沥青路面热反射与热阻技术降温机理与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
因具有良好的行车舒适性和使用性能,沥青路面成为我国高速公路路面的主要形式。作为一种温度敏感性材料,高温会导致沥青混合料的劲度模量降低,在车辆荷载的反复作用下,容易出现车辙、拥包、推移等永久性变形。这些病害形式严重地危害行车安全,缩短道路的使用寿命。传统的解决高温问题的方法是使用高性能的沥青、优质的集料或是骨架密实型沥青混合料,这些方法增加了道路工程造价和施工难度,都被动地接受了过高的路面温度。而且有时即使应用了这些措施,沥青路面的高温病害也没有得到彻底解决。过高的路面温度是造成这些病害的主要原因。通过合理的材料选择和结构设计,可以实现路面结构的热反射与热阻功能,主动地降低路面结构的温度场,在不增加工程造价的基础上,控制或减少路面的高温病害的发生。同时,伴随着我国城市化进程,城市热岛效应成为了一个日益严重的环境问题,既危害城市居民健康,又造成大量能源消耗。在城市道路铺装上应用热反射和热阻技术,可以减缓城市热岛效应。
     本文通过分析路面温度场的影响因素,研究了热反射与热阻技术的降温机理和技术可行性;开发了路用热反射涂层材料,并测试了降温效果和路用性能;设计了具有热阻功能的磨耗层材料,综合考虑隔热效果和路用性能,确定了合理的材料配比;综合考虑多孔沥青混合料的阻热效果和路用性能,确定了适宜的空隙率范围;通过热反射试验路的修筑和观测,总结了热反射涂层的关键施工技术。主要研究内容和成果概括如下:
     进行了热反射与热阻技术的降温机理及可行性分析。根据传热学的基本原理,从沥青路面的光热环境分析入手,采用ABAQUS有限元软件,建立沥青路面温度场的计算模型,采用实测的温度场数据校核模型的准确性。根据该模型对影响路面温度场的单因素分析可知,增加材料的反射率和发射率可以降低路面结构在各个时刻的温度;增加比热可以降低路面结构的最高温度;降低导热系数虽然会略微增加路表的最高温度,却可以较大幅度的降低路面在中面层以下的最高温度。对各因素对沥青路面温度场的影响情况进行了敏感度分析,为通过材料选择和结构设计控制过高的路面温度提供了理论指导。而后选取5种热物参数具有代表性的材料,分析热物参数对路面温度场的综合影响。分析了车辙病害的成因,认为中面层温度过高和剪应力集中是产生车辙的主要原因。为应用热反射与热阻技术控制车辙病害和缓解热岛效应提供了理论基础。通过对现有道路建筑材料的热物性能分析,论证了在道路工程上应用热反射与热阻技术的可行性。
     设计了室内模拟太阳辐射试验系统和沥青混合料热物参数的测试试验平台。室内模拟太阳辐射实验系统可以定量的评价所开发的热反射与热阻材料的降温或隔热效果。按照等效辐射原则确定了试验系统的辐射时间和辐射强度。通过与室外试验结果相对比,验证了系统的稳定性和准确性。设计了基于常功率平面热源法的热物参数测试方法,测试具有热阻功能的沥青混合料的热物参数,定量的评价材料的阻热性能。
     开发了基于热反射技术的路用热反射涂层材料。通过分析热反射涂层的降温机理,综合考虑反射率、眩光效果、使用寿命和造价,选择成膜物、助剂和颜填料,开发了适合路用的热反射涂层材料。该涂层为水溶性材料,具有造价低、施工方便、对环境无污染、养生时间短等特点。兼顾材料的降温效果和路用性能,确定了综合性能最优的热反射涂层材料配比。
     开发了基于热阻技术的热阻磨耗层材料。通过选用导热系数较小的陶砂和陶粒代替部分集料,设计了具有阻热功能的陶砂热阻磨耗层和陶粒热阻磨耗层材料。分别测试了材料的热物参数、阻热效果和路用性能,综合考虑阻热效果和路用性能,确定了合理的陶砂和陶粒掺量。研究了空隙率对多孔沥青混合料隔热效果、热物参数和路用性能的影响,探讨了兼顾阻热效果和路用性能要求的最佳空隙率范围。
     进行了热反射涂层的施工关键技术研究。为便于热反射涂层的大规模推广应用,开发了自动化程度较高的热反射涂层洒布车,实现涂层材料的快速、高效施工。通过试验路观测热反射涂层的降温效果、路用性能和使用寿命。
Asphalt pavement is widely used in our country because of driving comfort and performance. Hot mixture asphalt is sensitive to temperature. High temperature decreases modulus of HMA. With the effect of vehicle load time and again, permanent deformation such as rut, folding and slippage occur. These would decrease driving safety and shorten road work life. Traditional measures solve these diseases by using high quality asphalt and aggregate or choosing skeleton dense structure for HMA. All these increase road engineering cost and construction difficulty. The over high road temperature is accepted passively. Even all these measures are taken, high temperature diseases are not solved completely. Main reason leading this is over high temperature of road structure. By reasonable materials selection and structure design, the temperature of road can be decreased by using heat reflection and thermal resistance technology and reduce high temperature diseases at a certain extent without increasing road cost. At the same time, with the process of urbanization in our country, the Urban Heat Island effect becomes a more and more serious environment problem. The UHI effect harm citizen health and increase power demand for cooling in summer. Application heat reflection and thermal resistance technology in city pavement can mitigate UHI effect.
