猪常用饲料能量和粗蛋白质消化率仿生评定方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究使用不同纤维水平的日粮,获取生长、育肥猪日粮养分消化率和消化能值等生物学基础数据。利用单胃动物仿生消化仪(SDS-ΙΙ),分析仿生法评定饲料养分消化率的影响因素,并测试日粮和饲料原料的体外消化率,探讨仿生法评定常用猪饲料能量和粗蛋白质消化率的可行性。在“胃——小肠”两步仿生法的研究基础上,重点突破猪“大肠消化”这一环节的模拟测定方法,为猪饲料养分生物学效价仿生评定方法的完善奠定基础。
     本研究第一部分首先探明日粮纤维水平和试验期对生长、育肥猪日粮养分在小肠、大肠以及全消化道的消化率和流量,为仿生法模拟饲料养分的消化提供生物学参考数据。本试验将24头荷术猪随机分成4个处理,每个处理6头猪,分别饲喂对照日粮和低、中、高纤维日粮(日粮纤维含量分别为:12.3、14.6、16.9和21.4%)。结果表明:随着日粮纤维含量增加,日粮的干物质、碳水化合物和总能在各个肠段的消化率均线性减少(P <0.05),食糜中干物质、碳水化合物和总能的流量则线性增加(P <0.05),回肠pH值和粪样中的乙酸、丙酸、异丁酸和总VFA含量也线性增加(P <0.01)。从第一试验期到第二试验期,日粮碳水化合物的全消化道消化率和后肠发酵均减少(P <0.01),而回肠食糜中丙酸、异丁酸和总VFA含量则增加(P <0.05)。可溶性和不溶性纤维的摄入量有助于阐释饲料养分消化率和流量的主要变异性(P <0.05)。
     第二部分探讨仿生法模拟大肠消化参数和相关测试因素的影响,完善饲料养分生物学效价仿生法评定的操作规程。结果表明:玉米、豆粕和小麦麸的还原糖生成率在消化6h达到最大值(P<0.05)。小麦麸在6个消化时间点的还原糖生成率均显著高于玉米和豆粕的测值(P <0.05)。3种浓度的纤维素酶对饲料的还原糖生成率和大肠能量消化率无显著影响(P>0.05)。消化残渣清洗6次的小麦麸,其能量消化率显著高于清洗3次的值(P <0.05)。透析袋使用两种不同前处理方式,玉米、豆粕和小麦麸干物质消化率无显著影响(P>0.05)。脱脂显著提高玉米、豆粕和小麦麸的干物质和粗脂肪的消化率,粗脂肪消化率在90%以上(P <0.05),但脱脂未对脂肪以外的其它养分的消化率产生影响(P>0.05)。蠕动泵泵入缓冲液以注入式所测得的玉米、豆粕和小麦麸的饲料干物质消化率显著低于吸入式(P <0.05),但其测试的平行性较好。
     第三部分研究仿生法评定日粮及饲料原料能量和粗蛋白质的消化率,并与动物试验法测值进行相关性分析,探讨仿生法表征日粮及饲料原料能量和粗蛋白质消化率的可行性。结果表明,仿生法可区分不同饲料的消化率,也可分辨出同一饲料在不同模拟消化阶段的消化率值。仿生法评定纤维日粮的干物质(R2=0.99)、有机物(R2=0.97)和能量消化率(R2=0.97)与动物试验法测值相关性极高(P <0.01),且与日粮中粗纤维含量呈显著负相关(P <0.05)。仿生法测定的消化能值和动物试验法的测值相当接近,差值为0.50±0.24MJ/kg(P <0.05)。仿生法评定饲料原料干物质(R2=0.97,P <0.01)、有机物(R2=0.98,P <0.001)、粗蛋白质(R2=0.82,P <0.05)、能量的消化率(R2=0.93,P <0.01)和消化能值(R2=0.93,P <0.01)与动物试验法测值相关性高。仿生法测定的能量和粗蛋白质的消化率的变异系数范围为0.25~0.84%,动物试验法的变异系数范围为1.00~3.25%(P <0.05)。相对于动物试验法,仿生法测试日粮和饲料原料能量和粗蛋白质消化率的精确度更高。
The effect of dietary fiber level on the nutrient digestibility and digestible energy ofgrowing-fattening pigs was determined in the present study. The effects of factors on the in vitronutrient digestibility of feeds were also analyzed using simulative digestion system (SDS-ΙΙ). Thefeasibility of assaying the in vitro digestibility of energy and crude protein in diets and feed ingredientsusing the SDS-ΙΙ was evaluated by comparing the in vitro and in vivo nutrient digestibility. The in vitromethod for simulating nutrient digestion in swine hindgut was focused in the present study to improvean establishment of a quick and accurate system for feed evaluation, which based on the in vitro methodto simulate digestion in the stomach and small intestine.
