and the total emission of pollutant from vehicles of Zhejiang province between2011and2020was predicted with LEAP2011model. The results from the analysis of the model shows that the number of vehicle in Zhejiang province will increase from5.381million to14.571million between2010and2020, which is equivalent to a10.47%annual growth rate. The emission of PM2.5and NOx will be59.2thousand and544.5thousand tons, which are equivalent to5.37%and8.24%annual growth rates, respectively. Therefore, the situation of emission control on NOx and PM2.5in2020will be much more severe.
     Studies on reduction measures and control strategies show that promoting public transportation, optimizing traffic network, applying I/M program, speeding up the replacement of old vehicles, restricting the use of high emission vehicles, enforcing high emission standard, and enhancing the management of oil quality are effective ways of reducing PM2.5and NOx emissions,In a long term perspective, controlling the number of vehicles, developing green transportation system, and encouraging green commute will be ultimate choices.
引文
[1]Morishita M, Keeler G J, Wagner J G, et al. Source identification of ambient PM2.5 during summer inhalation exposure studies in Detroit, MI [J]. Atmospheric Environment.2006,40(21):3823-3834.
    [2]Mukerjee S, Smith L A, Johnson M M, et al. Spatial analysis and land use regression of VOCs and NO2 from school-based urban air monitoring in Detroit/Dearborn, USA [J]. Science of The Total Environment.2009,407(16):4642-4651.
    [3]Yorifuji T, Kawachi I, Kaneda M, et al. Diesel vehicle emission and death rates in Tokyo, Japan:A natural experiment [J]. Science of The Total Environment.2011, 409(19):3620-3627.
    [4]Whitlow T H, Hall A, Zhang K M, et al. Impact of local traffic exclusion on near-road air quality:Findings from the New York City "Summer Streets" campaign [J]. Environmental Pollution.2011,159(8-9):2016-2027.
    [5]Zhang Q, Xu J, Wang G, et al. Vehicle emission inventories projection based on dynamic emission factors:A case study of Hangzhou, China [J]. Atmospheric Environment.2008,42(20):4989-5002.
    [6]浙江省统计局.浙江统计年鉴-2012[Z].2012.
    [7]环境保护部.2012年中国机动车污染防治年报[Z].2012.
    [8]Hao J. Contribution of major energy sources to air pollution in Beijing and countermeasure analysis [J]. China Science(D, Earth Science).2005,35(additional 1): 115-122.
    [9]Hao J, He D, Wu Y, et al. A study of the emission and concentration distribution of vehicular pollutants in the urban area of Beijing [J]. Atmospheric Environment.2000, 34(3):453-465.
    [10]Song Y, Xie S, Zhang Y, et al. Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX [J]. Science of The Total Environment.2006,372(1):278-286.
    [11]Feng J, Chan C K, Fang M, et al. Characteristics of organic matter in PM2.5 in Shanghai [J]. Chemosphere.2006,64(8):1393-1400.
    [12]California Air Resource Board [J].2011.
    [13]Brook R D, Franklin B, Cascio W, et al. Air pollution and cardiovascular disease:a statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association [J]. Circulation.2004,109(21): 2655-2671.
    [14]Danaei G, Vander Hoorn S, Lopez A D, et al. Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors [J]. The Lancet.2005,366(9499):1784-1793.
    [15]王建炳,姜勇,乔友林.肺癌危险因素人群归因风险研究进展[J].癌症进展. 2011,(5):462-465.
    [16]环境保护部.国家质量监督检验检疫总局.环境空气质量标准(GB3095-2012)[S].2012.
    [17]保护部环境.环境空气氮氧化物(一氧化氮和二氧化氮)的测定盐酸萘乙二胺分光光度法[S].2009.
    [18]Du X, Wu Y, Fu L, et al. Intake fraction of PM2.5 and NOx from vehicle emissions in Beijing based on personal exposure data [J]. Atmospheric Environment.2012,57: 233-243.
    [19]浙江省环境保护厅.2011年浙江省环境状况公报[R].2012.
    [20]洪盛茂,焦荔,何曦,等.杭州主城区悬浮细颗粒PM2.5浓度变化及其组分分析[J].中国粉体技术.2010,(1):14-17.
    [21]肖致美,毕晓辉,冯银厂,等.宁波市环境空气中PM10和PM2.5来源解析[J].环境科学研究.2012,25(05):549-555.
    [22]杨新兴,冯丽华,尉鹏.大气颗粒物PM2.5及其危害[J].前沿科学.2012,6(1):10-22.
