基于广义有效应力原理的混凝土坝应力计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水对坝体和坝基的作用力是进行坝体、地基的强度与稳定分析的重要荷载。而对坝区的水荷载要有一个较为清晰的认识,需要对坝区进行系统的渗流场分析。本文即是在分析坝区渗流场的基础上,基于更适用于岩石和混凝土的广义有效应力原理,建立了一套计算混凝土坝变形和应力的有限元分析方法。并结合二滩拱坝大量的工程资料和原型观测资料分析了二滩拱坝的渗流场和应力场。论文的主要工作和研究成果如下:
     一、从基本的渗流理论出发,借助有限单元法研究坝区渗流场问题。分析总结了渗流计算数值模拟中常遇的问题,如渗流自由面的确定方法,渗控措施的模拟方法等,并初步分析讨论了渗控措施对坝区渗流的影响。
     二、从宏观角度阐述饱和孔隙介质中水的基本力学效应,讨论了扬压力和渗透力的概念,着重回顾扬压力的发现、发展。在广义有效应力原理的基础上推导了扬压力和渗透力的表达式,并基于有限元格式得到了作用在重力坝建基面的水压力的表达式,阐述了重力坝坝底扬压力的真正物理含义及其主要影响因素。同时,讨论得出了计算时正确的水荷载组合,建立了一套更适于混凝土和岩石性质的计算方法。
     三、研究发现,水荷载的大小及施加方法与孔隙介质自身B值有关。B值对坝体应力和位移有着明显的影响。针对某典型重力坝算例发现,在B=0时水荷载作用下产生的应力状态对坝体最有利,而B=1.0时的应力状态对坝体最为不利。这是否具有普适性还需要进一步的研究。
     四、在分析整理二滩拱坝的地质资料与渗控措施情况的基础上,建立了精细有限元计算模型。分别对二滩拱坝的渗流和应力进行计算分析,渗压以及位移的计算结果与实测值吻合相对较好。对二滩拱坝渗控措施有限元分析研究表明,降低渗压主要以排水为主,防渗帷幕的作用不大。运用本文建立的计算应力的分析方法探讨了坝体的应力情况,结果表明,当B值增大时,坝体的拉应力变大,而压应力变小。这说明考虑渗流时,坝体的应力状态更为恶化。所以在工程设计中渗流的作用应给予足够的重视。
During the strength and stability analysis of dam-foundation system, it is quite necessary to incorporate the action force by water on both the dam part and the foundation. Apparently, a seepage analysis of the whole system is required to obtain a more clear understanding of the water loads. A numerical approach by the finite element method is established in this thesis for calculation of internal deformation and stress field within the dam part, on the basis of a seepage analysis and the generalized effective stress law which is found to be more appropriate for rock and concrete materials. Moreover, a 3-D seepage and stress analysis of Ertan arch dam has been completed with some engineering data and field records as a basis. Main work and contributions of this thesis are presented as below:
     (1) Based on the fundamentals of seepage theory, some seepage analyses of the dam part have been conducted using the finite element method. Some typical problems during numerical modeling of seepage process are analyzed, such as methods for determination of the phreatic surface and techniques in simulating the seepage control measures. Some preliminary investigation into the effect of control measures on the water redistribution within the dam part is also presented.
     (2) The mechanical effects of water in saturated pore medium is represented from macroscopic view and concepts of uplift pressure and seepage force are discussed. And, the historical review of the development of uplift is revealed especially. Based on generalized effective stress law, the expression of uplift pressure and seepage force has been deduced and expression of water pressure on gravity dam base in FEM format also obtained; the real physical meaning and influencing factors of uplift pressure of gravity dam is represented; Simultaneously, the correct water-load combination forms is given, and a numerical method more suitable for rock and concrete materials is established.
     (3) It has been found that the magnitude and application method of water load are related to B value of the pore medium itself, and the choice of B value presents a notable effect on dam displacement and stress. Taking a gravity dam as an example, it is observed that most favorable stress distribution within the dam part is given when B=0, while contrarily a most dangerous stress field is mobilized when B=1. However,it still requires further study to make sure whether the phenomenon is universal.
