高速传输协议XCP性能分析及其与传统TCP协议互联的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光纤通信等新技术的应用,网络带宽迅速增加,传统TCP协议因为其保守的拥塞控制机制而不能充分利用可用带宽。因此,高速传输协议成为近年来的研究热点,其中较有影响的有HSTCP、STCP、BIC、FAST TCP和XCP等协议。这些协议中,XCP由于其快速收敛、极佳的公平性和很小的排队时延等卓越性能,受到众多研究者的关注。但是,由于XCP的拥塞控制机制与传统TCP的拥塞控制机制存在很大不同,它们之间的互联存在很大困难。针对这一问题,研究者提出了TCP友好的XCP、基于XCP的CSFQ和XCP-i等方案。然而,这些方案对升级过程中混合网络中可能存在的各种流没有作深入研究,它们的TCP兼容性很差,且升级过程的可操作性不强。
     这些互联方案的研究之所以不够深入,其原因就在于对XCP的实时特性不够了解。针对这一问题,本文对XCP的时域性能进行了深入分析,推导出了XCP流速率的时域表达式,并以此为基础给出了XCP协议的响应函数。在这些知识的基础上,作者进一步提出了基于XCP-TCP网关的互联方案,并分别从理论分析和实验仿真对方案进行了验证。总结起来,全文的创新点如下:
     通过分析反馈与输入流速率的关系,得到XCP瓶颈链路的输入流速率依指数速率收敛于链路带宽容量的结论。在单瓶颈链路条件下,从分析吞吐量占比入手,首次得到吞吐量占比的时域表达式。该表达式依指数速率收敛于流数量的占比。其次,作者首次给出了XCP流速率的时域表达式。这些结论不仅从理论上证实了以前关于XCP性能的有关结论,例如公平性和带宽利用率,也为XCP的拥塞控制机制提供了更直观的认识。
     综合以前的研究成果,提出了评价高速传输协议的五个指标。规模性作为其中的一项重要指标,可以用响应函数来描述。在周期丢包模型条件下,作者首次推导出了FAST TCP和XCP协议的响应函数。与其他协议的响应函数不同的是,XCP的平均吞吐量不仅与丢包率有关,还与每流带宽有关。这从理论上证实XCP的规模性优于其它协议。
     在对现有的XCP与传统TCP互联方案深入分析比较的基础上,提出了基于XCP-TCP网关的方案。该方案首次完整地考虑了升级过程中各种可能的流的工作状态,并对这些流之间的公平性进行了理论分析。结论显示在该方案中各种流之间能够友好共存。其次,文中还对XCP瓶颈链路的带宽利用率和收敛时间、排队时延等进行了理论分析。结果表明在稳态下瓶颈链路的带宽利用率不低于80%,其排队时延优于传统FIFO路由器的排队时延
With the deployment of new technology such as fiber communications, the bandwidth capacity grows rapidly, and the traditional TCP cannot fully utilize the available bandwidth because of its conservative congestion control mechanism. Therefore, high speed transport protocols have been a hot topic in recent years, among them some famous ones are HSTCP, STCP, BIC, FAST TCP and XCP. Because of its prominent performance such as rapid convergence, excellent fairness and very small queueing delay, XCP has attracted much attention from researchers. However, because the congestion control of XCP is quite different from that of traditional TCP, and as a result, it is difficult to connect XCP with traditional TCP. To address this problem, some schemes such as TCP-friendly XCP, XCP-based CSFQ and XCP-i have been proposed by researchers. However, these schemes do not deal in-depth with the possible flows appears in the hybrid networks during the upgrade process, and the TCP compatibility and feasibility of these schemes are poor.
     Why the proposals cannot study in-depth is because little knowledge is known about the time-scale characteristics of XCP. To address this problem, the author investigates deeply into the time-domain performance of XCP, and derives the time-domain sending rate of XCP, based on this point, the response function of XCP is also provided. Based on this knowledge, an XCP-TCP gateway based scheme is further proposed by the author, analysis and simulations validate the proposal. The original work of this paper can be concluded as follows.