    [23]中国气象局.地面气象观测规范[S].2003.
    [24]张保安,钱公望.中国灰霾历史渊源和现状分析[J].环境与可持续发展.2007,1:56-58.
    [25]吴兑.关于霾与雾的区别和灰霾天气预警的讨论[J].气象.2005,31(4):3-7.
    [26]Malm W C. Characteristics and origins of haze in the continental United States [J]. Earth-Science Reviews.1992,33(1):1-36.
    [27]吴兑,吴晓京,李菲,等.1951-2005年中国大陆霾的时空变化[J].气象学报.2010,68(5):680-688.
    [28]Cao J, Wang Q, Chow J, Watson J, Tie X, Shen Z, Wang P, An Z. Impacts of aerosol compositions on visibility impairment in Xi'an, China [J]. Atmospheric Environment. 2012,59:559-566.
    [29]Dockery D W, Pope C R, Xu X, et al. An association between air pollution and mortality in six U.S. cities [J]. N Engl J Med.1993,329(24):1753-1759.
    [30]Pope C R, Burnett R T, Thun M J, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution [J]. JAMA.2002,287(9): 1132-1141.
    [31]空气质量准则(AOGs) [S].2005.
    [32]Schwartz J. The effects of particulate air pollution on daily deaths:a multi-city case crossover analysis [J]. Occup Environ Med.2004,61(12):956-961.
    [33]Sarnat S E, Suh H H, Coull B A, et al. Ambient particulate air pollution and cardiac arrhythmia in a panel of older adults in Steubenville, Ohio [J]. Occup Environ Med. 2006,63(10):700-706.
    [34]Peled R, Friger M, Bolotin A, et al. Fine particles and meteorological conditions are associated with lung function in children with asthma living near two power plants [J]. Public Health.2005,119(5):418-425.
    [35]戴海夏,宋伟民,高翔,等.上海市A城区大气PM10、 PM2.5污染与居民日死亡数的相关分析[J].卫生研究.2004,33(3):293-294.
    [36]Gao Z Y, Li P K. Effects of Fine Particulate Matter Exposure on Human Heart Rate Variability [Z].2010:52-56.
    [37]Bellouin N, Boucher O, Haywood J, et al. Global estimate of aerosol direct radiative forcing from satellite measurements [J]. nature.2005,438(7071):1138-1141.
    [38]Khan A J, Li J, Dutkiewicz V A, et al. Elemental carbon and sulfate aerosols over a rural mountain site in the northeastern United States:Regional emissions and implications for climate change [J]. Atmospheric Environment.2010,44(19): 2364-2371.
    [39]中华人民共和国国家统计局.中华人民共和国2011年国民经济和社会发展统计公报[Z].2012.
    [40]刘建忠,范海燕,周俊虎.等.煤粉炉PM10/PM2.5排放规律的试验研究[J].中国电机工程学报.2003,23(1):145.
    [41]吴烨,郝吉明,李伟,等.应用PART5模式计算机动车尾气管的颗粒物排放[J].环境科学.2002,23(1):6-10.
    [42]Zheng M, Salmon L G, Schauer J J, et al. Seasonal trends in PM2.5 source contributions in Beijing, China [J]. Atmospheric Environment.2005,39(22): 3967-3976.
    [43]Atkinson R, Arey J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds:a review [J]. Atmospheric Environment.2003,37, Supplement 2(0): 197-219.
    [44]Laskin A, Gaspar D J, Wang W H, et al. Reactions at interfaces as a source of sulfate formation in sea-salt particles [J]. SCIENCE.2003,301(5631):340-344.
    [45]Li L, Chen Z M, Zhang Y H, et al. Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone on surface of calcium carbonate [J]. Atmos. Chem. Phys.2006,6(9):2453-2464.
    [46]Wang Y, Zhuang G, Tang A, et al. The ion chemistry and the source of PM2.5 aerosol in Beijing [J]. Atmospheric Environment.2005,39(21):3771-3784.
    [47]Sun Y, Zhuang G, Wang Y, et al. The air-borne particulate pollution in Beijing-concentration, composition, distribution and sources [J]. Atmospheric Environment.2004,38(35):5991-6004.
    [48]Wang Y, Zhuang G, Zhang X, et al. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai [J]. Atmospheric Environment.2006,40(16): 2935-2952.