     (4) A refined FEM modal is established based on analysis of the geological data and the complicated seepage prevention and drainage measures of ertan arch dam. Seepage and stress of the dam area have been performed sequentially, and the simulated pore pressure and displacement agree well with the monitoring data. It is indicated by the simulation results that the drainage system is comparatively more effective to reduce the pore water pressure than the cutoff wall measure. It is shown by the simulation results that larger tensile stress would be triggered while the compression stress is lowered within the dam part when the B value is increased, which indicates more dangerous stress distribution for the dam part when considering the seepage flow. Therefore, it is of great importance to appropriately consider the seepage behavior during the design of water dams.
引文
[1] 覃维祖.结构工程材料.北京: 清华大学出版社,1999.62~71
    [2] 仵彦卿,张倬元.岩体水力学导论.成都:西南交通大学出版社,1995.1~4
    [3] 朱诗鳌.坝工技术史.北京:水利电力出版社,1995
    [4] 潘家铮.重力坝设计.北京:水利电力出版社,1987
    [5] 汝乃华.重力坝.北京:水利电力出版社,1983
    [6] 张楚汉.水利水电工程科学前沿. 北京:清华大学出版社,2002.358~363
    [7] 张有天.从岩石水力学观点看几个重大工程事故.水利学报,2003, (5):1~10
    [8] 杜延龄,许国安. 渗流分析的有限元法和电网络法.北京:水利电力出版社,1992.5~6
    [9] K.Gell and W.Wittke,A New Design Concept for Arch Dams Taking into Account Seepage Forces,Rock Mechnics and Rock Engineering, 1986, 187~204
    [10] 张光斗.混凝土重力坝的渗透压力.水利学报,1956 年 12 月,创刊号
    [11] 毛昶熙.渗流计算分析与控制,第二版.北京: 水利电力出版社,2003
    [12] 王海龙.自由水细观作用机理及其对混凝土宏观力学性能影响分析[博士学位论文].北京:清华大学水利水电工程系, 2006
    [13] 张有天.岩石水力学与工程.北京:中国水利水电出版社,2005
    [14] 毛昶熙,等 关于“渗流作用下坝坡稳定有限单元法分析”的终结讨论.岩土工程学报,1984,6(5):96~100
    [15] Guzina B. J.,M. Sovic,and N. Petrovic. Seepage and dissolution at foundation of a dam during the first impounding of the reservior. In: Trans. 17th ICOLD.Q.66,R.78,1991(3): 1459~1475
    [16] Butler J E. Influence of pore pressure upon concrete[J]. Magazine of Concrete Research, 1981,v33, n114, p 3~17
    [17] 赵阳升.矿山岩石流体力学.北京:煤炭工业出版社,1994
    [18] 李成江.膨胀性地层中洞室围岩数值分析模型.中国岩石力学与工程学会第二次大会论文集.知识出版社,1989 年.228~235
    [19] 吴海青.孔隙水对岩石变形特性的影响及其工程意义.中国岩石力学与工程学会第二次大会论文集.知识出版社.1989 年.345-351
    [20] 周青春,李海波,杨春和,等.南水北调西线一期工程砂岩温度、围压和水压耦合试验研究.岩石力学与工程学报,2005,24(20):3639~3645
    [21] Wittke W. Rock Mechanics-Theory and Applications with Case Histories. Berlin. 1990, 377~ 386
    [22] L.Muller. 李世平,冯震海译. 岩石力学(岩体水力学). 北京:煤炭工业出版社, 1981.254~330
    [23] 毛昶熙,,陈平.岩石裂隙渗流的计算与试验.水利水运科学研究.1984,(3):29~37
    [24] 毛昶熙,段祥宝,李定方.网络模型程序化及其应用.水利水运科学研究. 1994, (3):197~207