     In this paper, factors effecting road structure temperature field are analyzed. The decreasing temperature mechanism and feasibility of heat reflection and thermal resistance technology are researched. The heat reflection coatings are developed. Decreasing temperature effect and road performance are tested. Thermal resistance wearing course are developed. The materials compose is determined by considering thermal resistance and road performance. The optimum void range for porous asphalt mixture is suggested by researching thermal resistance effect and mechanics performance. Construction technology of heat reflection coating is provided by construction and observation of experimental road. All research works in the paper are outlined as following:
     Decreasing temperature mechanism and feasibility of heat reflection and thermal resistance is analyzed. Based on heat transfer theory and asphalt pavement light-heat environment, a temperature field computing model of asphalt pavement is built by ABAQUS finite element software. The model is verified by field test results. According to analysis of single factors influence on temperature field, increasing reflectivity and emissivity can decrease temperature at anytime. Increasing specific heat can decrease temperature at high temperature time. Decreasing thermal conductivity can increase surface temperature slightly but decrease temperature under middle layer largely. Sensitive analysis about thermal properties on temperature field is carried out. Those results can direct materials choosing and structure design. Then five materials with typical on thermal properties are chosen to research the thermal properties influence on temperature field. The results provide theory base of using heat reflection and thermal resistance technology to decrease rut and mitigate UHI effect. The feasibility of heat reflection and thermal resistance technology is discussed by researching construction materials thermal properties.
     Indoor simulation solar radiation system and asphalt concrete thermal properties experiment are developed. Based on radiation energy equal principle, the radiation time and intense is determined. Decreasing temperature effect can be evaluated quantitatively. Precision and stability of the developed system are tested by field results. Test method of asphalt concrete thermal properties is designed based on plane-source method with constant heating rate. Thermal resistance effect is evaluated by thermal properties.
     Heat reflection coatings for road are developed based on heat reflection technology. Film-formers, complex and pigments are determined to conform heat reflection coating by researching decreasing temperature mechanism, reflectivity, glare effect, work life and cost. The materials are water-soluble, low cost, easy construction, no pollution and short curing period. The best heat reflection coating is determined by considering decreasing temperature and road performance.
     Thermal resistance wearing course materials are developed based on thermal resistance technology. Sintered clay and crushed ceramic with smaller thermal conductivity are taken as partial aggregate to form thermal resistance wearing course materials. Test the thermal properties, decreasing temperature effect and road performance. The reasonable dosages of sintered clay and crushed ceramic are determined by considering thermal resistance effect and road performance. The reasonable void range of porous asphalt mixture is discussed by researching different void decreasing temperature effect and road performance.
     Key construction technology of heat reflection coating is researched. Heat reflection sprayer with high automatic is developed for fast and effective construction. Decreasing temperature effect, road performance and work life are researched through experimental road.
引文
[1]沙庆林.高速公路沥青路面早期破坏现象及预防[M].北京:人民交通出版社,2001.
    [2]严作人.层状路面体系的温度场分析[J].同济大学学报,1984(3):76-85.