     By analyzing the relationship between feedback and input traffic rate, the author derived that the input traffic rate of an XCP bottleneck converges to its bandwidth capacity in exponential rate. Under a single bottleneck model, by concentrating on the throughput ratio, its time-domain expression was first derived. The expression showes the throughput ratio converges to the flow number ratio in exponential rate. Secondly, the time-domain sending rate of an XCP flow is also given. These results not only validate the previous conclusion about XCP performance such as fairness and bandwidth utilization, but also provide more intuitive view about XCP congestion control.
     Based on the previous studies, five indexes are proposed to evaluate the high speed transport protocols. As one of the most important index, scalability can be described by the reponse function. Under a periodic drop event model, the author first derived the response functions of FAST TCP and XCP. Different from other response functions, the average throughput of XCP is related not only to the drop event rate, but also the per-flow bandwidth. Thus it proved that the scalability of XCP is better than other ones.
     Based on the comparison of the previous schemes about XCP interconnecting with traditional TCP, the author proposed an XCP-TCP gateway based scheme. The scheme first extensively investigated the work status of possible flows appear in the upgrading process, and derived the analytical fairness between these flows. Results show that these flows can coexist well with each other. Secondly, the author also analyzed the bandwidth utilization, converge time and queueing delay of an XCP bottleneck. Results show that the bandwidth utilization of the bottleneck is not less than 80% when in equilibrium, and that the queueing delay is better than that of a traditional FIFO router.
引文
[1] http://www.internetworldstats.com/stats.htm.
    [2] J. Postel. Internet Protocol - DARPA Internet Program Protocol Specification. RFC 791, USC/Information Sciences Institute, Sep. 1981.
    [3] J. Postel. Transmission Control Protocol - DARPA Internet Program Protocol Specification, RFC 791, USC/Information Sciences Institute, Sep. 1981.
    [4] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang and V. Paxson. Stream Control Transmission Protocol, RFC 2960, Oct. 2000.
    [5] V. Jacobson,“Congestion avoidance and control,”in Proc. ACM SIGCOMM’88, pp. 314– 329, Stanford, California, Aug. 1988.
    [6] M. Allman, V. Paxson, etc.,“TCP congestion control,”RFC 2581, Apr. 1999.
    [7] S. Floyd and T. Henderson.“The NewReno Modification to TCP's Fast Recovery Algorithm,”RFC 2582, Apr. 1999.
    [8] M. Mathis, J. Mahdavi, etc.,“TCP Selective Acknowledgment Options,”RFC2018, Oct. 1996.
    [9] Y. Zhang, E. Yan, etc.,“A Measurement of TCP over Long-Delay Network,”in Proc. of 6th Intl. Conf. on Telecommunication Systems.
    [10] S. Floyd, S. Ratnasamy, etc.,“Modifying TCP’s congestyion control for high speed networks,”http://www.icir.org/floyd/hstcp.html, May 2002.
    [11] D. Bansal, H. Balakrishnan, etc.,“Dynamic Behavior of Slowly-Responsive Congestion Control Algorithms,”in Proc. ACM SIGCOMM’01, pp. 263-274, Aug. 2001.
    [12] S. Floyd,“HighSpeed TCP for Large Congestion Windows,”RFC 3649, Dec. 2003.
    [13] S. Floyd, M. Allman, etc.,“Quick-Start for TCP and IP,”RFC 4782, Jan. 2007.
    [14] S. Floyd,“Limited Slow-Start for TCP with Large Congestion Windows,”RFC 3742, Mar. 2004.
    [15] T. Kelly.“Scalable TCP: Improving performance in highspeed wide area networks,”PFLDnet 2003, Feb. 2003.
    [16] L. Xu, K. Harfoush, etc.,“Binary increase congestion control for fast long-distance networks,”in Proc. IEEE INFOCOM’04, Mar. 2004.