    [25] Wilson C R. Witherspoon P A. Steady state flow in rigid networks of fractures. W ater Resources Research. 1974, 10 (2) : 328~335
    [26] Long J C S, Gilmour P, Witherspoon P. A. A method for steady fluid flow in random three dimensional networks of discshaped fractures. Water Resources Research. 1985,21(8):1105~ 1115
    [27] Nordqvist A W , Tsang Y W , Tsang C F. A variable aperture fracture network model for flow and transport in fractured rocks. W ater Resources Research. 1992, 28 (6) :1703~1713
    [28] Dershowitz W S. A new three dimensionalmodel for flow in fractured rock. Int Assoc Hydrogeo. 1985, (17) : 441~448
    [29] 王恩志.岩体裂隙的网络分析及渗流模型.岩石力学与工程学报,1993,12(3):214~221
    [30] 王恩志,王洪涛,孙役.三维裂隙网络渗流数值模型研究.工程力学,1997(增 2):520~525
    [31] 万力,李定方,李吉庆.三维裂隙网络的多边形单元渗流模型.水利水运科学研究.1993, (4):347~353
    [32] 王媛,速宝玉,徐志英. 裂隙岩体渗流模型综述. 水科学进展,1996,7(3):276~282
    [33] Snow D.T. Anisotropic Permeability of Fractured Media. Water Resoures Research. 1969,5(6):1273~1289
    [34] Long J.C.S,Remer J.S.,Wilson C.R.,Witherpoon P.A. Porous media equivalents for networks of discontinuous fractures[J], water resource reasearch,1982,vol.18,No.3,p645-658
    [35] Oda M. An Equivalent Model for Couple Stress and Fluid Flow Analysis in Jointed Rock Masses[J]. Water Resoures Research, 1986,22(13):1845~1856
    [36] 张有天,张武功。裂隙岩石渗透特性渗流数学模型及系数量测.岩石力学,1982,(8):41~52
    [37] 田开铭,万力.各向异性裂隙介质渗透性的研究与评价.北京:学苑出版社,1989
    [38] 田开铭.论裂隙岩水的水文地质模型.勘测科学技术,1984,(4):27~34
    [39] Barenblatt G I. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. Journal of Applied Mathematical Mechanics. 1960, 24 (5) : 1286~1303
    [40] Warren J E, Root P J. The behavior of naturally fractured reservoirs. Soc Pet. Eng. J 1963,(3) : 245~255
    [41] Streltsova , T. D. . Hydrodynamics of groundwater flow in a fractured formation. Water Resources Research , 1976 ,12 ( 3) :405~414.
    [42] Zimmerman , R. W. , Chen , G. , Hadgeu Teklu , et al. Numerical dual2porosity model with a semi-analytical treatment of fracture/matrix flow. Water Resources Research,1993,29 (7) :2127~2137.
    [43] Huyakorn P. S., Lester B. H., Faust C. R.. Finite element techniques for modeling groundwate flow in fractured aquifers . Water Resources Research , 1983 ,19 (4) : 1019~1035.
    [44] 王媛,速宝玉,徐志英. 三维裂隙岩体渗流耦合模型及其有限元模拟.水文地质工程地质,1995 年第 3 期,1~5
    [45] 王恩志,王洪涛,孙役。双重裂隙系统渗流模型研究.岩石力学与工程学报,1998,17(4):400~406
    [46] 柴军瑞.大坝及其周围地质体中渗流与应力场耦合分析[博士学位论文].西安:西安理工大学,2000
    [47] 杜广林,周维垣,赵吉东. 裂隙介质中的多重裂隙网络渗流模型.岩石力学与工程学报,2000,19(增):1014~1018
    [48] 胡云进,速宝玉,詹美礼.裂隙岩体非饱和渗流研究综述.河海大学学报, 2000,28(1):40-46
    [49] 朱岳明,陈建余,龚道勇等.拱坝坝基渗流场的有限单元法精细求解.岩土工程学报,2003,25(3):326~330