    [3]沈金安,李福普,陈景.高速公路沥青路面早期损坏分析与防治对策分析[M].北京:人民交通出版社,2004.
    [4]梁满杰.沥青路面光热效应机理及热反射涂层技术研究[D].哈尔滨工业大学,2006.
    [5]丰江红.关注城市热岛效应[J].南方国土资源,2003(7):33-34.
    [6] Bretz S,Akbari H,Rosenfeld A. Practical Issues for Using Solar-reflective Materials to Mitigate Urban Heat Islands[J]. Atmospheric Environment,1996,32:95-101.
    [7]朱正伟,王猛.城市热岛效应的危害及对策[J].污染防治技术,2009,22:94-96.
    [8]宋轩,段金龙,杜丽平.城市热岛效应研究概况[J].气象与环境科学,2009,32(3):68-72.
    [9]张洪清,宋志斌,杨庆.透水性铺装对城市生态环境改善的分析[J].水科学与工程技术,2005,S1:37-39.
    [10] Takashi A,Vu T,AKIO W. Heat Storage of Pavement and Its Effect on The Lower Atmosphere[J]. Atospheric Environment,1996,30(3):413-427.
    [11] Pomerantz M,Akbari H,Chen A,et al. Paving Materials for Heat Island Mitigation[R]. CA:Lawrence Berkeley National Laboratory,LBNL-38074,1997.
    [12] Pomerantz M,Pon B,Akbari H. The Effect of Pavements Temperatures on Air Temperatures in Large Cities[R]. CA:Lawrence Berkeley National Laboratory,2000.
    [13]徐永祥,李运德,师华,等.太阳热反射隔热涂料研究进展[J].涂料工业,2010,40(1):70-74.
    [14] Levinson R,Akbari H,Reily J. Cooler Tile-roofed Buildings with Near-infrared-reflective Non-white Coatings[J]. Building and Environment,2007,42(7):488-497.
    [15] Chang D,Pollack S,Shi F,et al. Selective Emissivity Coatings for Interior Temperature Reduction for An Enclosure[P]. U.S.PATENT:5405680,1995.
    [16] Mehdi B,Shigenao M,Atsuki K. Comparison Between Aesthetic and Thermal Performances of Copper Oxide and Titanium Dioxide Nano-particulate Coatings[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2011,112(7):1197-1204.
    [17] Nilsson J,Niklasson A,Granqvist G. A Solar Reflecting Material for Radiative Cooling Applications: ZnS Pigmented Polyethy-lene[J]. Solar Energy Materials and Solar Cells,1992,28(2):175-193.
    [18] Landro B,McCormick G. Effect of Surface Characteristics and Atmospheric Conditions on Radiative Heat Loss to a Clear Sky[J]. International Journal of Heat Mess Transfer,1980,23(5):613-620.
    [19] Akbari H,Konopacki S. Calculating Energy-saving Potentials of Heat-island Reduction Strategies[J]. Energy Policy,2005,33:721-756.
    [20]葛新石.大气窗口和辐射制冷[J].自然杂志,1981,(8):5-9.
    [21]魏晴天. AAS型隔热防火涂料的研制[J].防火与安全,2002,(5):21-22.
    [22]战为民,邓永青,李少春.日光热反射涂料的研究[J]. 2002,(2):12-15.
    [23]康翠荣,孟庆英,乔亚莉.太阳能反射涂层屏蔽热辐射的研究[J].涂料工业,1996,(4):11-13.
    [24]王金台,路国忠.太阳热反射隔热涂料[J].涂料工业,2004,34(10):17-19.
    [25]吕艺.一种隔热防晒涂料及其制备方法[P]. CN1583894,2005.
    [26]江晴,李戬洪,卢显强,等.海灰色选择性热反射涂料的实验研究[J].太阳能学报,1999,20(4):455-458.
    [27] Bertz S,Akbari H,Rosenfeld A. Practical Issues for Using Solar-reflective Materials to Mitigate Urban Heat Island[J]. Atmospheric Environment,1998,32(1):95-101.
    [28]刘涛.彩色路面材料性能及施工工艺研究[D].长安大学硕士论文,2006.
