EPA工业以太网实时性分析及调度方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
EPA (Ethernet for Plant Automation)是由我国自主制定拥有知识产权,并被国际上认可和接受的唯一的现场总线国家标准。它通过微网段划分和确定性通信调度策略解决了以太网通信的非确定性问题并实现了实时通信,其实时性能决定了它满足工业应用要求的能力。本文从理论和实验两个方面对EPA系统的通信实时性进行了研究,得出了制约其通信实时性的关键因素,并基于EPA确定性通信调度策略提出了两个解决方法,最后在波峰焊机控制系统中应用。论文主要研究内容如下:
     (1)建立了EPA通信实时性理论模型并提出了实时性测试方法。包括推导了EPA网络中通信负荷的产生机制和EPA确定性通信调度策略影响通信实时性的数学模型;给出了7个实时性测试指标及其测试目的、测试条件、测试原理和测试方法:开发了实时性测试平台;给出了制约EPA系统通信实时性的关键因素。
     (2)提出了一种使数据发送时间片根据网络负荷的变动自适应调整以提高其利用率的EPA-TSSA (EPA Time Slice Self-adaptive Adjustment)方法。应用该方法时,微网段中各个设备通过打时间戳的方式获得其数据发送需求时间并对其进行处理以确定时间片自适应设置值,然后通过在非周期数据发送声明报文中增加字段的方式实现设备间自适应设置值的传输,最后各个设备根据自适应设置值调整其确定性通信调度相关参数,完成数据发送时间片的调整。EPA-TSSA方法通过实现数据发送时间片针对网络负荷的动态优化调整,能够有效提高EPA系统的通信实时性。
     (3)提出了一种实现EPA网络控制系统中控制与通信协同调度的EPA-CLCS (EPA Cross Layer Cooperative Scheduling)方法。该方法通过给用户层功能块任务和链路层周期数据发送任务划分无间隔交替的执行时间片,以及控制功能块任务的触发和执行次数等措施,实现了功能块任务和通信任务的协同调度,能够有效降低网络负荷,提高系统的控制性能和通信实时性能。
     (4)提出了EPA工业以太网在波峰焊机控制系统中的应用方案。对波峰焊机的工作流程及其控制系统的功能要求进行了分析,以支持EPA通信协议的PEC8000智能控制模块组成控制网络,实现了波峰焊机控制系统。该方案成功解决了波峰焊机工作流程中控温、测速、计数、电机控制和网络通信实时性等多个问题,保证机器正常工作。
     本文工作为EPA工业以太网的实时性改进研究提供了理论基础,为现场选用和配置EPA系统提供了依据和参考。
EPA (Ethernet for Plant Automation) is a type of fieldbus based on Chinese "863" program supported by the Ministry of science and technology of China and has been specified in IEC 61158 as type 14 and in IEC 61784-2 as the CPF14 (Communication Profile Family 14). It solves the nondeterministic problem of standard Ethernet and accomplishes real time communication by means of micro-segment topology and EPA deterministic scheduling mechanism.
     This dissertation analyzes the real time performance of EPA communication from theoretical and experimental perspective. On this basis, the main factors that limit EPA real time performance are given and the improvement methods of EPA deterministic scheduling mechanism are proposed. This dissertation includes the following contributions:
     (1) EPA real time performance theoretical model is established and its real time testing method is proposed. By analyzing EPA system model and EPA communication protocol stack, the influence models of EPA deterministic scheduling mechanism and the generating mechanism of network load in a micro-segment on the real time performance of EPA information transmission are given. On this basis, the architecture of EPA real time testing system and 7 real time indicators are presented. The testing principles and testing methods of the indicators are given respectively and the testing platform is implemented. Through the above analysis and an experiment, the key factors that limit EPA real time performance are found.