     The objective of Exp.1was to determine the effects of fiber level from alfalfa meal andexperimental period on the intestinal nutrient flow and hindgut fermentation of growing pigs, in order toprovide data for an establishment of a feed evaluation system using the SDS-ΙΙ. Twenty-four pigs wereprepared by T-cannula insertion into the distal ileum and allotted to4treatments. The pigs wereprovided a control diet or a diet in which corn and soybean meal partly were replaced by5,10and20%,respectively, of alfalfa meal to give the graded levels of dietary fiber during two10-d experimentalperiods (12.3,14.6,16.9and21.4%dietary fiber). The apparent ileal digestibility (AID), apparent totaltract digestibility (ATTD), and hindgut fermentation of dry matter (DM), carbohydrates (CHO), andgross energy (GE) decreased (linear, P <0.05) as the dietary fiber level increased. The intestinal flow ofDM, CHO, and GE increased (linear, P <0.05) with raising the level of dietary fiber. The pH in the ilealdigesta and the concentration of acetate, propionate, and total VFA in the feces increased (linear, P <0.01) as the fiber level increased. From experiment period1to period2, the ATTD and hindgutfermentation of CHO reduced (P <0.01), whereas the concentrations of propionate, valerate, and totalVFA in ileal samples increased (P <0.05). A multiple linear regression analysis taking into accountboth the soluble and insoluble fiber intake explained the main variation (P <0.05) in the total tractdigestibility and flow of nutrients.
     The objective of Exp.2was to determine the effects of the factors on the in vitro nutrientdigestibility of feeds to provide a method for meaning the in vitro nutrient digestibility of feeds usingthe SDS-ΙΙ. After preliminary consecutive incubations to simulate digestion in stomach and smallintestine, the in vitro generation rate of reducing sugar (RGG) in all feeds reached maximal value as invitro hindgut digestion for6h, the RGG was greater in wheat bran than in corn and soybean meal (P <0.05). The cellulase concentration did not affect the RGG and in vitro energy digestibility (ED)(P>0.05). The ED of wheat bran during wash times of undigested residues for6times was significantlygreater than for3times (P <0.05). No significant differences were revealed on the in vitro dry matterdigestibility (DMD) of feeds using two preliminary methods of dialysis tube (P>0.05). Removing theoil and fat from undigested residues, the DMD of corn, soybean meal and wheat bran were increased by3%, and the in vitro ether extract digestibility of feeds was more than90%(P <0.05), but the in vitro digestibility of other nutrients was not affected by this method (P>0.05). The DMD of feeds wasdifferent in the pushing and pulling method of running direction of peristaltic pump (P<0.05). Althoughthe DMD of feeds was less in the pushing method than in pulling, the results with well accuracy andprecision were obtained in pushing method.
     The objective of Exp.3was determined the in vitro nutrient digestibility of feeds compared withthe in vivo value, so as to evaluating the feasibility of assaying the digestibility of nutrients and energyby the bionic method. The in vitro nutrient digestibility varies in different feed and in different segmentsof simulated digestion. The correlation of digestibility of dry matter (R2=0.99), organic matter (R2=0.97) and energy (R2=0.97) of fiber diets using the in vitro and in vivo method was very high (P <0.01). The in vitro nutrient digestibility was negatively correlated with the content of dietary fiber (P <0.05). The absolute differences between the in vitro and in vivo digestible energy was0.50±0.24MJ/kg(P <0.05). The correlation of the digestibility of dry matter (R2=0.97, P <0.01), organic matter (R2=0.98, P <0.001), crude protein (R2=0.82, P <0.05), energy (R2=0.93, P <0.01) and the digestibleenergy (R2=0.93, P <0.01) of feed ingredients using the in vitro and in vivo method was also very high.The coefficient of variation (0.25~0.84%) of the in vitro energy and protein digestibility was less thanthe coefficient of variation (1.00~3.25%) of the in vivo energy and protein digestibility (P <0.05),which indicated that it can more accurately evaluate digestibility of energy and crude protein in swinefeeds using the in vitro method by the SDS than using the in vivo method.
引文
1.陈亮,张宏福,赵峰.论猪饲料主要养分生物学效价仿生评定研究及应用.第六届全国猪营养学术研讨会论文集.2011:274-284.
    2.陈亮,张宏福.猪饲料能量消化率全消化道体外仿生评定法评述.动物营养研究进展(2012年版).中国农业科学技术出版社,2012:263-269.
    3.动物营养学国家重点实验室.猪饲料水解物能值测定技术规程(KLANS/X1005-2011)[M].北京:中国农业科学院北京畜牧兽医研究所动物营养学国家重点实验室,2011.
    4.李东卫.仿生法评定生长猪常用植物性饲料有效磷酶促反应条件研究[硕士学位论文].北京:中国农业科学院,2012.
    5.李辉,赵峰,计峰,张宏福.仿生消化系统测定鸭饲料原料代谢能的重复性与精密度检验[J].动物营养学报,2010,22(6):1709-1716.
    6.李辉.单位动物仿生消化系统(SDS-)测定鸭饲料代谢能值的精度、变异因素及可加性研究[硕士学位论文].合肥:安徽农业大学,2010.
    7.刘雨田,赵峰,张宏福,等.仿生消化系统模拟鸡饲料消化的适宜水解时间的研究[J].动物营养学报,2010,22(5):1422-1427.
    8.刘雨田.基于仿生消化系统的酶法测定鸡蛋白质饲料代谢能值的研究.[硕士论文].杨凌:西北农林科技大学,2009.
    9.卢德勋.日粮纤维的营养作用及其利用[A].刘建新.饲料营养研究进展[C].成都:亚洲中医药杂志社,1998:13-23.
    10.胡光源,赵峰,张宏福,等.饲粮蛋白质来源于水平对生长猪空肠液组成的影响[J].动物营养学报,2010,22(5):1220-1225.