    [17] I. Rhee and L. Xu,“CUBIC: A New TCP-Friendly High-Speed TCP Variant,”PFLDnet 2005, Feb. 2005.
    [18] C. Jin, D. X. Wei, etc.,“FAST TCP: motivation, architecture, algorithms, performance,”in Proc. IEEE INFOCOM’04, Mar. 2004.
    [19] D. Katabi, M. Handley, etc.,“Internet congestion control for future high bandwidth-delay product environments,”in Proc. ACM SIGCOM’02, pp. 89-102, Aug. 2002.
    [20] D. Katabi,“Decoupling Congestion Control from the Bandwidth Allocation Policy and its Application to High Bandwidth-Delay Product Networks,”PhD thesis, Massachusetts Institute of Technology, Mar. 2003.
    [21] A. Falk and D. Katabi,“Specification for the Explicit Control Protocol (XCP),”http://www.ietf.org/internet-drafts/draft-falk-xcp-spec-03.txt, Jul. 2007.
    [22] Yee-Ting Li, D. Leith, etc.,“Experimental Evaluation of TCP Protocols for High-Speed Networks,”IEEE/ACM Trans. on Networking, Vol. 15, Issue 5, pp.1109-1122, Oct. 2007.
    [23] H. Bullot, R. L. Cottrell,“Evaluation of Advanced TCP Stacks on Fast Long-Distance Production Networks,”PFLDnet 2004, Feb. 2004.
    [24] T. A. Trinh, B. Sonkoly, etc.,“A HighSpeed TCP Study: Observations and Re-evaluation,”Available from: http://hsnlab.tmit.bme.hu/~molnar/files/eunice04.pdf.
    [25] G. Giambene, D. Miorandi,“Performance Evaluation of Scalable TCP and HighSpeed TCP over Geostationary Satellite Links,”in Proc. IEEE VTC’05, Jun. 2005.
    [26] J. P. Martin-Flatin, S. Ravot,“TCP Congestion Control in Fast Long-Distance Networks,”Available from: http://netlab.caltech.edu/FAST/publications/caltech-tr-68-2398.pdf.
    [27] D. M. Lopez-pacheco, C. Pham,“Performance comparison of TCP, HSTCP and XCP in high-speed, highly variable-bandwidth environments,”in Proc. IEEE ICNP’04, Oct. 2004.
    [28] G. A. Chuvpilo, J. K. Lee,“A Simulation Based Comparison between XCP and HighSpeed TCP,”Available from: http://www.how2setup.org/users/chuvpilo/papers/chuvpilo-2002-6.829-project.pdf
    [29] Y. Zhang, T. R. Henderson,“An implementation and experimental study of the explicit control protocol (XCP),”in Proc. IEEE INFOCOM’05, Mar. 2005.
    [30] A. Kapoor, A. Falk, etc.,“Achieving Faster Access to Satellite LinkBandwidth,”in Proc. IEEE Global Internet Symposium’05, Mar. 2005
    [31] D. M. Lopez-Pacheco, C. D. Pham, etc.,“Xcp-i: explicit control protocol for heterogeneous inter-networking of high-speed networks,”in Proc. IEEE Globecom’06, Nov. 2006.
    [32] D. Chiu, R. Jain.“Analysis of the Increase and Decrease Algorithms for Congestion Avoidance in Computer Networks,”Computer Networks and ISDN, Vol. 17, No. 1, pp. 1–14, Jan. 1989.
    [33] E. Altman, K. E. Avrachenkov, etc.,“Fairness in MIMD Congestion Control Algorithms,”in Proc. IEEE INFOCOM’05, Mar. 2005.
    [34] L. S. Brakmo, S.W. O’Malley, etc.,“TCP Vegas: End-to-end congestion avoidance on a global Internet,”IEEE Journal of SAC, Vol. 13, No. 8, pp. 1465-1480 , Aug. 1995.