    [50] 叶源新.软岩的渗流与应力耦合研究与分析[博士学位论文].北京:清华大学水利水电工程系,2006
    [51] 徐增辉.软岩的渗流、温度与应力耦合研究与分析[博士学位论文].北京:清华大学水利水电工程系,2006
    [52] 黄春娥、龚晓南.条分法与有限元相结合分析渗流作用下地基坑边坡稳定性.水利学报,2001 年 3 月
    [53] 李广信,吴剑敏 浮力计算与粘土中的有效应力原理 岩土工程技术 2003 年第 2 期
    [54] 毛昶熙,李吉庆,段祥宝.渗流作用下土坡圆弧滑动有限元计算. 岩土工程学报,2001,23(6)
    [55] 陈祖煜.关于“渗流作用下土坡圆弧滑动有限元计算”的讨论.岩土工程学报,2002,24(3)
    [56] 陈立宏,李广信.关于“渗流作用下土坡圆弧滑动有限元计算”的讨论之二. 岩土工程学报,2002.24(3)
    [57] 葛孝椿.关于“渗流作用下土坡圆弧滑动有限元计算”的讨论之三.岩土工程学报,2002,24(3)
    [58] 郭雪莽.岩体的变形、稳定和渗流及其相互作用研究[博士论文],大连理工大学,1990
    [59] 柴军瑞.大坝及其周围地质体中渗流场与应力场耦合分析研究综述.水利水电科技进展,2002,22(2):53~55
    [60] 李连崇,杨天鸿,唐春安等.岩石水压致裂过程的耦合分析.岩石力学与工程学报,2003,22(7):1060~1066
    [61] 杨天鸿,唐春安,朱万成等.岩石破裂过程中渗流与应力耦合分析.岩土工程学报,2001,23(4):489~493
    [62] 王媛.坝基应力计算中的水荷载组合形式.勘察科学技术,1995,(3):3~7
    [63] 周维垣,杨强.岩石力学数值计算方法.北京:中国电力出版社,2005,482~483
    [64] J.Noorishad,M.S.Ayatollahi,P.A.Witherspoon. A finite-element method for coupled stress and fluid flow analysis in fractured rock masses. International journal of rock mechanics and mining sciences & geomechanics abstracts,1982,19(4):185-193
    [65] 陈平,张有天.裂隙岩体渗流与应力耦合分析.岩石力学与工程学报.1994,13(4):299~308
    [66] 仵彦卿.岩体裂隙系统渗流场与应力场耦合模型.地质灾害与环境保护,1996,7(1):31~34
    [67] 王媛,速宝玉,徐志英.等效连续裂隙岩体渗流与应力全耦合分析.河海大学学报,1998,26(2):26~30
    [68] 柴军瑞,仵彦卿.岩体渗流场与应力场耦合分析的多重裂隙网络模型.岩石力学与工程学报,2000,19(6):712~717
    [69] 周庆科.离散元饱和/非饱和渗流模型及其工程应用[硕士学位论文].北京:清华大学水利水电工程系,2002
    [70] Jincai Zhang, J.-C.Roegiers, H.A.Spetzler, Influence of stress on permeability around a borehole in fractured porous media[J], International Journal of Rock Mechanics & Mining Sciences, 2004, 41:454
    [71] 吴持恭.水力学.北京:高等教育出版社,1983
    [72] ABAQUS 说明书
    [73] 张有天,陈平,王镭.有自由面渗流分析的初流量法.水利学报,1988,第 8 期,18~26
    [74] 李广信.高等土力学.北京:清华大学出版社,2004
    [75] Bathe K.J. Finite Element Free Surface Seepage Analysis without Mesh Iteration. Int.J.Num.Anal.methods in Geomechanics,1979,3(1):4~22
    [76] 李春华.稳定渗流有限元计算时采用固定网格法的初步研究.第三届全国渗流力学学术讨论会论文汇编(3),长江科学院,1986
    [77] 王贤能,黄润秋.有自由面渗流分析的高斯点法.水文地质工程地质,1997 年第 6期,1~4
    [78] 速宝玉,沈振中,赵坚. 用变分不等式理论求解渗流问题的截止负压法.水利学报,1996,第 3 期,22~29
    [79] Desai C.S. Finite Element Residual Schemes for Unconfined Flow. Int. J. Num. Meth. Eng.,1976,10(6):1415~1418
    [80] 王媛.求解有自由面渗流问题的初流量的改进.水利学报,1998,第 3 期,68~73
    [81] 速宝玉,朱岳明.不变网格确定渗流自由面的节点虚流量法.河海大学学报,1991,(5):113~117
    [82] 吴梦喜,张学勤.有自由面渗流分析的虚单元法.水利学报,1994,第 8 期,67~71
    [83] 彭 华,曹定胜,朱劲木.有自由面渗流分析的虚单元法.中国农村水利水电(农田水利与小水电), 1997,3:26-28.
    [84] 梁业国,熊文林,周创兵.有自由面渗流分析的子单元法.水利学报,1997(8):34~380
    [85] 彭 华,曹定胜,王家荣,等.有自由面渗流分析的弃单元法及其应用.人民长江, 1997, 8:38~40.