    11.乔建国,杨玉芬.日粮纤维对猪营养物质消化率、消化道发育及消化酶活性的影响[J].中国农学通报,2007,23:18-21.
    12.任立芹.仿生法评定黄羽肉鸡常用饲料代谢能和可消化氨基酸研究[博士学位论文].北京:中国农业科学院,2012.
    13.王诚,王文亭,李福昌.日粮粗纤维水平对菜芜猪及其杂交猪氨代谢及营养物质消化率的影响[J].山东农业大学学报:自然科学版,2011,42(3):422-427.
    14.王成章,李德锋,严学兵,等.肥育猪饲粮中添加苜蓿草粉对其生产性能、消化率及血清指标的影响[J].草业学报,2008(6):71-77.
    15.杨玉芬,卢德勋,许梓荣日粮纤维对肥育猪生产性能和胴体品质的影响[J].福建农林大学学报(自然科学版),2002(03):366-369.
    16.张宏福,赵峰,张子仪.仿生消化法评定猪饲料生物学效价的研究进展[J].饲料与畜牧,2011,3:5-9.
    17.张宏福,赵峰,张子仪.仿生消化法评定猪饲料生物学效价的研究进展[A].张宏福.饲料营养研究进展-2010[C].杨凌:中国农业科学技术出版社,2010,36-43.
    18.张子仪,李小亭,汤玮如,等.猪的离体消化试验方法的研究,第八报:用不同工艺所得PIF测出的离体消化率及其与常法消化率的比较[M].中国农业科学院畜牧研究所科学研究年报,1984.122-130.
    19.张子仪,吴克谦,吴同礼,等.应用回归分析评定鸡饲料表观代谢能值的研究[J].畜牧兽医学报,1981,12(4):223-229.
    20.张子仪.动物营养代谢研究[A].动物营养代谢农业部重点开放实验室1990-1994论文集[C].北京:北京农业大学出版社,1995:32-125.
    21.赵峰.用酶法评定鸭饲料代谢能的方法学研究[博士学位论文].北京:中国农业科学院,2006.
    22.赵峰,张子仪.对家禽饲料代谢能值评定方法中若干误区的探讨[J].动物营养学报2006,18(1):1-5.
    23.赵峰,张宏福,卢庆萍,等.单胃动物仿生消化系统及基于该系统模拟单胃动物消化的方法.中国,200910078147.1[P].2009-07-15.
    24.赵峰,张宏福,张子仪.基于模拟消化液和开发仿生消化系统评定家禽饲料代谢能值的研究进展[A].张宏福.饲料营养研究进展-2010[C].杨凌:中国农业科学技术出版社,2010,44-55.
    25.赵峰,张宏福,张子仪.单胃动物仿生消化系统操作手册[M].北京:中国农业科学院北京畜牧兽医研究所动物营养学国家重点实验室,2011.
    26.赵峰,李辉,张宏福.仿生消化系统测定玉米和大豆粕酶水解物能值影响因素的研究[J].动物营养学报,2012,24(5):870-876.
    27.钟永兴,梁展雯,胡光源,等.猪大肠消化生理的研究进展[J].中国畜牧杂志,2009,45(13):63-66.
    28.钟永兴.猪饲料消化能值测定的仿生消化法研究[博士学位论文].广州:华南农业大学,2010.
    29.庄晓峰.仿生法评定猪植物性饲料磷消化率方法的参数研究[硕士学位论文].北京:中国农业科学院,2012.
    30.庄晓峰,张宏福,陈亮.不同透析袋对仿生消化法评定猪饲料原料干物质和磷体外消化率的影响[J].动物营养学报,2012,24(8):1527-1533.
    31.庄晓峰,陈亮,张宏福,等.仿生法评定几种猪常用植物性饲料原料磷体外透析率[J].动物营养学报,2012,24(12):2436-2443.
    32. GB/T26438-2010.畜禽饲料有效性与安全性评价全收粪法测定猪配合饲料表观消化能技术规程.
    33. GB/T5009.7-2008.食品中还原糖的测定.
    34. AACC. The definition of Dietary Fiber [R].AACC Report. Cereal Foods World,2001,46:112-126.
    35. Aarnink A J A, Verstegen M W A. Nutrition, key factor to reduce environmental load from pigproduction [J]. Livestock Science,2007,109,194-203.
    36. Adeola O, Ragland D, King D. Feeding and excreta collection techniques in metabolizableenergy assays for ducks [J]. Poultry Science,1997,76:728-732.
    37. Ahrens F, Schoen J, Schmitz M. A discontinuous in vitro technique for measuring hindgutfermentation in pigs.Digestive physiology in pigs. Proceedings of the5th internationalsymposium on digestive physiology in pigs. Wageningen (Doorw.erth), Netherlands,24-26April1991[compiled by Vemtegen M w A,Huisman J J,Hartog L A den]. EAAP PublicationN0.54.W ageningen. Netherlands; Centre for Agricultural Publishing and Documentation(PUDOC),1991:226-230.
    38. Andersson C, Lindberg J E. Forages in diets for growing pigs.1. Nutrient apparentdigestibilities and partition of nutrient digestion in barley-based diets including lucerne andwhite clover meal [J]. Animal Science,1997,65:483-491.