    [29] Synnefa A,Karlessi T,Gaitani N,et al. Experimental Testing of Cool Colored Thin Layer Asphalt and Estimation of Its Potential to Improve the Urban Microclimate[J]. Building and Environment,2011,46:38-44.
    [30]连丽,哈继勇.彩色沥青混凝土路面技术的应用与发展[J].国外建材科技,2008,29:28-30.
    [31]武居二郎.太阳热反射涂料[J].涂料,1978,304(12):38-44.
    [32]武居二郎.太阳热防腐涂料的应用[J].涂料,1981,333(1):33-36.
    [33]王知乐.减少热蓄积型沥青混合料制备的试验研究[D].南京航空航天大学,2008.
    [34] Tavman H. Effective Thermal Conductivity of Granular Porous Materials[J]. Heat Mass Transfer,1996,23(2):169-176.
    [35]张省现.散体的分型特性和热物性的分型表征[D].北京科技大学,2005.
    [36] Williamson H. Effects of Environment on Pavement Temperatures[C]. Proceeding of the 3rd International Conference on Structural Design of Asphalt Pavement,1972:144-158.
    [37]陈则韶,倪海涛,陈梅英.多孔介质等效导热系数的较高精度通用计算式[J].工程热物理学报,1991,8(12):305-309.
    [38]王海军.大粒径沥青混合料在高速公路基层中的应用研究[D].华中科技大学硕士论文,2006.
    [39]资建民,王海军,李福宝.大粒径沥青混合料基层缓解反射裂缝应力分析[J].华中科技大学学报,2006,23(1):8-12.
    [40]杜洛金.固体热物理性质导论-理论和测量[M].奚同庚,王梅华,译.北京:中国计量出版社,1987.
    [41]王玉芝.木材热物性测试的理论与试验研究[D].浙江大学硕士论文,2004.
    [42]李兴海.沥青混合料的热物特性研究[D].哈尔滨工业大学硕士论文,2007.
    [43] Gustafsson E. Transient Plane Source Techniques for Thermal Conductivity and Thermal Diffusivity Measurements of Solid Materials[J]. Rev.Sci.Instrum,1991,62(3):797.
    [44] Gustavsson M,Karawacki E,Gustafsson S. Thermal Conductivity Thermal Diffusivity and Specific Heat of Thin Samples from Transient Measurements with Hot Disk Sensors[J]. Rev. Sci. Inst. 1994,65:3856-3859.
    [45]刘晓燕,郑春媛,张雪萍,等.两相颗粒多孔材料导热系数研究[J].工程热物理学报,2010,31(3):481-483.
    [46]郝丽宏.双平板式导热系数测定仪的研制[D].天津大学硕士论文,2004.
    [47]李英低.温双平板保护法导热系数测定仪的开发[D].天津大学硕士论文,2007.
    [48]肖建庄,宋志文,张枫.混凝土导热系数试验与分析[J].建筑材料学报,2010,13(1):17-21.
    [49] Kavianipour A,Beck V. Thermal Property Estimation Utilizing the LaplaceTransform with Application to Asphaltic Pavement[J]. International Journal of Heat and Mass Transfer. 1977,20(3):259-267.
    [50] Xu Q,Solaimanian M. Modeling Temperature Distribution and Thermal Property of Asphalt Concrete for Laboratory Testing Applications[J]. Construction and Building Materials,2010,24:487-497.
    [51] Wu S,LI B,QIU J,et al. Effeet of Conductive Fillers on the Damic Response and Fatigue Life of Conduetive Asphalt Concrete[J]. Key Engineering Materials,2007,Advances in Fracture and Damage Meehanies Vl:145-148.
    [52]陈明宇.沥青路面太阳能集热性能研究[D].武汉理工大学,2010.
    [53]逯彦秋.刚桥桥面铺装层温度场的研究[D].哈尔滨工业大学博士论文,2007.
    [54]王瑾璐,蔡会武,江照洋.基于脉冲平面热源法测定保温涂料导热系数[J].化工自动化及仪表,2009,36(2):43-46.
    [55]黄慧.沥青及沥青混合料热物特性及测试方法研究[D].长沙理工大学,2010.
    [56]张秀华,陶家朴.路面材料的热学性质及其影响因素[J].西安公路学院学报,1984:15-19.