    [49]Czoschke N M, Jang M, Kamens R M. Effect of acidic seed on biogenic secondary organic aerosol growth [J]. Atmospheric Environment.2003,37(30):4287-4299.
    [50]Hao L, Wang Z, Huang M, et al. Effects of seed aerosols on the growth of secondary organic aerosols from the photooxidation of toluene [J]. Journal of Environmental Sciences.2007,19(6):704-708.
    [51]Jang M, Czoschke N M, Northcross A L. Atmospheric organic aerosol production by heterogeneous acid-catalyzed reactions [J]. ChemPhysChem.2004,5(11):1646-1661.
    [52]Levitt N P, Zhao J, Zhang R. Heterogeneous chemistry of butanol and decanol with sulfuric acid:Implications for secondary organic aerosol formation [J]. The Journal of Physical Chemistry A.2006,110(49):13215-13220.
    [53]Zhao J, Levitt N P, Zhang R, et al. Heterogeneous reactions of methylglyoxal in acidic media:Implications for secondary organic aerosol formation [J]. Environmental Science & Technology.2006,40(24):7682-7687.
    [54]Vouitsis E, Ntziachristos L, Pistikopoulos P, et al. An investigation on the physical, chemical and ecotoxicological characteristics of particulate matter emitted from light-duty vehicles [J]. Environmental Pollution.2009,157(8-9):2320-2327.
    [55]U.S. Environmental Protection Agency (EPA). Health effects assessment document for diesel engine exhaust. EPA/600/8-90/057F [S]. National Center for Environmental Assessment, Office of Research and Development. Washington, DC:U.S. EPA,2002.
    [56]He L, Hu M, Zhang Y, et al. Fine particle emissions from on-road vehicles in the Zhujiang tunnel, China [J]. Environmental Science & Technology.2008,42(12): 4461-4466.
    [57]Seinfeld J. H., Spyros P. Atmospheric chemistry and physics-from air pollution to climate change (2nd Edition) [M]. John Wiley & Sons,2006.
    [58]Hitchins J, Morawska L, Wolff R, et al. Concentrations of submicrometre particles from vehicle emissions near a major road [J]. Atmospheric Environment.2000,34(1): 51-59.
    [59]Ristovski Z D, Morawska L, Bofinger N D, et al. Submicrometer and supermicrometer particulate emission from spark ignition vehicles [J]. Environmental Science & Technology.1998,32(24):3845-3852.
    [60]Morawska L, Bofinger N D, Kocis L, et al. Submicrometer and supermicrometer particles from diesel vehicle emissions [J]. Environmental Science & Technology.1998, 32(14):2033-2042.
    [61]Rattigan O V, Hogrefe O, Felton H D, et al. Multi-year urban and rural semi-continuous PM2.5 sulfate and nitrate measurements in New York state:Evaluation and comparison with filter based measurements [J]. Atmospheric Environment.2006, 40:192-205.
    [62]Sawant A A, Na K, Zhu X, et al. Chemical characterization of outdoor PM2.5 and gas-phase compounds in Mira Loma, California [J]. Atmospheric Environment.2004, 38(33):5517-5528.
    [63]Lewandowski M, Jaoui M, Kleindienst T E, et al. Composition of PM2.5 during the summer of 2003 in Research Triangle Park, North Carolina [J]. Atmospheric Environment.2007,41(19):4073-4083.
    [64]Wu Y, Fang G, Lee W, et al. A review of atmospheric fine particulate matter and its associated trace metal pollutants in Asian countries during the period 1995-2005 [J]. Journal of Hazardous Materials.2007,143(1-2):511-515.
    [65]Guo H, Lee S C, Ho K F, et al. Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong [J]. Atmospheric Environment.2003,37(38):5307-5317.
    [66]Feng J, Hu M, Chan C K, et al. A comparative study of the organic matter in PM2.5 from three Chinese megacities in three different climatic zones [J]. Atmospheric Environment.2006,40(21):3983-3994.
    [67]包贞,冯银厂,焦荔,等.杭州市大气PM2.5和PM1o污染特征及来源解析[J].中国环境监测.2010,26(02):44-48.
    [68]Hagler G S W, Bergin M H, Salmon L Q et al. Source areas and chemical composition of fine particulate matter in the Pearl River Delta region of China [J]. Atmospheric Environment.2006,40(20):3802-3815.
    [69]环境保护部.点燃式发动机汽车排气污染物排放限值及测量方法(双怠速法及简易工况法)[S].2005.