    39. Anderson J W, Jones A E, Riddel-Mason S.Ten different dietary fibres have significantlydifferent effects on serum and liver lipids of cholesterol-fed rats[J]. Journal of Nutrition,1994,124:78-83.
    40. Ao T, Cantor A H, Pescatore A J, et al. In vitro evaluation of feed-grade enzyme activity at pHlevels simulating various parts of the avian digestive tract [J]. Animal Feed Science andTechnology,2008,140:462-468.
    41. AOAC.1990. Official Methods of Analysis of AOAC,15th ed. AOAC Int., Arlington, VA.
    42. AOAC International.2007. Official Methods of Analysis of AOAC Int.18th ed. AOAC Int.,Gaithersburg, MD.
    43. Bach Knudsen K E, Jensen K E, Hansen B B. Digestion of polysaccharides and other majorcomponents in the small and large intestine of pigs fed diets consisting of oat fractions rich inβ-D-glucan [J]. British Journal of Nutrition,1993,70:537-556.
    44. Bach Knudsen K E. The nutritional significance of “dietary fibre” analysis [J]. Animal FeedScience and Technology,2001,90:3-20.
    45. Barry J L, Hoebler C, Macfarlane G T, et al. Estimation of the fermentability of dietary fibrein vitro: a European interlaboratory study [J]. British Journal of Nutrition,1995,74:303-322.
    46. Bhatty R S. Albumin proteins of eight edible grain legume species: electrophoretic patternsand amino acid composition [J]. Journal of Agricultural and Food Chemistry,1982,30:620-622.
    47. Bindelle J, Leterme P, Buldgen A. Nutritional and environmental consequences of dietaryfibre in pig nutrition: A review [J]. Biotechnology, Agronomy, Society and Environment,2008,12:69-80.
    48. Boisen S, Eggum B O. Critical evaluation of in vitro methods for estimating digestibility insimple-stomach animal [J]. Nutrition Research Reviews,1991,4:141-162.
    49. Boisen S, Fernández J A. In vitro digestibility of energy and amino acids in pig feeds. In:Verstegen, M.W.A., Huisman, J., den Hartog, L.A.(Eds.), Digestive Physiology in the Pig.Pudoc, Wageningen, Netherlands,1991, pp:231-236.
    50. Boisen S, Fernandez J A. Prediction of the apparent ileal digestibility of protein and aminoacid in feedstuffs and feed mixtures for pigs by in vitro analyses [J]. Animal Feed ScienceTechnology,1995,51:29-43.
    51. Boisen S, Fernández J A. Prediction of the total tract digestibility of energy in feedstuff s andpig diets by in vitro analyses [J]. Animal Feed Science Technology,1997,68:277-286.
    52. Bollinger D W, Tsunoda A, Ledoux D R, et al. A simple in vitro test tube method forestimating the bioavailability of phosphorus in feed ingredients for swine [J]. JournalAgricultural and Food Chemistry,2004,52(7):1806.
    53. Buchanan R A. In vivo and in vitro methods measuring nutritive value of leaf-proteinpreparations [J]. British Journal of Nutrition,1969,23:533-545.
    54. Canh T T, Sutton A L, Aarnink A J, et al. Influence of dietary factors on nitrogen partitioningand composition of urine and feces of fattening pigs [J]. Journal of Animal Science,1997,75:700-706.
    55. Castillo M, Martin-Orue S M, Anguita M, et al.2007. Adaptation of gut microbiota to cornphysical structure and different types of dietary fibre [J]. Livestock Science,109:149-152.
    56. Chabeauti E, Noblet J, Carré B. Digestion of plant cell walls from four different sources ingrowing pigs [J]. Animal Feed Science Technology,1991,32:207-213.
    57. Chen J. Prediction of the in vivo digestible energy value of barley for the growing pig on thebasis of physical and chemical characteristics and in vitro digestible energy [MAgSci Thesis].Palmerston North, New Zealand: Massey University,1997.
    58. Chiang C C, Croom J, Chuang S T, et al. Development of a dynamic system simulating thepigs’ gastric digestion [J]. Asian Australian Journal of Animal Sicence,2008,21:1522-1528.
    59. Cho S, DeVries J W, Prosky L. Dietary fiber analysis and applications [M]. AOACInternational, Gaithersburg, MD.1997.
    60. Coles L T, Moughan P J, Darragh A J. In vitro digestion and fermentation methods, includinggas production techniques, as applied to nutritive evaluation of foods in the hindgut ofhumans and other simple-stomached animals [J]. Animal Feed Science and Technology,2005,123-124(1):421-444.
    61. Davidson M H, McDonald A. Fiber forms and functions [J]. Nutrition Research,1998,18:617-624.
    62. Dégen L, Halas V, Babinszky L. Effect of dietary fibre on protein and fat digestibility and itsconsequences on diet formulation for growing and fattening pigs: A review [J]. ActaAgriculturae Scand Section A.2007,57:1-9.
    63. Den Hartog L A, Huisman J, Thielen W J G, et al. The effect of including various structuralpolysaccharides in pig diets on ileal and faecal digestibility of amino acids and minerals [J].Livestock Production Science,1988,18:157-170.
    64. Derosiers T, Savoie L, Bergeron G, et al. Estimation of lysine damage in heated whey proteinsby furosine determinations in conjunction with the digestion cell technique [J]. Journal ofAgricultural and Food Chemistry,1989,37:1387-1391.