    [57]邴文山.热稳流理论在道路冻深计算中的应用[J].中国公路学报,1992,5(1):11-16.
    [58]牛俊明,戴慧莹,赵平均,等.排水性沥青抗滑层混合料热学性能研究[J].西安公路交通大学学报,1998,18(1):21-23.
    [59] Mrawira D M,Luca J. Thermal Properties and Transient Temperature Response of Full-depth Asphalt Pavements[C]. Transportation Research Record 1809,2002:160-171.
    [60] Tan S N, Fwa T F, Chuai C T, et al. Determination of Thermal Properties of Pavement Materials and Unbound Aggregates by Transient Heat Conduction[J]. Journal of Testing & Evaluation,1997,25(1):15-22.
    [61] Solaimanian M , Kennedy T W. Predicting Maximum Pavement Surface Temperature Using Maximum Air Temperature and Hourly Solar Radiation[C]. Transportation Research Record,1417,1992:1-11.
    [62] Himeno K, Watanable T,Maruyama T. Temperature Distributions in Asphalt Pavements[C]. Proceeding of Paving in Cold Areas, Canada/Japan Science and Technology Agreement Mini Workshop,July Ottawa,1987:243-254.
    [63] Ding Kangfa. Effects of Mix Design Factors on Thermal Bechavior of Hot Mix Asphalt[D]. University of New Brunswick,2005.
    [64] Kandhal S,Lockett L. Construction and Performance of Ultrathin Asphalt Friction Course[M]. ASTM Special Technical Publication,1348,1999:81-95.
    [65] Estakhri K,Button J. Evaluation of Ultrathin Friction Course[C]. Transp Res Rec,1454,1994:9-18.
    [66] Pouget S,Sauzeat C,Di Benedetto. Numercial Simulation of the Five-point Bending Test Designed to Study Bituminous Wearing Courses on Orthotropic Steel Bridge[J]. Materials and Structures,2010,43:319-330
    [67] Bjornstad M,Bognacki J,Marsano J. George Washington Bridge Asphalt-wearing Course and Bond Coat Analysis[C]. Airfield and Highway Pavements: Efficient Pavements Supporting Transportation's Future-Proceedings of the 2008 Airfield and Highway Pavements Conference,WA United states,2008:596-607.
    [68] Thompson T,Visseer T. Selection and Maintenance of Mine haul Road Wearing Course Materials[J]. Trans Inst Min Metall Sect A Min Technol,2006,12(4):140-153.
    [69] Corelylay J , Mastin J. Ultrathin Bonded Wearing Course as Pavement Preservation Treatment for Jointed Concrete Pavements[C]. Transportation Research Record,2007:11-17.
    [70] Hanson D. Construction and Performance of An Ultrathin Bonded Hot-mix Asphalt Wearing Course[C]. Transportation Research Record,1749,2001:53-59.
    [71] Liu Quantao , Shalangen E , Garcia A. Induction heating of electrically conductive porous asphalt concrete[J]. Construction and Building Materials,2010,24:1207-1213.
    [72]罗幸平.超薄磨耗层在京珠北高速公路预防性养护中的应用[D].华南理工大学硕士论文,2009.
    [73]王广伟.热阻式超薄磨耗层的试验研究[D].哈尔滨工业大学硕士论文,2008.
    [74]王旭东,严卫兵.超薄沥青混凝土抗滑表层技术研究[C]. 2002年道路工程学会学术交流会论文集.北京:人民交通出版社,2002.
    [75]薛国强.超薄磨耗层SMA-5沥青混合料的设计及性能研究[J].公路交通科技,2009,26(10):18-21.
    [76]刘朝晖,沙庆林.超薄层沥青混凝土SAC-10矿料级配比较试验研究[J].中国公路学报,2005,18(1):7-13
    [77]交通部管理科学研究所.超薄层沥青混凝土面层技术研究,2005.
    [78]曾令可,罗民华,张守梅.绿色建材陶粒[J].佛山陶瓷,2001,11(7):8-10.
    [79]毛锡双.超轻页岩陶粒的制备及焙烧机理研究[D].广西大学硕士论文,2006.
    [80] Vilches L,Fernandez-Pereira C,Olivars del Valle J,et al. Recycling Potential of Coal Fly Ash and Titanium Waste as a New Fireproof Products[J]. Chem Eng,2003,95:155-161.