    [35] J. Mo, R. J. La, etc.,“Analysis and comparison of TCP Reno and Vegas,”in Proc. IEEE INFOCOM’99, pp. 1556-1563, Mar. 1999.
    [36] J. Martin, A. Nilsson, etc.,“The incremental deployability of RTT-based congestion avoidance for high speed TCP Internet connections,”in Proc. ACM SIGMETRICS’00, Jun. 2000.
    [37] J. Martin, A. Nilsson, etc.,“Delay-Based Congestion Avoidance for TCP,”IEEE/ACM Trans. Networking, Vol. 11, No. 3, pp. 356-369, Jun. 2003.
    [38] M. Handley, J. Padhye, etc.,“TCP Friendly Rate Control (TFRC) Protocol Specification,”RFC 3448, Jan. 2003.
    [39] P. Sinha, T. Nandagopal, etc.,“WTCP: A Reliable Transport Protocol for Wireless Wide-Area Networks,”Wireless Networks, Vol. 8, pp. 301-316, Kluwer Academic Publishers, 2002.
    [40] M. Vojnovic, J. L. Boudec,“On the Long-Run Behavior of Equation-Based Rate Control,”in Proc. ACM SIGCOMM’02, Aug. 2002.
    [41] S. Mascolo, C. Casetti, etc.,“TCP Westwood: End-to-End Bandwidth Estimation for Efficient Transport over Wired and Wireless Networks,”in Proc. ACM Mobicom’01, Jul. 2001.
    [42] L. A. Grieco, S. Mascolo,“Performance Evaluation and Comparison of Westwood+, New Reno, and Vegas TCP Congestion Control,”ACM SIGCOMM Comput. Commun. Rev., Vol. 34, No. 2, pp. 25-38, Feb. 2004.
    [43] A. Capone, L. Fratta, etc.,“Bandwidth Estimation Schemes for TCP over Wireless Networks,”IEEE Trans. Mobile Computing, Vol. 3, No. 2, pp. 129-143, Apr. 2004.
    [44] J. Padhye, V. Firoiu, etc.,“Modeling TCP Throughput: A Simple Model and its Empirical Validation,”in Proc. ACM SIGCOMM’98, pp. 303-314, Aug. 1998.
    [45] S. Shenker, L. Zhang, D. D. Clark,“Some observations on the dynamics of a congestion control algorithm,”ACM SIGCOMM Comp. Comm. Review, pp. 30–39, Oct. 1990.
    [46] T. V. Lakshman and U. Madhow,“The performance of TCP/IP for networks with high bandwidth-delay products and random loss,”IEEE/ACM Trans. Networking, Vol. 5, No. 3, pp. 336 -350, Jul. 1997.
    [47] S. Floyd and V. Jacobson,“The synchronization of periodic routing messages,”in Proc. ACM SIGCOMM'93, pp. 33-44, Sep. 1993.
    [48] S. Floyd and V. Jacobson,“Random early detection gateways for congestion avoidance,”IEEE/ACM Trans. Networking, Vol. 1, No.4, pp. 397–413, Aug. 1993.
    [49] S. Floyd, R. Gummadi, etc.,“Adaptive RED: an algorithm for increasing the robustness of RED’s active queue management,”Technical Report, August 2001. Available from: http://www.icir.org/floyd/red.html
    [50] K. Ramakrishnan and S. Floyd,“A Proposal to add Explicit Congestion Notification (ECN) to IP,”RFC 2481, Jan. 1999.
    [51]赵荣黎编著,《数字蜂窝移动通信系统》,电子工业出版社,1997.
    [52] A. Chockalingam and M. Zorzi,“Wireless TCP Performance with Link Layer FEC/ARQ,”in Proc. IEEE ICC’09, Jun. 1999.
    [53] H. Zimmermann,“OSI Reference Model—The ISO Model of Architecture for Open Systems Interconnection,”IEEE Trans. Commun., vol. 28, no. 4, pp. 425–432, Apr. 1980.