     (2) EPA-TSSA (EPA Time Slice Self-adaptive Adjustment) method that accomplishes the self-adaptive adjustment of data transmission time slice according to the variation of network load is proposed to improve its use efficiency. According to EPA-TSSA method, each device in a micro-segment acquires its data transmission demanding time by generating timestamps and uses it to calculate its time slice self-adaptive setting value. Then, the device announces its time slice self-adaptive setting values to the other devices in the micro-segment through adding new fields in nonperiodic data annunciation message. After receiving the time slice self-adaptive setting values from other devices, a device uses them to adjust its deterministic scheduling parameters and accomplishes the adjustment of data transmission time slice.
     (3) EPA-CLCS (EPA Cross Layer Cooperative Scheduling) method that can accomplish the cooperation between the control and the communication in EPA network control system is proposed. By setting alternate time slices without interruption for EPA function blocks and EPA periodic messages transmission and controlling the starting time and executing times of function blocks, the method can accomplish the cooperation between executing scheduling of EPA user layer function blocks and EPA deterministic scheduling mechanism of message transmission in data link layer to reduce the network load and optimize the deterministic scheduling parameters in EPA system, thus the real time performance and the control performance of EPA system are improved.
     (4) The application method of EPA industrial Ethernet in the control system of wave soldering machine is proposed. By analyzing the workflow of wave soldering machine and the functional requirements of its control system, the PEC8000 control models that support EPA communication protocol are connected to a control network to accomplish the control function in WS-350B wave soldering machine. An experiment is carried out to verify that EPA network control system is competent to implement the control of wave, temperature, spraying, electromotor and the real time communication during the operating process of wave soldering machine.
     The work in this dissertation provides groundwork for the improvement of EPA real time performance and a useful guideline for choosing and configuring an EPA system in industrial field.
引文
[1]李梦群,庞学慧,王凡等.先进制造技术导论[M].北京:国防工业出版社,2005.
    [2]Hassan M. Machine layout problem in modern manufacturing facilities [J]. International Journal Production Research,1994,32(11):2559-2584.
    [3]郁鼎文,陈恳.现代制造技术[M].北京:清华大学出版社,2006.
    [4]Ratchev M. Concurrent process and facility prototyping for formation of virtual manufacturing cells [J]. Integrated Manufacturing Systems,2001,12(4):306-315.
    [5]朱江峰,黎震.先进制造技术[M].北京:北京理工大学出版社,2007.
    [6]Luo C, Tzou H. The development of an intelligent Web-based rapid prototyping manufacturing system [J]. IEEE Transactions on Automation Science and Engineering,2004,1(1):4-13.
    [7]王庆明.先进制造技术导论[M].上海:华东理工大学出版社,2007.
    [8]许勇.计算机控制技术[M].北京:机械工业出版社,2008.
    [9]徐文尚.计算机控制系统[M].北京:北京大学出版社,2007.
    [10]钟约先,林享.机械系统计算机控制(第2版)[M].北京:清华大学出版社,2008.
    [11]李令奇,段智敏.机械系统使用计算机控制技术[M].沈阳:东北大学出版社,2003.
    [12]丁继斌,风士彩.机械系统设计及其控制技术[M].北京:化学工业出版社,2007.
    [13]葛运旺.计算机控制网络[M].武汉:武汉理工大学出版社,2005.
    [14]丁恩杰,刘晓文,赵小虎等.控制网络与现场总线[M].徐州:中国矿业大学出版社,2006.
    [15]冯冬芹,黄文君.工业通信网络与系统集成[M].北京:科学出版社,2005.
    [16]Hu S, Zhu Q. Stochastic optimal control and analysis of stability of networked control systems with long delay [J]. Automatica,2003,39(11):1877-1884.
    [17]Montestruque L, Antsaklis P. Stability of model-based networked control systems with time-varying transmission times [J]. IEEE Transactions on Automatic Control,2004,49(9):1562-1572.
    [18]阳宪惠.工业数据通信与控制网络[M].北京:清华大学出版社,2003.
    [19]Shen W, Wang L, Hao Q. Agent-based distributed manufacturing process planning and scheduling:a state-of-the-art survey [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,2006,36(4):563-577.
    [20]梁清华,冯丽,郭栋,等.工业控制网络技术[M].大连:大连理工大学出版社,2006.