    [70]环境保护部.车用压燃式发动机和压燃式发动机汽车排气烟度排放限值及测量方法[S].2005.
    [71]Icct.中国机动车排放控制措施评估——成功经验与未来展望[Z].2010.
    [72]国家环境保护总局.确定压燃式发动机在用汽车加载减速法排气烟度排放限值的原则和方法(HJ/T 241-2005) [S].2005.
    [73]国家环境保护总局.确定点燃式发动机在用汽车简易工况法排气污染物排放限值的原则和方法(HJ/T 240—2005)[S].2005.
    [74]Usepa. User's Guide to MOBILE6.0:Mobile Source Emission Factor Model [Z]. 2002,420-422.
    [75]杜青,杨延相,郑伟,等.机动车实际道路排放特性及若干影响因素的研究[J].内燃机学报.2002,20(4):297-302.
    [76]陈长虹,景启国,王海鲲,等.重型机动车实际排放特性与影响因素的实测研究[J].环境科学学报,2005,25(7):870-878.
    [77]北京市质量技术监督局.车用汽油(DB11/238—2007)[S].2007.
    [78]北京市质量技术监督局.车用柴油(DB11/239—2007)[S].2007.
    [79]国家环境保护总局.车用汽油(GB17930-2006)[S].2006.
    [80]环境保护部.车用柴油(GB19147-2009)[S].2009.
    [81]浙江省人民政府办公厅.浙江省大气复合污染防治实施方案[Z].2012.
    [82]李晓玲,吴烨,姚欣灿,等.广州市实施I/M简易瞬态工况检测方法的环境效果分析[J].环境科学学报.2012,32(1):101-108.
    [83]Wu Y, Hao J, Fu L, et al. Chemical characteristics of airborne particulate matter near major roads and at background locations in Macao, China [J]. Science of The Total Environment.2003,317(1-3):159-172.
    [84]Wu Y, Hao J, Fu L, et al. Vertical and horizontal profiles of airborne particulate matter near major roads in Macao, China [J]. Atmospheric Environment.2002,36(31): 4907-4918.
    [85]Jeong C, Hopke P K, Kim E, et al. The comparison between thermal-optical transmittance elemental carbon and Aethalometer black carbon measured at multiple monitoring sites [J]. Atmospheric Environment.2004,38(31):5193-5204.
    [86]Bae M, Hong C, Kim Y J, et al. Intercomparison of two different thermal-optical elemental carbons and optical black carbon during ABC-EAREX 2005 [J]. Atmospheric Environment.2007,41(13):2791-2803.
    [87]胡伟,钟秦.隧道实验测定南京市机动车PM1o排放因子[J].环境工程学报.2009,3(10):1852-1855.
    [88]Lei Wei, Chen Hui, Lin Lu. Microscopic emission and fuel consumption modeling for light-duty vehicles using portable emission measurement system data [J]. World Academy of Science, Engineering and Technology.2010,42:1552-1559.
    [89]Popp P J, Bishop G A, Stedman D H. Development of a high-speed ultraviolet spectrometer for remote sensing of mobile source nitric oxide emissions [J]. Journal of the Air & Waste Management Association.1999,49(12):1463-1468.
    [90]Jimenez J L, Mcrae G J, Nelson D D, et al. Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers [J]. Environmental Science & Technology.2000,34(12):2380-2387.
    [91]Lents J. M., Davis N. C., Osses M., et al. Comparison of on-road vehicle profiles collected in seven cities worldwide [Z]. Transport and Air Pollution 13th International Scientific Conference in Boulder Colorado:2004.
    [92]Arizona Department of Environmental Quality (ADEQ), Arizona Alternative Compliance and Testing Study (AZACTS)—summary of activities and recommendations to date [R]. http://www.azdeq.gov/environ/air/vei/download /1205report.pdf.2005.[Z].
    [93]Guo H, Zhang Q, Shi Y, et al. On-road remote sensing measurements and fuel-based motor vehicle emission inventory in Hangzhou, China [J]. Atmospheric Environment. 2007,41(14):3095-3107.
    [94]Guo H, Zhang Q, Shi Y, et al. Evaluation of the international vehicle emission (IVE) model with on-road remote sensing measurements [J]. Journal of Environmental Sciences.2007,19(7):818-826.
    [95]郭慧.城市机动车污染物排放的遥感测试及模型研究[D].浙江大学,2007.
    [96]浙江省环境保护厅,浙江省质量技术监督局.在用点燃式发动机轻型汽车简易瞬态工况法排气污染物排放限值[S].2008.