    65. Dierick N, Vervaeke I, Decuypere J, et al. Bacterial protein synthesis in relation to organicmatter digestion in the hindgut of growing pigs; contribution of hindgut fermentation to totalenergy supply and growth performances [J]. Journal of Animal Physiology and AnimalNutrition,1990,63:220-235.
    66. Dilger R N, Sands J S, Ragland D, et al. Digestibility of nitrogen and amino acids in soybeanmeal with added soyhulls [J]. Journal of Animal Science,2004,82:715-724.
    67. Drake A P, Fuller M F, Chesson A. Simultaneous estimations of precaecal protein andcarbohydrate digestion in the pigs [A].In vitro digestion for pigs and poultry [C].[edited byFuller M, P],1991:162-176.
    68. Erwin E S, Marco G J, Emery E. M. Volatile fatty acid analyses of blood and rumen fluid bygas chromatography [J]. Journal of Dairy Science,1961,44:1768-1771.
    69. Fernandez J A, Jorgensen J N. Digestibility and absorption of nutrients as affected by fibrecontent in the diet of the pig. Quantitative aspects [J]. Livestock Production Science,1986,15:53.
    70. Fonty G, Gouet P. Fiber-degrading microorganism in the monogastric digestive tract [J].Journal of Animal Science,1989,23:91-107.
    71. Freeman K, Foy T, Feste A S, et al. Colonic acetate in the circulating acetate pool of the infantpig [J]. Paediatr. Res,1993,34:318–322.
    72. Freire J P B, Guerreiro A J G, Cunha L F, et al. Effect of dietary fibre source on total tractdigestibility, caecum volatile fatty acids and digestive transit time in the weaned piglet [J].Animal Feed Science Technolony,2000,87:71-83.
    73. Furuya S, Sakamoto K, Takahashi S. A new in vitro method for the estimation of digestibilityusing the intestinal fluid of the pig [J]. British Journal of Nutrition,1979,41:511-520.
    74. Gauthier S F, Vachon C, Jones J D, et al. Assessment of protein digestibility by in vitroenzymatic hydrolysis with simultaneous dialysis [J]. Journal of Nutrition,1982,112:1718-1725.
    75. Guillon F, Saulnier L, Robert P, et al. Chemical structure and function of cell wall throughcereal grains and vegetable samples [M]//In: Salovaara, H., Gates, F., Tenkanen, M.(Eds.),Dietary fibre components and functions. Wageningen Academic Publishers, Wageningen,Netherlands,2007:31-64.
    76. Hewitt D, Ford J E. Nutritional availability of methionine, lysine and tryptophan in fish meals,as assessed with biological, microbiological and dye-binding assay procedures [J]. BritishJournal of Nutrition,1985,53(3):575-586.
    77. H gberg A, Lindberg J E. Influence of cereal non-starch polysaccharides on digestion site andgut environment in growing pigs [J].Livestock Poduction Sciences,2004,87:121-130.
    78. Holden P, Ewan R, Jurgens M, et al. Life Cycle Swine Nutrition [R]. Iowa State University,Ames, IA,1996.
    79. Hopwood D E, Pethick D W, Pluske J R, et al. Addition of pearl barley to a rice-based diet fornewly weaned piglets increases the viscosity of the intestinal contents, reduces starchdigestibility and exacerbates post-weaning colibacillosis [J]. British Journal of Nutrition,2004,92:419-427.
    80. Htoo J K, Araiza B A, Sauer W C, et al. Effect of dietary protein content on ileal amino aciddigestibility, growth performance, and formation of microbial metabolites in ileal and cecaldigesta of early-weaned pigs [J]. Journal of Animal Science,2007,85:3303-3312.
    81. Huang G, Sauer W S, He J, et al. The nutritive value of hulled and hulless barley for growingpigs.1. Determination of energy and protein digestibility with the in vivo and in vitro method[J]. Journal of Animal and Feed Sciences,2003,12(4):759-769.
    82. Huang R L, Tan Z L, Xing T X, et al. An in vitro method for the estimation of ileal crudeprotein and amino acids digestibility using the dialysis tubing for pig feedstuffs [J]. AnimalFeed Science and Technology,2000,88:79-89.
    83. IOM. Dietary reference intakes: Dietary, functional, and total dietary fiber [M]. NationalAcademies Press, Washington, DC.2006:340-421.
    84. Johansen H N, Bach Knudsen K E, Sandstr m B. Effect of varying content of soluble dietaryfibre from wheat flour and oat milling fractions on gastric emptying in pigs [J]. BritishJournal of Nutrition,1996,75:339-351.
    85. Johnston L J, Noll S, Renteria A, et al. Feeding by-products high in concentration of fibre tonon-ruminants. In Proceeding of3rd National Alternative Feeds Symposium WesternRegional Coordinating Committee, Kansas City, MO.2003:1-26
    86. Just A, Ferna′ndez J A, J rgensen H. The net energy value of diets for pigs in relation to thefermentative processes in the digestive tract and the site of absorption of the nutrients [J].Livestock Production Science,1993,10:171–186.
    87. Kass M L, Van Soest P J, Pond W G, et al. Utilization of dietary fiber from alfalfa by growingswine. I. apparent digestibility of diet components in specific segments of the gastrointestinaltract [J]. Journal of Animal Science,1980a,50:175-191.