    [21]陈在平,岳有军.工业控制网络与现场总线技术[M].北京:机械工业出版社,2006.
    [22]Lian F, James R, Tilbury D. Performance evaluation of control networks for manufacturing systems [J]. American Society of Mechanical Engineerings, Dynamic Systems and Control Division,1999,67(6):853-860.
    [23]阳宪惠.现场总线技术及其应用[M].北京:清华大学出版社,1999.
    [24]Schickhuber G, Mcgarthy 0. Distributed fieldbus and control network system [J]. Computing and Control Engineering journal,1997,8(1):21-32.
    [25]Thomesse J. Fieldbus and interoperability [J]. Control Engineering Praetice,1999, 7(1):81-94.
    [26]David A. Interoperable Fieldbus Deviees:A Technical overview [J]. ISA Transaction, 1996,34(2):147-151.
    [27]樊留群.实用以太网际运动控制总线技术[M].上海:同济大学出版社,2009.
    [28]王平,谢吴匕,肖琼,等.工业以太网技术[M].北京:科学出版社,2007.
    [29]Gcorgoudakis M, Kapsalis V, Koubias S, et al. Advancements, trends and real-time considerations in industrial Ethernet protocols [C]. Proceedings of IEEE International Conference on Industrial Informatics, Greece,2003:112-117.
    [30]Verissimo P, Casimiro A. Distributed computer-controlled systems:the DEAR COTS approach [C]. Proceedings of 16th IFAC Workshop on Distributed Computer Control Systems, Sydney,2000:128-135.
    [31]Montgomery S, Neagle B. Connectivity:the last frontier, The Industrial Ethernet Book [M]. Geneva:Kluwer Academic Publishers,2001.
    [32]冯冬芹,金建祥,褚健.工业以太网关键技术初探[J].信息与控制,2003,32(3):219-224.
    [33]仲崇权.工业现场数据采集与工业以太网若干关键技术[D].大连:大连理工大学,2007.
    [34]Mao S. Bushmitch D, Narayanan S, et al. VAX-based real time data acquisition for scientific measurements [J]. IEEE Transactions on Nuclear Science,1989,36(1): 606-610.
    [35]Hermann K. Real time system design principles for distributed embedded application [M]. Dordrecht:Kluwer Academic Publishers,1997.
    [36]Dilip D, Kandlur, Kang G, et al. Real-time communication in multihop networks [J]. IEEE Transactions on Parallel and Distributed Systems.1991,5(10):1044-1056.
    [37]Seung H. Scheduling algorithm of data sampling times in the integrated communication and control systems [J]. IEEE Transactions on Control Systems Technology,1995,3(2):225-230.
    [38]Saksena M, Freedmant P, Rodziewicz P. Guidelines for automated implementation of executable object oriented models for real-time embedded control systems [C]. Proceedings of the 18th IEEE Real-Time Systems Symposium. San Francisco,1997: 240-251.
    [39]Chen J, Wang Z, Sun Y. A basic study on algorithm of real-time schedule table for fieldbus [C]. Proceedings of the 4th World Congress on Intelligent Control and Automation. Shanghai, China,2002:1760-1763.
    [40]Bernat G, Burns A, Llamos A. Weakly hard real-time systems [J]. IEEE Transactions on Computers,2001,50(4):308-321.
    [41]Lortz V, Shin K, Jinho K. MDARTS:A multiprocessor database architecture for hard real-time systems [J]. IEEE Transactions on Knowledge and Data Engineering.2000, 12(4):621-644.
    [42]Haritsa J, Seshadri S. Real-time index concurrency control [J]. IEEE Transactions on Knowledge and Data Engineering,2000,12(3):429-447.
    [43]Liu C, Layland J. Scheduling algorithms for multiprogramming in a hard-real-time environment [J]. Journal of the Associationfor Computing Machinery,1973,20(1): 46-61.
    [44]Bailey C, Burns A, Wellings A, et al. A performance analysis of a hard real time system [J]. Control Engineering Practice,1995,3(4):447-464.
    [45]徐皑冬,王宏,邢志浩.工业以太网实时通信技术[J].信息与控制,2005,34(1):60-63.