    [97]浙江省环境保护厅,浙江省质量技术监督局.在用压燃式发动机汽车加载减速法排气烟度排放限值[S].2011.
    [98]林秀丽,丁焰,汤大纲.MOBILE6.2中车队特征和平均速度对机动车尾气排放的影响[J].环境科学导刊.2008,22(3):377-380.
    [99]Lang J, Cheng S, Wei W, et al. A study on the trends of vehicular emissions in the Beijing-Tianjin-Hebei (BTH) region, China [J]. Atmospheric Environment.2012, 62(0):605-614.
    [100]程颖,于雷,王宏图,等.基于PEMS的MOBILE与COPERT排放模型对比研究[J].交通运输系统工程与信息.2011,11(3):176-181.
    [101]Shah S D, Johnson K C, Wayne M J, et al. Emission rates of regulated pollutants from on-road heavy-duty diesel vehicles [J]. Atmospheric Environment.2006,40(1): 147-153.
    [102]Harley R A, Cass G R. Modeling the atmospheric concentrations of individual volatile organic compounds [J]. Atmospheric Environment.1995,29(8):905-922.
    [103]何春玉,王歧东.运用CMEM模型计算北京市机动车排放因子[J].环境科学研究.2006,19(1):109-112.
    [104]Vallamsundar S, Lin J. Overview of US EPA New Generation Emission Model: MOVES [C]. Proc. of Int. Conf. on Advances in Civil Engineering.2010.
    [105]University of California at Riverside. IVE Model Users Manual Version 1.1.1 [R]. 2004.
    [106]Davis N C. Development and Application of an International Vehicle Emissions Model [Z].2005.
    [107]Davis N C, Lents J M. Mexico city mobile source emissions inventory analysis. [EB/OL]. [2004-3-15]. http://www.theicct.org/documents/Davis_Inv_Mex_2004.pdf [Z].
    [108]姚志良,贺克斌,王岐东,等.IVE机动车排放模型应用研究[J].环境科学.2006,27(10):1928-1933.
    [109]王海鲲,陈长虹,黄成,等.应用IVE模型计算上海市机动车污染物排放[J].环境科学学报.2006,26(1):1-9.
    [110]竟峰,张旭.利用IVE模型进行公交车尾气排放分析[J].环境科学与技术.2006,29(9):43-46.
    [111]UNFCCC, Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.2004. http://www.ipcc-nggip.iges.or.jp /public/gp/gpgaum.htm. [Z].
    [112]Lents J M, Davis N C, Osses M, et al. Measurement of in-use passenger vehicle emissions in three urban areas of developing nations [EB/OL]. [2005-11-25]. http://www.gssr.net/ive/index.html [Z].
    [113]Robinson N F, Pierson W R, Gertler A W, et al. Comparison of MOBILE4.1 and MOBILE5 predictions with measurements of vehicle emission factors in Fort McHenry and Tuscarora mountain tunnels [J]. Atmospheric Environment.1996,30(12): 2257-2267.
    [114]John C, Friedrich R, Staehelin J, et al. Comparison of emission factors for road traffic from a tunnel study (Gubrist tunnel, Switzerland) and from emission modeling [J]. Atmospheric Environment.1999,33(20):3367-3376.
    [115]Sturm P., Rodler J., Lechner B., et al. Validation of emission factors for road vehicles based on street tunnel measurements [C]//Ninth International Symposium on Transport and Air pollution, June 5-8,2000, Avignon:[s. n.],2000:151-158. [Z].
    [116]Ekstrom M, Sjodin A, Andreasson K. Evaluation of the COPERT III emission model with on-road optical remote sensing measurements [J]. Atmospheric Environment.2004,38(38):6631-6641.
    [117]Bluett J, Fisher G. Validation of a vehicle emission model using on-road emission measurements. [EB/OL]. [2006-3-22]. [Z].
    [118]吴烨,郝吉明,傅立新,等.澳门机动车排放清单[J].清华大学学报(自然科学版).2002,42(12):1601-1604.
    [119]李伟,傅立新,郝吉明,等.中国道路机动车10种污染物的排放量[J].城市环境与城市生态.2003,16(2):36-38.
    [120]樊守彬.北京机动车尾气排放特征研究[J].环境科学与管理.2011,36(4):28-31.
    [121]姚志良,王岐东,王新彤,等.典型城市机动车非常规污染物排放清单[J].环境污染与防治.2011,33(3):96-101.