    [81] Xu Lingling,Guo Wei,Wang Tao,et al. Study on Fired Bricks with Replacing Clay by Fly Ash in High Volume Ratio[J]. Constr Build Mater,2005,19:243-247.
    [82] Chandra N,Agnihotri N,Bhasin S,et al. Effect of Addition of Talc on the Sintering Characteristics of Fly Ash Based Ceramic Tiles[J]. Euro Ceram Soc,2005,25:81-88.
    [83] Erol M,Kucukbayrak S,Ersoy-Mericboyu A. Characterization of Sintered Coal Fly Ashes[J]. Fuel,2008,87:1334-1340.
    [84] Dhir K,Mays R,Chua H. Lightweight Structural Concrete with Aglite Aggregate: Mix Design and Properties[J]. International Journal of Cement Composites and Lightweight Concrete,1984,6(4):249-261.
    [85] Gonzalez-Corrochano B,Alonso-Azcarate J,Rodas M,et al. Microstructure and Mineralogy of Lightweight Aggregates Manufactured from Mining and Industrial Wastes[J]. Construction and Building Materials,2011,25(8):3591-3602.
    [86] Bob M,Gallaway P E. Expanded Shale, Clay and Slate Reference Manual for Asphalt Pavement Systems[R]. Salt Lake City:Expanded Shale, Clay, and Slate Institute,1998.
    [87] Mallick R B,Hooper F P,Brien S,et al. Eval-uation of Use of Synthetic Lightweight Aggregate In Hot-mix Asphalt[C]. TRB Annual Meeting,2004.
    [88] Shen Derhsien,Wu Chiaming,Du Jiachong. Performance Evaluation of Porous Asphalt with Granulated Synthetic Lightweight Aggregate[J]. Construction and Building Materials,2008,22(5):902-910.
    [89]刘启华,李萃斌,张传镁,等.高强页岩陶粒配制沥青陶粒混凝土的试验研究[J].广州大学学报,2007,6(3):77-81.
    [90]王发洲,张运华,阎国刚,等.高强页岩陶粒沥青混合料的研究与应用[J].武汉理工大学学报,2008,30(9):9-12.
    [91]凌天清,王瑞燕,张剑,等.陶砂砂浆与陶粒混凝土对降低隧道内行车噪声的影响[J].中国公路学报,2011,24(1):20-25.
    [92]郑彬,钱振东,江陈龙.碎石型陶粒环氧沥青混合料试验研究[J].公路,2009,(11):187-191.
    [93] Bentama J,Ouazzani K,Lakhliai Z,et al. Inorganic Membranes Made of Sintered Clay for the Treatment of Biologically Modified Water[J]. Desalination,2004,168:295-299.
    [94]宋秋霞,徐勇鹏,鄂勇.透水沥青路面对路面径流污染的净化功效[J].东北农业大学学报,2009,40(11):56-59.
    [95] Poon Chisun,Chan Dixon. Effects of Contaminants on the Properties of Concrete Paving Blocks Prepared with Recycled Concrete Aggregates[J]. Construction and Building Materials,2007,21:164-175.
    [96] Jonker A,Potgieter J. An Evaluation of Selected Waste Resources for Utilization in Ceramic Materials Applications[J]. Euro Ceram Soc,2005,25:3145–2149.
    [97]吴建锋,陈金桂,徐晓虹,等.利用废陶瓷制备陶瓷透水砖的研究[J].武汉理工大学学报,2009,31(29):27-30.
    [98]马小娥,白振幅,陈桂琦,等.用废陶瓷作骨料生产仿古建筑瓦研究[J].河南建材,2004,(2):6-9.
    [99]谭发才.残渣废料制水泥[J].实用技术,1995,(5):35.
    [100]于利刚,刘岚,吴锦锋,等.废陶瓷在水泥生产中的研究与应用[J].水泥建材,2006,(1):35-37.
    [101] Guerra I,Vivar I, Llamas B,et al. Eco-efficient Concretes: The Effects of Using Recycled Ceramic Material from Sanitary Installations on the Mechanical Properties of Concrete[J]. Waste Management,2009,29:643-646.