    [46]王威,缪学勤.试论工业以太网实时通信技术[J].自动化仪表,2003,24(2):1-4.
    [47]丛爽,李泽湘.实用运动控制技术[M].北京:电子工业出版社,2006.
    [48]郑魁敬,高建设.运动控制技术及工程实践[M].北京:中国电力出版社,2009.
    [49]许万.基于实时以太网的多轴运动控制系统研究[D].武汉:华中科技大学,2009.
    [50]王宝仁.网络化运动控制系统多轴协同关键技术研究[D].济南:山东大学,2008.
    [51]尔桂花,窦日轩.运动控制系统[M].北京:清华大学出版社,2002.
    [52]阮毅,陈维钧.运动控制系统[M].北京:清华大学出版社.2006.
    [53]宋立博,李劲松,费燕琼.运动控制系统原理、结构与设计[M].上海:上海科学技术文献出版社,2009.
    [54]彭可.控制网络系统性能分析、系统设计和网络互连的研究与应用[D].南京:中南大学,2004.
    [55]Srinivasan K, Fosdick R. Multivariable analysis and controller design for coordinated multi-axial motion control [C]. Proceedings of the American Control Conference, United States,1988:95-101.
    [56]严爱珍,李宏胜.机床数控原理与系统[M].北京:机械工业出版社,2002.
    [57]Ogando J.运动控制正转向以太网[J].工业设计,2008,04:30-33.
    [58]Seok-Kyu K, Kang G. Statistical real-time communication over Ethernet [J]. IEEE Transactions on Parallel and Distributed Systems,2003,14(3):322-335.
    [59]刘科.工业以太网实时通信技术及进展[J].工矿自动化,2005(3):53-55.
    [60]刘明哲,徐皑冬.确定性实时以太网通信协议研究[J].仪器仪表学报,2005,26(8):505-507.
    [61]王智,王天然.工业实时通信网络(现场总线)的基础理论研究与现状(上)[J].信息与控制,2002,31(2):146-152.
    [62]王智,王天然.工业实时通信网络(现场总线)的基础理论研究与现状(下)[J].信息与控制,2002,31(3):241-249.
    [63]Pritty D. A real-time upgrade for ethernet based factory networking [C]. Proceedings of the IEEE IECON 21st International Conference on Industrial Electronics, Control and Instrument ion, Orlando, USA,1995:1631-1637.
    [64]Ouni S. Hard and soft real time message scheduling on ethernet networks [J]. Proceedings of IEEE International Conference on Systems, Man and Cybernetics, Taipei, Taiwan,2006:6-10.
    [65]Atallah D. Peer-to-peer facilitates real-time communications [J]. Electronic Design News (EDN),1988,33(8):179-185.
    [66]Kapsalis V. Implementation of a MAC-layer protocol (GIT-CSMA/CD) for industrial LANs and its experimental performance [J]. IEEE Tranctions on the Industrial Electronics,1997,44(6):825-839.
    [67]Liu H, Hu J. A new media access control for control network-token-CSMA. CD hybrid protocol [J]. Measurement &Control Technology,2001,20(6):5-10.
    [68]Junghoon L, Heonshik S. A bandwidth real location scheme for Ethernet-based real-time communication [C]. Proceedings of the second intertional workshop on real-time computing and applications, Tokyo,1995:28-33.
    [69]Junghoon L, Seungjun P. An error control scheme for Ethernet-based real-time communication [C]. Proceedings of the Third Internation Workshop on Real-time Computing and Applications, Seoul, South Korea,1996:211-219.
    [70]Junghoon L. Design of a communication dystem capable of support ing real-time RPC [C]. Proceedings of the second IEEE International Conference on Engineering of Complex Computer Systems, Montreal Canada,1996:99-102.
    [71]Yavatkar R. A reservation-based CSMA protocol for integrated manufacturing networks [J]. IEEE Transactions on Systems, Man and Cybernetics,1994,24(8): 1247-1258.