    [122]薛佳平,田伟利,张清宇.杭州市机动车NOX排放清单的建立及其对空气质量的影响[J].环境科学研究.2010,23(5):613-618.
    [123]薛佳平,张清宇,田伟利.利用柴油车车载排放测试对IVE模型的修正及模型应用[J].浙江大学学报(理学版).2011,38(01):86-89,117.
    [124]Huang K, Zhuang G, Lin Y, et al. Typical types and formation mechanisms of haze in an Eastern Asia megacity, Shanghai [J]. Atmospheric Chemistry and Physics.2012, 12(1):105-124.
    [125]Hou B, Zhuang G, Zhang R, et al. The implication of carbonaceous aerosol to the formation of haze:Revealed from the characteristics and sources of OC/EC over a mega-city in China [J]. Journal of Hazardous Materials.2011,190(1-3):529-536.
    [126]Ye X N, Ma Z, Zhang J C, et al. Important role of ammonia on haze formation in Shanghai [J]. Environ Res Lett.2011,6:24019.
    [127]Tai A P K, Mickley L J, Jacob D J. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States:Implications for the sensitivity of PM2.5 to climate change [J]. Atmospheric Environment.2010,44(32): 3976-3984.
    [128]Lewtas J. Air pollution combustion emissions:Characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects [J]. Mutation Research/Reviews in Mutation Research.2007,636(1-3):95-133.
    [129]Zanobetti A, Schwartz J. The effect of fine and coarse particulate air pollution on mortality:a national analysis [J]. Environ Health Perspect.2009,117(6):898-903.
    [130]Feng J, Yang W. Effects of Particulate Air Pollution on Cardiovascular Health:A Population Health Risk Assessment, Plos One,7, ARTN e33385 DOI 10.1371/journal.pone.0033385,2012. [J].
    [131]Lin Z, Xi Z, Yang D, et al. Oxidative damage to lung tissue and peripheral blood in endotracheal PM2.5-treated rats [J]. Biomedical and Environmental Sciences.2009, 22(3):223-228.
    [132]Wei Y, Han I, Hu M, et al. Personal exposure to particulate PAHs and anthraquinone and oxidative DNA damages in humans [J]. Chemosphere.2010,81(10): 1280-1285.
    [133]Sillanp A A M, Frey A, Hillamo R, et al. Organic, elemental and inorganic carbon in particulate matter of six urban environments in Europe [J]. Atmospheric Chemistry and Physics.2005,5(11):2869-2879.
    [134]Muller N Z, Mendelsohn R. Measuring the damages of air pollution in the United States [J]. Journal of Environmental Economics and Management.2007,54(1):1-14.
    [135]Livingstone P L, Magliano K, Gurer K, et al. Simulating PM concentration during a winter episode in a subtropical valley:Sensitivity simulations and evaluation methods [J]. Atmospheric Environment.2009,43(37):5971-5977.
    [136]Lam Y F, Fu J S, Wu S, et al. Impacts of future climate change and effects of biogenic emissions on surface ozone and particulate matter concentrations in the United States [J]. Atmospheric Chemistry and Physics.2011,11(10):4789-4806.
    [137]Lee Y J, Lim Y W, Yang J Y, et al. Evaluating the PM damage cost due to urban air pollution and vehicle emissions in Seoul, Korea [J]. Journal of Environmental Management.2011,92(3):603-609.
    [138]Zhang X Y, Wang Y Q, Niu T, et al. Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols [J]. Atmospheric Chemistry and Physics.2012,12(2): 779-799.
    [139]US EPA. National ambient air quality standards (NAAQS)[EB OL]. Washington DC:US EPA, Office of Air Quality Planning and Standards.2008[2009-09-21]. http://www. epa.gov/air/criteria. html. [S].
    [140]Lai S, Zou S, Cao J, et al. Characterizing ionic species in PM2.5 and PM10 in four Pearl River Delta cities, South China [J]. Journal of Environmental Sciences.2007, 19(8):939-947.
    [141]Houthuijs D, Breugelmans O, Hoek G, et al. PM10 and PM2.5 concentrations in Central and Eastern Europe::results from the Cesar study [J]. Atmospheric Environment.2001,35(15):2757-2771.
    [142]Yang F, Tan J, Zhao Q, et al. Characteristics of PM2.5 speciation in representative megacities and across China [J]. Atmospheric Chemistry and Physics.2011,11(11): 5207-5219.