    [86] 凌道盛.有自由面渗流分析的虚节点法.浙江大学学报(工学版),2002,36(3):243~246
    [87] 雷志栋. 土壤水动力学.北京:清华大学出版社,1988
    [88] 杨刚.抽水蓄能电站岩体三维渗流精细模拟应用研究[硕士学位论文].北京:清华大学水利水电工程系,2006
    [89] 朱岳明,张燎军.渗流场求解的改进排水子结构法.岩土工程学报,1997,19(2):69~76
    [90] 王恩志,王洪涛,邓旭东.“以管代孔”——排水孔模拟方法探讨.岩石力学与工程学报,2001,20(3):346~349
    [91] Gureghian A.B. Youngs E.C. the calculation of steady state water table heights in drained soils by means of the finite element method. J. hydrol., 1975,v27,p15-32
    [92] 张有天.用边界元求解有排水孔的渗流场.水利学报,1982 年,第 7 期
    [93] 关锦荷,刘嘉炘,朱玉侠.用排水沟代替排水井列的有限单元法分析.水利学报,1984年,第 3 期,10~17
    [94] 杜延龄,徐国安,黄一和.复杂岩基三维渗流分析研究.水利学报,1984 年第 3 期
    [95] 王镭,刘中,张有天.有排水孔幕的渗流场分析.水利学报,1992 年,第 4 期,15~20
    [96] 王恩志,王洪涛,王慧明.“以缝代井列”——排水孔模拟方法探讨.岩石力学与工程学报,2002,21(1):98~101
    [97] 胡静,陈胜宏.渗流分析中排水孔模拟的空气单元法.岩土力学,2003 ,(4) :281~287.
    [98] 许桂生,陈胜宏.模拟排水孔的复合单元法研究.水动力学研究与进展,2005 ,A 辑,20(2):214~220
    [99] 张光斗,王光纶.水工建筑物(上册).北京:水利电力出版社,1992
    [100] Serge Leliavsky. Uplift in gravity dams:calculation methods, experiments and design theories . London : Constable & Co., Ltd., 1958.
    [101] Serge Leliavsky. Dams . London : Chapman and Hall, 1981.
    [102] Reint de Boer.highlights in the historical development of the porous media theory:toward a consistent macroscopic theory.Appl Mech Rev,v49,n4,201~262
    [103] De Boer R,Didwania A K.The effect of uplift in liquid-saturated porous solids - Karl Terzaghi's contributions and recent findings.Geotechnique, v47, n2, Jun, 1997, p289~298
    [104] De Boer R,Schiffman R L,Gibson R E.the origins of the theory of consolidation:the Terzaghi-Fillunger dispute.Geotechnique,v46,n2,175~186
    [105] De Boer R,Ehlers W. Uplift, friction and capillarity. Three fundamental effects for liquid-saturated porous solids.International Journal of Solids and Structures, v 26, n 1, 1990, p 43~57
    [106] 潘家铮.论不稳定水头下的坝体扬压力问题.水力学报,1958,n3,90~111
    [107] P.P.丘加也夫.论扬压力.水利学报,1959,n4,1~11
    [108] 吴胜光.混凝土重力坝扬压力的计算分析.广西水利水电,1977,n2,8~37
    [109] 顾俊彦. 关于混凝土重力坝坝基扬压力的若干问题.水电自动化与大坝监测,1982, n3,45~49
    [110] 李思慎.水工建筑物扬压力设计中的几个问题.长江水利水电科学研究院报,1985,n1,76~85
    [111] 徐家海,徐世果.岩基上混凝土坝坝基扬压力的分布.岩土工程学报,1981,v3,n1,46~56
    [112] 王柏源.盐锅峡大坝坝底扬压力原型观测成果分析.水利学报,1982,12,59~65
    [113] 赵志仁.刘家峡混凝土重力坝扬压力的观测研究.水利学报 ,1986,n9,54~61
    [114] 李瓒.石门拱坝坝基渗流问题分析.水力发电学报,1999,n3,16~24
    [115] 包腾飞,吴中如.新安江大坝扬压力观测资料分析.水电自动化与大坝监测,2003,27(3):63~67
    [116] 杜吉新.丹江口大坝扬压力观测资料分析.水电自动化与大坝监测,2004,28(2):54~56
    [117] 周志芳,钱寿星,顾长存.三峡工程坝基扬压力三维有限元分析.河海大学学报,1993,21(5):94~99
    [118] Hanna Alfred W,Plewes Howard D,Wong Raymond.Investigation of High Uplift Pressures Beneath a Concrete Dam[J].Canadian Geotechnical Journal, v 30, n 6, Dec, 1993, p 974~990
    [119] Soos I G K. Uplift pressures in hydraulic structures[J].International Water Power and Dam Construction, v 31, n 5, May, 1979, p 21~25
    [120] Stelle William W.,Rubin, Dennis I.,Buhac H. Joseph.STABILITY OF CONCRETE DAM: CASE HISTORY[J]. Journal of Energy Engineering, v 109, n 3, Sep, 1983, p 165~180
    [121] Amadei B,Illangasekare T,Chinnaswamy C,Morris D I.Reducing uplift pressures in concrete gravity dams[J]. International Water Power and Dam Construction, v 42, n 2, Feb, 1990, p 13~17