    88. Kass M L, Van Soest P J, Pond W G. Utilization of dietary fiber from alfalfa by growingswine.Ⅱ. Volatile fatty acid concentrations in and disappearance from the gastrointestinaltract [J]. Journal of Animal Science,1980b,50:192-197.
    89. Kennelley, J.J., Aherne, F.X.,1980. The effect of fiber in diets formulated to contain differentlevels of energy and protein on digestibility coefficients in swine. Can. J. Anim. Sci.60,717-722.
    90. Kesting U, Schnaubel E, Bolduan G, et al. In Digestive physiology of the hindgut [J].Advances in Animal Physiology and Animal Nutrition,1991,22:84-88.
    91. Kim I B. Development of in vitro technique for bioavailable corn energy value [J].Asian-Australian Journal of Animal Science,2001,14:1645-1646.
    92. Kritchevsky, D. Dietary fiber [J]. Annual Review of Nutrition,1988,8:301-328.
    93. Krul C, Luiten-schuite A, Baan R, et al. Application of a dynamic in vitro gastrointestinal tractmodel to study the availability of food mutagens, using heterocyclic aromatic amines asmodel compounds. Food and Chemical Toxicology,2000,38:783-792.
    94. Larsson M, Minekus M, Havenaar R. Estimation of the Bioavailability of Iron andPhosphorus in Cereals using a Dynamic In Vitro Gastrointestinal Model [J]. Journal ofScience Food Agriculture1997,74:99.
    95. Le Goff G, Noblet J. Comparative digestibility of dietary energy and nutrients in growing pigsand adult sows [J].Jouranl of Animal Science,2001,79:2418-2427.
    96. Le Goff G, van Milgen J, Noblet J. Influence of dietary fibre on digestive utilization and rateof passage in growing pigs, finishing pigs, and adult sows [J]. Animal Science,2002,74:503-515.
    97. Leamaster B R, Cheeke P R. Feed preferences of swine: alfalfa meal, high and low saponinalfalfa, and quinine sulfate [J]. Canadian Journal of Animal Science,1979,59:467–469.
    98. Lenis N P, Bikker P, van der Meulen J, et al. Effect of dietary neutral detergent fibre on ilealdigestibility and portal flux of nitrogen and amino acids and on nitrogenutilization in growing pigs [J]. Journal of Animal Science,1996,74:2687-2699.
    99. Li S, Sauer W C, Hardin R T. Effect of dietary fibre level on amino acid digestibility in youngpigs [J].Canadian Journal of Animal Science,1994,74:327-333.
    100. Longland A C, Low A G, Quelch D B, et al. Adaptation to the digestion of non-starchpolysaccharide in growing pigs fed on cereal or semi-purified basal diets [J]. British Journalof Nutrition,1993,70:557-566.
    101. Maga J A, Lorenz K, Onayemi O. Digestive acceptability of proteins as measured by theinitial rate of in vitro proteolysis [J]. Journal of Food Science,1973,38:173-174.
    102. Marteau P, Minekus M, Havenaar R, et al. Survival of Lactic Acid Bacteria in a DynamicModel of the Stomach and Small Intestine: Validation and the Effects of Bile. Journal ofDariry Science,1997,80:1031-1037.
    103. Mauron J, Mottu F, Bujard E, et al. The availability of lysine, methionine and tryptophan incondensed milk and milk powder. In vitro digestion studies [J]. Archives of Biochemistry andBiophysics,1955,59:433-451.
    104. Mertens D R. Challenges in measuring insoluble dietary fiber [J]. Journal of Animal Science,2003,81:3233-3249.
    105. Metz S H M, Van der Meet J M. Nylog bag and in vitro technique to predict in vivodigestibility of organic matter in feedstuffs for pigs [A]. In: A Just H Jorgensen and J AFernandez (Ed.): Proceeding of the3rd international seminar on digestive physiology in thepigs [C]. National Institute of Animal Science, Copenhagen,1985:373-376.
    106. Meunier J P, Manzanilla E G, Anguita M, et al. Evaluation of a dynamic in vitro model tosimulate the porcine ileal digestion of diets differing in carbohydrate. Journal of AnimalScience,2008,86:1156-1163.
    107. Minekus M, Smeets-Peeters M, Bernalier A, et al. A computer-controlled system to simulateconditions of the large intestine with peristaltic mixing, water absorption and absorption offermentation products [J]. Appl Microbiol Biotechnol,1999,53:108-114.
    108. Moeser A J,van Kempen T A T G.Dietary fibre level and enzyme inclusion affect nutrientdigestibility and excreta characteristics in grower pigs[J].Journal of the Science of Food andAgriculture,2002,82:1606-1613
    109. Montagne L, Pluske J R, Hampson D J. A review of interactions between dietary fibre and theintestinal mucosa, and their consequences on digestive health in young non-ruminant animals[J]. Animal Feed Science and Technology,2003,108:95-117.
    110. Mosenthin R, Sauer W C, Ahrens F. Dietary pectin’s effect on ileal and faecal amino aciddigestibility and exocrine pancreatic secretions in growing pigs [J]. Journal of Nutrition,1994,124:1222-1229.
    111. Mosenthin R, Sauer W C. Exocrine pancreatic secretions in pigs as influenced by the sourceof carbohydrate in the diet [J]. Z Ernahrungswiss,1993,32:152-155.