    [143]Chow J C, Watson J G, Pritchett L C, et al. The dri thermal/optical reflectance carbon analysis system:description, evaluation and applications in U.S. Air quality studies [J]. Atmospheric Environment. Part A. General Topics.1993,27(8):1185-1201.
    [144]Watson J G, Chow J C, Lowenthal D H, et al. Differences in the carbon composition of source profiles for diesel-and gasoline-powered vehicles [J]. Atmospheric Environment.1994,28(15):2493-2505.
    [145]Ho K F, Lee S C, Chow J C, et al. Characterization of PM10 and PM2.5 source profiles for fugitive dust in Hong Kong [J]. Atmospheric Environment.2003,37(8): 1023-1032.
    [146]Chow J C, Watson J G, Chen L W A, et al. Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols [J]. Environmental Science & Technology.2004,38(16):4414-4422.
    [147]Chow J C, Watson J G, Chen L W A, et al. Refining temperature measures in thermal/optical carbon analysis [J]. Atmospheric Chemistry and Physics.2005,5(11): 2961-2972.
    [148]El-Zanan H S, Lowenthal D H, Zielinska B, et al. Determination of the organic aerosol mass to organic carbon ratio in IMPROVE samples [J]. Chemosphere.2005, 60(4):485-496.
    [149]Han Y, Cao J, Chow J C, et al. Evaluation of the thermal/optical reflectance method for discrimination between char-and soot-EC [J]. Chemosphere.2007,69(4):569-574.
    [150]El-Zanan H S, Zielinska B, Mazzoleni L R, et al. Analytical determination of the aerosol organic mass-to-organic carbon ratio [J]. Journal of the Air & Waste Management Association.2009,59(1):58-69.
    [151]Cheng Y, Lee S C, Ho K F, et al. Chemically-speciated on-road PM2.5 motor vehicle emission factors in Hong Kong [J]. Science of The Total Environment.2010,408(7): 1621-1627.
    [152]Kim Oanh N T, Thiansathit W, Bond T C, et al. Compositional characterization of PM2.5 emitted from in-use diesel vehicles [J]. Atmospheric Environment.2010,44(1): 15-22.
    [153]Tartakovsky L, Baibikov V, Czerwinski J, et al. In-vehicle particle air pollution and its mitigation [J]. Atmospheric Environment.2013,64:320-328.
    [154]Hess D B, Ray P D, Stinson A E, et al. Determinants of exposure to fine particulate matter (PM2.5) for waiting passengers at bus stops [J]. Atmospheric Environment.2010, 44(39):5174-5182.
    [155]Chester R, Nimmo M, Alarcon M, et al. Defining the chemical character of aerosols from the atmosphere of the Mediterranean Sea and surrounding regions [J]. Oceanologica Acta,1993,16(3):231-246.
    [156]Kummer U, Pacyna J, Pacyna E, et al. Assessment of heavy metal releases from the use phase of road transport in Europe [J]. Atmospheric Environment.2009,43(3): 640-647.
    [157]Zhang H, Li J, Ying Q, et al. Source apportionment of PM2.5 nitrate and sulfate in China using a source-oriented chemical transport model [J]. Atmospheric Environment. 2012,62(0):228-242.
    [158]Connell D P, Winter S E, Conrad V B, et al. The steubenville comprehensive air monitoring program (SCAMP):Concentrations and solubilities of PM2.5 trace elements and their implications for source apportionment and health research [J]. Journal of the Air and Waste Management Association.2006,56(12):1750-1766.
    [159]Ying Q, Fraser M P, Griffin R J, et al. Verification of a source-oriented externally mixed air quality model during a severe photochemical smog episode [J]. Atmospheric Environment.2007,41(7):1521-1538.
    [160]Gray H A, Cass G R, Huntzicker J J, et al. Characteristics of atmospheric organic and elemental carbon particle concentrations in Los Angeles [J]. Environmental Science & Technology.1986,20(6):580-589.
    [161]Turpin B J, Huntzicker J J. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS [J]. Atmospheric Environment.1995,29(23):3527-3544.
    [162]Strader R, Lurmann F, Pandis S N. Evaluation of secondary organic aerosol formation in winter [J]. Atmospheric Environment.1999,33(29):4849-4863.
    [163]Cabada J C, Pandis S N, Subramanian R, et al. Estimating the secondary organic aerosol contribution to PM2.5 using the EC tracer method special issue of aerosol science and technology on findings from the fine particulate matter supersites program [J]. Aerosol Science and Technology.2004,38(supl):140-155.