    [54] A. Bakre, B.R. Badrinath,“I-TCP: Indirect TCP for Mobile Hosts,”in Proc. of the 15th International conference on Distributed Computing Systems, Jun. 1995.
    [55] H. Balakrishnan, S. Seshan, etc.,“Improving reliable transport and handoff performance in cellular wireless networks,”ACM Wireless Networks, vol. 1, pp. 469-481, Dec. 1995.
    [56] K. Xu, Y. Tian,“TCP-Jersey for wireless IP communications,”IEEE Journal Selected Areas in Communications, Vol. 22, No. 4, pp.747-756, May 2004.
    [57] C. P. Fu and S. C. Liew. TCP Veno: TCP Enhancement for Transmission Over Wireless Access Networks. Vol. 21, No. 2, pp. 216-228, Feb. 2003.
    [58] S. Floyd,“Thoughts on the Evolution of TCP in the Internet,”PFLDnet 2004, Feb. 2004.
    [59]特南鲍姆著,计算机网络(第三版),清华大学出版社,2001年2月.
    [60] E. H. K. Wu and M. Z. Chen,“JTCP: Jitter-Based TCP for Heterogeneous Wireless Networks,”IEEE Journal SAC, Vol. 22, No. 4, pp. 757-766, May 2004.
    [61] K. Fall and S. Floy,“Simulation-based comparisons of Tahoe, Reno, and SACK TCP,”ACM SIGCOMM Comput. Commun. Rev., vol. 26, no. 3, pp. 5–21, Jul. 1996.
    [62] B. Sikdar, S. Kalyanaraman, etc.,“Analytic Models for the Latency and Steady-State Throughput of TCP Tahoe, Reno, and SACK,”IEEE/ACM Trans. Networking, Vol. 11, No. 6, pp. 959-971, Dec. 2003.
    [63] V. Jacobson, R. Braden, etc.,“TCP Extensions for High Performance,”RFC 1323, May 1992.
    [64] P. Karn and C. Partridge,“Improving Round-Trip Time Estimates in Reliable Transport Protocols,”in Proc. ACM SIGCOMM’87, Aug. 1987.
    [65] V. Paxson and M. Allman,“Computing TCP's Retransmission Timer,”RFC 2988, Nov. 2000.
    [66] P. W. Marshall, P. T. Wiley,“Proton-Induced Bit Error Studies in a 10 Gb/s Fiber Optic Link,”IEEE Trans. Nuclear Science, Vol. 51, Issue 5, pp. 2736-2739, Oct. 2004.
    [67] S. H. Low, F. Paganini, etc.,“Dynamics of TCP/AQM and a Scalable Control,”in Proc. IEEE INFOCOM’02, Jun. 2002.
    [68] S. H. Low, L. L. H. Andrew, etc.,“Understanding XCP: Equilibrium and Fairness,”in Proc. of IEEE INFOCOM’05, Mar. 2005.
    [69] Y. Zhang and M. Ahmed,“A control theoretic analysis of XCP,”In Proc. of IEEE GLOBECOM’05, March 2005.
    [70] J. M. Heo, H. K. Kang, etc.,“Design and Implementation of XCP Network System,”in Proc. ICCAS’05, Jun. 2005.
    [71] D. M. Lopez-Pacheco, C. Pham,“Robust Transport Protocol for Dynamic High-Speed Networks: enhancing the XCP approach,”in Proc. IEEE ICNP’05, Nov. 2005.
    [72] P. Wang, D. L. Mills,“Simple Analysis of XCP Equilibrium Performance,”in Proc. Information Sciences and Systems, pp. 585-590, Mar. 2006.
    [73] Injong Rhee, Lisong Xu,“Congestion Control on High-Speed Networks,”Available From: http://netsrv.csc.ncsu.edu/export/bitcp.ppt.