    112. Mroz Z, Moeser A J, Vreman K, et al. Effects of dietary carbohydrates and buffering capacityon nutrient digestibility and manure characteristics in finishing pigs [J]. Journal of AnimalScience,2000,78:3096-3106.
    113. Muller H G. Haferersatz durch frische kartoffelschlempe bei der futterung von arbeitspferden[J]. Landwirtsch Jahrbuch,1931,73:169.
    114. Murphy J. Comparative feed values for swine [M]. Ontario Ministry of Agriculture and FoodFactsheet400/68.2003.
    115. National Research Council (NRC)[M]. Nutrient Requirements of Swine. National AcademicPress, Washington, DC.(Tenth Revised Edition. National Academy of Sciences).1998.
    116. Noblet J, Perez J M. Prediction of digestibility of nutrients and energy values of pig dietsfrom chemical analysis [J]. Journal of Animal Science,1993,71:3389-3398.
    117. Noblet J, Le Goff G. Effect of dietary fiber on energy value of feeds for pigs [J]. Animal FeedScience and Technolony,2001,90:35-52.
    118. Noblet J, Jaguelin-Peyraud Y. Prediction of digestibility of organic matter and energy in thegrowing pig from an in vitro method [J]. Animal Feed Science and Technology,2007,134:211-222.
    119. Oakenfull D. Physical chemistry of dietary fiber[M]//In Dietary Fiber in Human Nutrition.3rd ed. G. A. Spiller, ed. CRC Press, Boca Raton, FL.2001.pp33-47.
    120. Owusu-Asiedu A, Patience J F, Laarveld B, et al. Effects of guar gum and cellulose on digestapassage rate, ileal microbial populations, energy and protein digestibility, and performance ofgrower pigs [J]. Journal of Animal Science,2006,84:843-852.
    121. Pahm S F C. In vivo and in vitro disappearance of energy and nutrients in novel carbohydratesand cereal grains by pigs [D]. Ph. D Thesis. Urbana: University of Illinois atUrbana-Champaign,2011:160.
    122. Pasquier B, Armand M, Castelain C, et al. Emulsification and lipolysis of triacylglycerols arealtered by viscous soluble dietary fibres in acidic gastric medium in vitro [J]. BiochemicalJournal,1996,314:269-275.
    123. Prosky L, Asp N G, Fruda I, et al. Determination of total dietary fiber in foods and foodproducts: Collaborative study [J]. Journal of Assoc. Off. Anal. Chem,1985,68:677–679.
    124. Regmi P R, Sauer W C, Zijlstra R T. Predication of in vivo apparent total tract energydigestibility of barley in grower pigs using an in vitro digestibility technique [J]. Journal ofAnimal Science,2008,86:2616-2626.
    125. Regmi P R, Ferguson N S, Zijlstra R T. In vitro digestibility techniques to predict apparenttotal tract energy digestibility of wheat in grower pigs [J]. Journal of Animal Science,2009,87:3620-3629.
    126. Regmi P R, Metzler-Zebeli B U, G nzle M G, et al. Starch with high amylose content and lowin vitro digestibility increases intestinal nutrient flow and microbial fermentation andselectively promotes bifidobacteria in pigs [J]. Journal of Nutrition,2011,141:1273-1280.
    127. Ren L Q, Zhao F, Tan H Z, et al. Effects of dietary protein source on the digestive enzymeactivities and electrolyte composition in the small intestinal fluid of chickens [J]. PoultryScience,2012,91:1641-1646.
    128. Renteria-Flores J A, Johnston L J, Shurson G C, et al. Effect of soluble and insoluble fiber onenergy digestibility, nitrogen retention, and fiber digestibility of diets fed to gestating sows [J].Journal of Animal Science,2008,86:2568-2575.
    129. Roberfroid M.Dietary fibre, inulin, and oligofructose: a review comparing their physiologicaleffects [J].Critical Reviews of Food Science and Nutrition,1993,33:103-148.
    130. Rodríguez Z, López A, Boucourt R, et al. Fibre level and source on the concentration andcellulolytic activity of the intestinal microbiote of the pig [J]. Cuban Journal of AgriculturalScience,2001,35:253-258.
    131. SAS. SAS user’s guide: statistics [M]. SAS Institute Inc., Cary, NC, USA.1999.
    132. Sauer W C, Mosenthin R, Ahrens F, et al. The effect of source of fibre on ileal and faecalamino acid digestibility and bacterial nitrogen excretion in growing pigs [J].Journal of AnimalScience,1991,69:4070-4077.
    133. Savoie L, Gauthier S F. Dialysis cell for the in vitro measurement of protein digestibility [J].Food science,1986,51(2):494-498.
    134. Schneider B H, Flatt W P. The evaluation of feeds through digestibility experiments [M].Athens:University of Georgia Press,1976,161-168.
    135. Schulze H, van Leeuwen P, Verstegen M W A, et al. Effect of level of dietary neutraldetergent fibre on ileal apparent digestibility and ileal nitrogen losses in pigs [J]. Journal ofAnimal Science,1994,72:2362-2368.
    136. Schürch A F, Lloyd L E, Champton E W. The use of chromic oxide as an index fordetermining the digestibility of a diet [J]. Journal of Nutrition,1950,50:629-636.