    [102] Senthamarai R,Manoharan D,Gobinath D. Concrete Made from Ceramic Industry Waste: Durability Properties[J]. Construction and Building Materials,2011,25:2413-2419.
    [103] Senthamarai R,Manoharan D. Concrete with Ceramic Waste Aggregate[J]. Cement and Concrete Composites,2005,27:910-913.
    [104] De Bbrito J,Pereira S,Correia A. Mechanical Behaviour of Non-structural Concrete Made with Recycled Ceramic Aggregates[J]. Cement and Concrete Composites,2005,27:429-433.
    [105] Suzuki M,Meddah M,Sato R. Use of Porous Ceramic Waste Aggregates forInternal Curing of High-performance Concrete[J]. Cement and Concrete Research,2009,39:373-381.
    [106] Biniei H. Effeet of Crushed Ceramic and Basaltic Pumice as Fine Aggregates on Concrete Mortars Properties[J]. Construction and Building Materials,2007,21(6):1191-1197.
    [107] Lopez V,Llamas B,Juan A,et al. Ecoefficient Concretes: Impact of The Use of White Ceramic Powder on the Mechanical Properties[J]. Biosystems Engineering,2007,96(4):559-564.
    [108] Senthamarai R M,Devadas M P. Concrete with Ceramic Waste Aggregate[J]. Cement & Concrete Composites,2005,27(9):910-913.
    [109] Correia J R,De Brito J,Pereira A S. Effects on Concrete Durability of Using Recycled Ceramic Aggregates[J]. Materials and Structures,2006,39(3):169-177.
    [110]毋雪梅,李愿,管宗甫.废弃陶瓷再生混凝土及界面研究[J].郑州大学学报,2010,31(3):35-38.
    [111] Huang B S,Dong Q,Burdette E G. Laboratory Evaluation of Incorporating Waste Ceramic Materials into Portland Cement and Asphaltic Concrete[J]. Construction and Building Materials,2009,12(23):3451-3456.
    [112] Han T. Evaluating Rutting on Porous Asphalt Mixescomparison Between Marshall and Superpave Method in Terms of Volumetric Properties[D]. Malaise:University Technology Malaysia,2007.
    [113] Bendtsen H. Noise Reduction by Drainage Asphalt[J]. Nordic Road & Transport Research,1997,(1):6-8.
    [114] Kim R,Lee S,Lee J,et al. Thermal Properties of Water-absorbing and Surface Modified Porous Pavements[C]. 8th International Symposium on Eco-Materials Processing and Design,Kitakyushu,Japan,2007.
    [115] Nakayama T,Fujita T. Cooling Effect of Water-holding Pavements Made of New Materials on Water and Heat Buggets in Urban Areas[J]. Landscape and Urban Planning,2010,(5):57-67.
    [116]宋宪发,凌建明,朱方海.排水性沥青路面降温性与效果分析[J].上海公路,2007,(1):18-22.
    [117]于红润.透水沥青路面性能研究及其在城市土地利用结构中铺面比例的优化设计[D].北京交通大学,2007.
    [118]魏建军,关彦斌,张新,等.透水性沥青路面降低路表温度的研究与分析[J].科技与经济,2007,43(5):1-3.
    [119]蒋玮,沙爱民,裴建中,等.多孔沥青混合料压实关键技术研究[J].武汉理工大学学报,2010,32(8):13-16.
    [120] Hamzah M,Hardiman M. Characterization of the Clogging Behaviour of DoubleLayer Porous Asphalt[J]. Journal of the Eastern Asian Society for Transportaion Studies,2005:968-980.
    [121]陶文铨.传热学[M].西安:西北工业大学出版社,2006.
    [122]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1998.
    [123]王孙富.沥青路面结构温度场与温度应力的数值模拟分析[D].哈尔滨工业大学硕士论文,2010.
    [124] Christison T , Anderson O. The Response of Asphalt Pavement to Low Temperature Climatic Environment[C]. Proceedingof the 3rd International Conference on the Structure Design of Asphalt Pavement,London,1972.
    [125] Thompson M R,Dempsey B J,Hill H. Characterizing Temperature Effects for Pavement analysis and Design[C]. Transportation Research Record,1987:39-43.
    [126] Hermansson A. Simulation Model for Calculating Pavement Temperature Including Maximum Temperature[C]. Transportation Research Record 1699,2000:134-139.