    [74] C. Jin, D. X. Wei, etc.,“FAST TCP: From Theory to Experiments,”IEEE Network, Vol. 19, No. 1, pp. 4-11, Jan. 2005.
    [75] M. Mathis, J. Semke, etc.,“The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm,”ACM SIGCOMM Comput. Commun. Rev., Vol. 27, Issue 3, pp. 67-82, Jul. 1997.
    [76] R. Braden,“Requirements for Internet Hosts -- Communication Layers,”RFC 1122, Oct. 1989.
    [77]王启良编著,《自动控制原理》,科学出版社,2001年9月第一版。
    [78] The Network Simulator– ns-2, Available From: http://www.isi.edu/nsnam/ns/.
    [79] J. But, U. Keller, etc.,“Passive TCP stream estimation of RTT and jitter parameters,”in Proc. IEEE LCN’05, Nov. 2005.
    [80] R. Braden, L. Zhang, etc.,“Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification,”RFC2205, Sep. 1997.
    [81] I. Iliadis, D. Orsatt,“Performance of TCP traffic and ABR congestion control mechanisms,”Computer Networks and ISDN Systems, Vol. 30, No. 19, pp. 1763-1744, Oct. 1998.
    [82] I. Stoica, S. Shenker, etc.,“Core-stateless fair queueing: a scalable architecture to approximate fair bandwidth allocations in high-speed networks,”IEEE/ACM Trans. Networking, Vol. 11, No. 1, pp. 33-46, Feb. 2003.
    [83] A. K. Parekh, R. G. Gallager, A generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: The Single-Node Case, IEEE/ACM Trans. on Networking, pp. 344-357, Vol. 1, No. 3, Jun. 1993.
    [84] J. Nagle, "On packet switches with infinite storage," IEEE Trans. Commun., Vol. 35, No. 4, pp. 435–438, Apr. 1987.
    [85]同济大学应用数学系.《高等数学(下册)》第五版.高等教育出版社.
    [86] M. Mathis and J. Mahdavi.,“Forward Acknowledgement: Refining TCP Congestion Control,”in Proc. ACM SIGCOMM'96, Aug. 1996.
    [87] M. Allman, V. Paxson,“On estimating end-to-end network path properties,”in Proc. ACM SIGCOMM’99, Aug. 1999.
    [88] S. Floyd,“A Survey of Recent Developments of TCP,”Available From: www.icir.org/floyd/talks/CCW01.pdf.
    [89] D. Katabi,“XCP Performance in the Presence of Malicious Flows,”in Proc. PFLDnet’04, Feb. 2004.
    [90] A. Tang, J. Wang, etc.,“Equilibrium and Fairness of Networks Shared by TCP Reno and Vegas/FAST,”Telecommunications Systems, special issue on High Speed Transport Protocols, Dec. 2005.
    [91] S. Deering, R. Hinden,“Internet Protocol, Version 6 (IPv6) Specification,”RFC2460, Dec. 1998.
    [92] Mark Allen Weiss著,陈越译,《数据结构与算法分析——C语言描述(英文版·第2版)》,人民邮电出版社, 2005年8月.
    [93] Askitis, Nikolas,“Fast and Compact Hash Tables for Integer Keys,”in Proc. of ACSC’09, pp. 113-122, Jan. 2009.
    [94] Kutzelnigg, R. (2008), An improved version of cuckoo hashing: Average case analysis of construction cost and search operations, in Proc. IWOCA’08, Sep. 2008.
    [95] J. Postel,“User Datagram Protocol,”RFC 768, Aug. 1980.
    [96] J. D. Case, M. Fedor, etc.,“Simple Network Management Protocol (SNMP),”RFC1098, Apr. 1989.
    [97] Y. Gu,“UDT: A High Performance Data Transport Protocol,”PhD thesis, University of Illinois, Dec. 2005.
    [98] Cisco Tech. Notes,“Comparing Traffic Policing and Traffic Shaping for Bandwidth Limiting,”Document ID: 19645.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700