    [122] Dewey, Raymond R., Reich, Ronald W.; Saouma, Victor E. Uplift modeling for fracture mechanics analysis of concrete dams.Journal of Structural Engineering, v 120, n 10, Oct, 1994, p 3025~3044
    [123] Plizzari, G.A. On the influence of uplift pressure in concrete gravity dams.Engineering Fracture Mechanics, v 59, n 3, Feb, 1998, p 253~267
    [124] de Boer R,Ehlers W.Historical review of the formulation of porous media theories .Acta Mechanica, v 74, n 1-4, Oct, 1988, p 1~8
    [125] de Boer R,Ehlers W.The development of the concept of effective stresses.Acta Mechanica, 1990, v 83, p 77~92
    [126] Bluhm J,de Boer R.Effective stresses-a clarification.Archive of Applied Mechanics, v 66, n 7, Jul, 1996, p 479~492
    [127] Lade P V,De Boer R.Concept of effective stress for soil, concrete and rock.Geotechnique, v 47, n 1, Mar, 1997, p 61~78
    [128] Butler J E.Influence of pore pressure upon concrete. Magazine of Concrete Research, v 33, n 114, Apr, 1981, p 3~17
    [129] Jaeger, J. C. and Cook, N. W. G.: Fundamentals of Rock Mechanics, Chapman & Hall,London. 1976
    [130] Goodman, R. E.Introduction to Rock Mechanics, Wiley. 1980
    [131] Pietruszcak, S., Turu, G. and Pande, G. N.: 1995, On the mechanical response of saturated cemented materials – Part I: theoretical considerations. Int. J. Numer. Anal. Meth. Geomech. 19, 555~562.
    [132] Pietruszcak, S. and Pande, G. N.: 1995, On the mechanical response of saturated cemented materials – Part II: experimental investigation and numerical simulations. Int. J. Numer. Anal.Meth. Geomech. 19, 563~571.
    [133] Biot, M. A.: 1955, Theory of elasticity and consolidation of a porous anisotropic solid. J. Appl.Phys. 26 182~185.
    [134] De Boer R.Once more: Uplift, friction and capillarity in liquid and gas-saturated porous solids[J]. Transport in Porous Media, v 27, n 3, Jun, 1997, p 357~368
    [135] De Boer R.Uplift, friction, capillarity and effective stress: Revisited via the porous media theory. Geotechnique, v 51, n 9, November, 2001, p 811~814
    [136] DE Buhan R,Dormieux L.On the validity of the effective stress concept for assessing the strength of saturated porous materials:A homogenization approach.J. Mech. Phys. Soilds,v44,n10,1996,P1649~1667
    [137] DE Buhan R,Dormieux L. A Micromechanics-Based Approach to the Failure of Saturated Porous Media. Transport in Porous Media,1999,34: 47~62.
    [138] Xavier Chateau, Luc Dormieux. Micromechanics of saturated and unsaturated porous media. Int. J. Numer. Anal. Meth. Geomech., 2002,26:831~844
    [139] Anjani Kumar Didwania. Micromechanical Basis of Concept of Effective Stress. Journal of Engineering Mechanics, 2002,Vol. 128, No. 8, August 1 ,p864~868
    [140] Coussy O. Mechanics of Porous Continua. Chichester, Wiley,1995
    [141] de Boer, R. Theory of Porous Media. Berlin, Germany,Springer, 2000.
    [142] 赵代深.重力坝的水荷载分析.水利学报,1984,第 7 期,53~61
    [143] 赵代深,郑玉琨.地基条件对重力坝坝体应力的影响.水力发电,(10):11~16
    [144] 刘相斌,赵国藩.用不同模量有限元分析坝体应力和变形.力学与实践,2001,23(4):39~42
    [145] 郭海庆.复杂混凝土坝坝基对坝体结构行为影响的分析理论和方法研究[博士学位论文].南京:河海大学水利水电工程学院,,2002
    [146] 杨剑.基于原型观测资料的二滩拱坝下游面裂缝成因分析[硕士学位论文]. 北京::清华大学水利水电工程系, 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700