    [164]Na K, Sawant A A, Song C, et al. Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California [J]. Atmospheric Environment. 2004,38(9):1345-1355.
    [165]Wang H, Chen C, Huang C, et al. On-road vehicle emission inventory and its uncertainty analysis for Shanghai, China [J]. Science of The Total Environment.2008, 398(1-3):60-67.
    [166]刘欢,贺克斌,王岐东.天津市机动车排放清单及影响要素研究[J].清华大学学报:自然科学版.2008,48(3):370-373.
    [167]Smit R, Ntziachristos L, Boulter P. Validation of road vehicle and traffic emission models-A review and meta-analysis [J]. Atmospheric Environment.2010,44(25): 2943-2953.
    [168]Tracie R J. Fleet characterization data for mobile6:development and use of age distribution, average annual mileage accumulation rates, and projected vehicle counts for use in mobile6 [Z]. Washington DC:United States Environmental Protection Agency,20016-38.
    [169]Andre M H U R I. Driving statistics for the assessment of pollutant emissions from road transport [R]. Bron Cedex, France:Institut National DE Resherche Surles Transports Efleur Securite,1999.
    [170]Liu H H C J. International vehicles emissions model:Beijing vehicle activity study [Z].2005.
    [171]Cameron I, Lyons T J, Kenworthy J R. Trends in vehicle kilometres of travel in world cities,1960-1990:underlying drivers and policy responses [J]. Transport Policy. 2004,11(3):287-298.
    [172]林秀丽,汤大钢,丁焰,等.中国机动车行驶里程分布规律[J].环境科学研究.2009,22(03):377-380.
    [173]杨方,于雷.利用小样本调查数据调整北京市车里程累积率[J].北方交通大学学报.2004,28(2):82-85.
    [174]吴大磊,林怡青,彭美春,等.利用小样本数据计算车辆年平均行驶里程的研究[J].交通运输系统工程与信息.2009,9(2):155-160.
    [175]张洪汛,傅立新,郝吉明,等.机动车排放检测和维修制度实施效果分析[J].环境科学.2001,22(1):10-13.
    [176]彭美春,赵锌泽,许志刚,等.重型柴油车加载减速工况烟度排放特性[J].拖 拉机与农用运输车.2005(4):26-28.
    [177]刘景红,吴朝政.重庆市轻型车尾气排放的污染特征及防治对策[J].环境污染与防治.2009,31(10):105-107.
    [178]彭美春,赵锌泽,许志刚,等.大型城市客车加速模拟工况排放特性的实验研究[J].环境污染与防治.2005,27(3):175-177.
    [179]王文涛,彭美春,戴旭,等.基于SPSS的在用车ASM排放特性分析[J].车用发动机.2006(2):42-45.
    [180]刘希玲,丁焰.我国城市汽车行驶工况调查研究[J].环境科学研究,2000,13(1):23-27.
    [181]张远航,邵敏,俞开衡.机动车排放,环境影响及控制:以广州市为例[M].化学工业出版社,2004.
    [182]Carslaw D C, Goodman P S, Lai F C H, et al. Comprehensive analysis of the carbon impacts of vehicle intelligent speed control [J]. Atmospheric Environment. 2010, 44(23):2674-2680.
    [183]Smit R, Poelman M, Schrijver J. Improved road traffic emission inventories by adding mean speed distributions [J]. Atmospheric Environment.2008,42(5):916-926.
    [184]Stockholm Environment Institute (SEI).Long-range Energy Alternative Planning System, User Guide for LEAP 2011.
    [185]刘志,李亚明.中国城市机动化——问题及对策[J].国外城市规划,1996(3):9.18.
    [186]Dargay J, Gately D. Income's effect on car and vehicle ownership, worldwide: 1960-2015 [J]. Transportation Research Part A:Policy and Practice,1999,33(2): 101-138.
    [187]Noland R B, Quddus M A. Flow improvements and vehicle emissions:Effects of trip generation and emission control technology [J]. Transportation Research Part D: Transport and Environment.2006,11(1):1-14.
    [188]管驰明,崔功豪.公共交通导向的中国大都市空间结构模式探析[J].城市规划,2003.10:39-43.
    [189]Wang A, Ge Y, Tan J, et al. On-road pollutant emission and fuel consumption characteristics of buses in Beijing [J]. Journal of Environmental Sciences.2011,(23): 419-426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700