    [72]Tobagi F. Carrier sense multiple access with message-based priority functions [J]. IEEE Transcations on Communications,1982,30(1):185-200.
    [73]Molle M, Kleinrock L. Virtual time CSMA:why two clocks are better than one [J]. IEEE Transactions on Communications,1985,33(9):919-933.
    [74]Zhao W, Ramamr i t ham K. A real time CSMA protocols for hard real time communications [J]. IEEE Transactions on Software Engineering,1987,13(8):938-952.
    [75]Zhao W. A window protocol for transmission of time-constrained messages [J]. IEEE Transactions on Computers,1990,39(9):1186-1203.
    [76]陈垒,冯冬芹,金建祥,等.以太网在工业应用中的实时特性研究[J].浙江大学学报(工学版),2004,38(6):670-675.
    [77]Winkel L, Karlsruhe. Real-time Ethernet in IEC 61784-2 and IEC 61158 Series [J]. Proceedings of IEEE International Conference on Industrial Informatics, Singapore, 2006:246-250.
    [78]Felser M. Real-time Ethernet-industry prospective[J]. Proceedings of the IEEE, 2005,93(6):1118-1129.
    [79]缪学勤.论六种实时以太网的通信协议[J].自动化仪表,2005,26(4):1-6.
    [80]缪学勤.基于国际标准的十一种工业实时以太网体系结构研究(上)[J].仪器仪表标准化与计量,2009(3):14-18.
    [81]缪学勤.基于国际标准的十一种工业实时以太网体系结构研究(下)[J].仪器仪表标准化与计量,2009(4):8-9.
    [82]International Electrotechnical Commission (IEC). Industrial communication networks-Profiles-Part 2:Additional fieldbus profiles for real-time networks based on ISO/IEC 8802-3 [S]. Switzerland:IEC Central Office,2007.
    [83]陈磊.从现场总线到工业以太网的实时性问题研究[D].杭州:浙江大学,2004.
    [84]国家质量技术监督局.GB/T 20171-2006用于工业测量与控制系统的EPA系统结构与通信规范[S].北京:中国标准出版社,2006.
    [85]Feng D, Huang W. EPA-based open network control system [C]. Proceedings of the Fourth International Conference on Control and Automation, Dalian China,2003: 976-980.
    [86]高路,于海斌,王宏,等.EPA网络体系结构[J].计算机工程,2004,30(17):81-82.
    [87]宋亚亮,王平,范生凯.EPA通信协议栈设计中的关键技术研究[J].微计算机信息,2008,24(1):39-40.
    [88]王晓燕,王平.EPA通信协议在嵌入式Linux上的设计与实现[J].计算机工程,2007,33(6):273-274.
    [89]刘宁,仲崇权.EPA网络控制系统时延特性分析[J].计算机工程与应用,2009,45(3):30-34.
    [90]Liu N, Zhong C. Analysis on scheduling performance of periodic messages in industrial Ethernet based on EPA [C]. Proceeding of 2009 IEEE International Conference on Mechatronics and Automation. Changchun China,2009(5):3055-3059.
    [91]李卓函,仲崇权.工业以太网EPA实时性测试方法研究[J].自动化仪表,2006,27(10):4-6.
    [92]王平,王浩文,易明华,等.EPA协议状态机的一致性测试方法及实现[J].计算机集成制造系统,2007,14(3):621-624.
    [93]易明华,王平,汪春华,等.EPA协议一致性测试方法[J].仪器仪表学报,2007,28(3):451-455.
    [94]王平,易明华,王浩文,等.EPA协议一致性测试方法研究[J].自动化仪表,2006,27(10):1-6.
    [95]张军.基于EPA工业以太网的智能变送器研究[D].重庆:重庆大学,2006.
    [96]余淑军,王平,付迎利,等.EPA功能块的研究与实现[J].计算机应用与软件,2008,25(1):38-40.
    [97]陈磊,杨佃福.EPA现场控制器控制模块的开发[J].化工自动化及仪表,2009,36(2):64-67.
    [98]金渝,张军,孙攀,等.基于EPA通信的超声波物位计开发[J].重庆邮电大学学报(自然科学版),2008,19(6):96-98.