    137. Serena A, J rgensen H, Bach Knudsen K E. Digestion of carbohydrates and utilization ofenergy in sows fed diets with contrasting levels and physicochemical properties of dietaryfiber [J]. Journal of Animal Science,2008,86:2208-2216.
    138. Sheffner A L, Eckfeldt G A, Spector H. The pepsin digest residue (PDR) amino acid index ofnet protein utilization [J]. Journal of Nutrition,1956,60:105-120.
    139. Shi XS, Noblet J. Effect of body weight and feed composition on the contribution of thehindgut to digestion of energy and nutrients in pigs [J]. Livestock Production Science,1994,38:225-235.
    140. Sibbald I R, Summers J D, Slinger S J. Factors affecting the metabolizable energy content ofpoultry feeds [J]. Poultry Science,1960,39:544-556.
    141. Silvio J, Harmon D L, Gross K L, et al. Influence of fiber fermentability on nutrient digestionin the dog [J]. Nutrition,2000,16:289-295.
    142. Souffrant W B. Effect of dietary fibre on ileal digestibility and endogenous nitrogen losses inthe pigs [J]. Animnal Feed Science and Technolony,2001,90:93-102.
    143. Spangheor M, Vlaepli L A. Nutritional evaluation of pig feedstuffs.2. Utilisation of an invitro methdo to predictileal crude portein digestibility [J]. Rivsita di Suinicohura,1999,40(6):62-66.
    144. Swiech E and Buraczewska L. The energy value of pig diets estimated in vitro and in vivo [J].Journal of Animal and Feed Sciences,2006,15:85-88.
    145. Taverner M R, Farrell D J. Availability to pigs of amino acids in cereal grains.3. A coparisionof ileal availability values with faecal, chemical and enzymic estimates [J]. British Journal ofNutrition,1981,46:173-180.
    146. Thacker P A, Haq I. Nutrient digestibility, performance and carcass traits of growing–finishingpigs fed diets containing graded levels of dehydrated lucerne meal [J]. Journal of the Scienceof Food and Agriculture,2008,88:2019-2025.
    147. Urriola P E. Digestibility of dietary fiber by growing pigs [D]. Ph. D Thesis. Urbana:University of Illinois at Urbana-Champaign,2010:154-164.
    148. Urriola P E, Stein H H. Effects of distillers dried grains with solubles on amino acid, energy,and fiber digestibility and on hindgut fermentation of dietary fiber in a corn-soybean meal dietfed to growing pigs [J]. Journal of Animal Science,2010,88:1454-1462.
    149. Urriola P E, Stein H H. Comparative digestibility of energy and nutrients in fibrous feedingredients fed to Meishan and Yorkshire pigs [J]. Journal of Animal Science,2012,90:801-812.
    150. Van der Meer J M, Perez J M. In vitro evaluation of European diets for pigs. Prediction of theorganic matter digestibility by an enzymic method or by chemical analysis [J]. Journal ofAgricultural and Food Chemistry,1992,59:359–363.
    151. Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber,and nonstarch polysaccharides in relation to animal nutrition [J]. Journal of Dairy Science,1991,74:3583-3597.
    152. Veraeke I J, Dierick N A, Demeyer D I, et al. Approach to the energetic impoance of fiberdigestion in pigs.2An Experimental approach to hindgut digestion [J]. Animal Feed Scienceand Technology,1989,23:169-194.
    153. Wenk C. The role of dietary fibre in the digestive physiology of the pig [J]. Animal FeedScience and Technology,2001,90:21-33.
    154. Wilfart A, Montagne L, Simmins H, et al. Digesta transit in different segments of thegastrointestinal tract of pigs as affected by insoluble fibre supplied by wheat bran [J]. BritishJournal of Nutrition,2007a,98:54-62.
    155. Wilfart A, Montagne L, Simmins H, et al. Effect of fibre content in the diet on the meanretention time in different segments of the digestive tract in growing pigs [J]. LivestockScience,2007b,109:27-29.
    156. Wilfart A, Jaguelin-Peyraud Y, Simmins H, et al. A step-wise in vitro method to estimatekinetics of hydrolysis of feeds [J]. Livestock Science,2007c.109:179-181.
    157. Wilfart A, Jaguelin-Peyraud Y, Simmins H, et al. Kinetics of enzymatic digestion of feeds asestimated by a stepwise in vitro method [J]. Animal Feed Science and Technology,2008,141:171–183.
    158. Yen J T, Nienaber J A, Hill D A, et al. Potential contribution of absorbed volatile fatty acidsto whole-animal energy requirements in conscious swine [J]. Journal of Animal Science,1991,69:2001–2012.
    159. Yin Y L, McEvoy J D G, Schulze H, et al. Apparent digestibility (ileal and overall) ofnutrients and endogenous nitrogen losses in growing pigs fed wheat (var. Soissons) or itsby-products without or with xylanase supplementation [J]. Livestock Production Science,2000,62:119-132.
    160. Zervas S, Zijlstra R T. Effects of dietary protein and fermentable fibre on nitrogen excretionpatterns and plasma urea in grower pigs [J]. Journal of Animal Science,2002,80:3247-3256.
    161. Zhao F, Hou S S, Zhang H F, et al. Effects of dietary metabolizable energy and crude proteincontent on the activities of digestive enzymes in jejunal fluid of Peking ducks [J]. PoultryScience,2007,86:1690-1695.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700