    [127]付凯敏,徐立红,陈京钰.不同沥青路面结构温度场研究[J].公路工程,2009,34(4):53-59.
    [128]廖公云,黄晓明. ABAQUS有限元软件在道路工程中的应用[M].南京:东南大学出版社,2008.
    [129]贾璐.沥青路面高温温度场数值分析和实验研究[D].湖南大学硕士论文,2004.
    [130] Jooseng G,Patrick E,Phelan E,et al. Impact of Pavement Thermophysical Properties on Surface Temperatures[J]. Journal of Materials in Civil Engineering,2007,(8):683-690.
    [131]钟岱辉,马玉梅.地基极限承载力的参数敏感性分析[J].工业建筑,2005,35:479-482.
    [132]李毅,邵明安,王文焰,等.土壤非饱和导水率模型中参数的敏感性分析[J].水科学进展,2003,14(5):593-597.
    [133]章光,朱维申.参数敏感性分析与试验方案优化[J].岩土力学,1993,14(1):51-58.
    [134]王辉,李雪连,张起森.高温重载作用下沥青路面车辙研究[J].土木工程学报,2009,42(5):139-144.
    [135]张厚记,刘松.超重载路段中面层抗车辙性能的研究[J].武汉理工大学学报. 2004,26(6):21-24.
    [136]杨富民.红外热反射涂料的研究[D].北京工业大学硕士论文,2002.
    [137]郭清泉.金属用反射太阳热的水性涂料研制及相关机理研究[D].华南理工大学,2004.
    [138] Kinouchi T,Yoshinaka T,Fukae N,et al. Development of Cool Pavement With Dark Colored High Albedo Coating[C]. 5th Symp. on the Urban Environment, Vancouver BC,2004:207-210.
    [139]室井宗一.高分子乳液在建筑材料中的应用[M].吴国和,纪永亮,编译.北京:化学工业出版社,1988.
    [140]杨富民.红外热反射涂料的研究[D].北京工业大学硕士论文,2002.
    [141]贾爱忠.自清洁隔热功能涂覆材料的制备及性能[D].河北工业大学硕士论文,2004.
    [142]王晓莉,董洲,杨胜.反射隔热涂料的配方对比研究[J].涂料工业,2010,40(7):76-79.
    [143]王咏厚.涂料配方原理及应用[M].成都:四川科学技术出版社,1987.
    [144]朱万章.水性木器漆的硬度问题[J].中国涂料,2008,23(7):22-26.
    [145]刘琳,李琳,倪永.微胶囊化聚磷酸铵对防火涂料耐水性能的影响.建筑材料学报,2010,13(3):367-370.
    [146]沈敏.剑麻纤维对沥青路面抗滑性能的影响[J].武汉理工大学学报,2010,32(12):37-41.
    [147]李明珠,吴少鹏,刘杰胜.酸性石料与沥青粘附性增强方法研究[J].建材世界,2010,31(1):46-48.
    [148]李洪斌.花岗岩在高速公路抗滑表层中应用的试验研究[J].北方交通,2006,(10):10-12.
    [149]朱平峰,计亦奇.人造轻细集料表观密度及吸水率测试方法的探讨[J].粉煤灰,2004,(6):42-44.
    [150]严家伋.道路建筑材料[M].北京:人民交通出版社,2001.
    [151]沙庆林.碎石沥青混凝土SAC系列的设计与施工[M].北京:人民交通出版社,2005.
    [152]谭忆秋,张肖宁,郭祖辛.用体积法设计SMA混合料的配合比[J].哈尔滨建筑大学学报,1999,32(3):105-110.
    [153]张肖宁,郭祖辛,吴旷怀.按体积法设计沥青混合料[J].哈尔滨建筑大学学报1995,28(2):28-36.
    [154]徐亦航.排水性沥青路面技术性能研究[D].长安大学硕士论文,2007.
    [155]张鑫.水泥稳定级配碎石排水基层胶浆合理稠度研究[D].哈尔滨工业大学硕士论文,2007.
    [156]解晓光,王哲人.沥青碎石混合料动力变形特性研究[J].中国公路学报,2006,19(2):24-30.
    [157]沈春林,苏立荣,李芳.建筑涂料[M].北京:化学工业出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700