    [99]罗志勇,周涛,向敏.高电磁抗扰度EPA网桥开发[J].重庆工学院学报(自然科学版),2009,23(6):51-56.
    [100]向敏,徐洋,程安宁,等.嵌入式EPA安全网桥的设计[J].仪器仪表学报,2008,29(2):289-234.
    [101]向敏,徐洋,杨震斌,等.基于EPA技术的网桥设计[J].工业控制计算机,2006,19(12):1-2.
    [102]孙攀,王平,谢吴飞.以太网工厂自动化协议中确定性调度的研究与实现[J].计算机集成制造系统,2007,13(3):563-567.
    [103]刘学书,袁磊,郑巧仙.离散数学[M].武汉:武汉大学出版社,2006.
    [104]陈治中.离散数学[M].北京:中国铁道出版社,2003.
    [105]Frey G, Hussain T. Modeling techniques for distributed control systems based on the IEC 61499 standard-current approaches and open problems [C]. Proceedings of 8th International Workshop on Discrete Event Systems, Michigan, USA,2006: 176-181.
    [106]International Electrotechnical Commission (IEC). IEC61804 function blocks (FB) for process control (ed.2.0) [S]. Switzerland:IEC Central Office,2006.
    [107]International Electrotechnical Commission (IEC). Function blocks-part 1: architecture [S]. Switzerland:International Electrotechnical Commission,2005.
    [105]蒋心怡,吴汉松,陈少昌.计算机控制工程[M].长沙:国防科技大学出版社,2002.
    [109]岳东,彭晨,Han Q.网络控制系统的分析与综合[M].北京:科学出版社,2007.
    [110]张庆灵,邱占芝.网络控制系统[M].北京:科学出版社,2007.
    [111]孙瑛,庞彦斌.FF控制系统时滞特性分析及相庆参数设置规则[J].北京化工大学学报,2006,33(3):77-80
    [112]王荣辉,王战铎.计算机控制系统中采样周期的选择方法[J].陕西工学院学报,]997,13(2):39-44.
    [113]杨鹏.计算机控制系统[M].北京:机械工业出版社,2009.
    [114]窦连旺.网络控制系统的建模、稳定性分析及其调度的研究[D].天津:天津大学,2003.
    [115]杨丽曼,李运华,袁海斌.网络控制系统的时延分析及数据传输技术研究[J].控制与决策,2004,14(4):361-366.
    [116]杨丽曼,李运华.网络控制系统的时延和负载分析[J].控制与决策,2006,21(1):69-72.
    [117]Nilsson J, Bernhardsson B, Wittenmark B. Stochastic analysis and control of real-time systems with random time delays [J]. Automatica,1998,34(1):57-64.
    [118]于之训,陈辉堂,王月娟.具有随机通讯延迟和噪声干扰的网络系统控制[J].控制与决策,2000,15(5):519-526.
    [119]周洪,邓其军,孟红霞等.网络控制技术及应用[M].北京:中国电力出版社,2007.
    [120]Lian F, Moyne J, Tilbury D. Optimal controller design and evaluation for a class of networked control systems with distributed constant delays [C]. Proceedings of the American Control Conference, Berkeley,2002:3009-3014.
    [121]Lian F, Moyne J, Tilbury D. Analysis and modeling of networked control systems: MIMO case with multiple time delays [C]. Proceedings of the American Control Conference, New York,2001:306-4312.
    [122]Walsh G, Beldiman 0, Bushnell L. Error encoding algorithms for networked control systems [C]. Proceedings of the 38th IEEE Conference on Decision and Control, Tokyo Japan,1999:4933-4938.
    [123]Wei Z, Li C, Xie J. Improved control scheme with online delay evaluation for networked control systems [C]. Proceedings of the 4th World Congress on Intelligent Control and Automation, Paris,2002:1319-1323.
    [124]付家才.工业控制工程实践技术[M].北京:化学工业出版社,2003.
    [125]周美兰,周封,王岳宇.PLC电气控制与组态设计[M].北京:科学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700