AAL2关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
出于经济方面的考虑,人们对用一个综合业务网同时承载数据业务和话音业务的兴趣日益浓厚。与传统的电路交换方式的话音相比,在相同的输出链路速率下,用分组网络承载话音业务可以接入更多的话音呼叫;除了话音业务外,分组网络还能承载数据、视频等其它业务,为用户终端提供更多的业务支持。这些优点都促进了分组话音技术的发展。与其它网络技术相比,ATM承载话音业务有其独特的优势。在ATM适配层技术中,AAL2可以更有效地承载窄带实时可变比特率业务,代表着用ATM承载话音业务的发展方向,具有广阔的应用前景。目前,针对AAL2技术的研究已成为分组话音技术研究的重点。
     本文在消化现有理论研究成果的基础上,针对AAL2分组话音复接器模型、带宽分配算法、AAL2话音分组缓冲器的容量和比特丢弃门限值的选取方法、AAL2分组话音系统信元装配时延、AAL2的设计与实现这六个方面做了系统深入的研究,取得相应研究成果。全文共分七章。
     第一章介绍AAL2技术的基本概念和研究现状,概述本文的研究内容以及取得的研究成果。
     第二章根据UAS模型基本原理研究无比特丢弃的AAL2分组话音复接器的分组丢弃概率,推导出计算分组丢弃概率需用到的主要参数的计算公式。而后,提出话音业务到达率随系统状态变化的M'/D/1/K模型,并用此模型研究在输入端进行比特丢弃的AAL2分组话音复接器性能,推导出分组丢弃概率、平均分组排队时延、每采样点平均比特数等主要性能指标的计算公式。通过将模型计算结果与仿真结果相比较证实M'/D/1/K模型可很好地描述在话音分组缓冲器的输入端进行比特丢弃的AAL2分组话音复接器的性能。
     第三章研究AAL2分组话音复接器带宽分配算法。提出并证明:对于无比特丢弃的AAL2分组话音复接器,当ATM VC输出速率较高(即复接的话路数较多)时,按平均速率分配带宽基本上可以满足话音服务质量要求;适当降低带宽利用率,可以进一步改善话音质量。在上述结论的基础上,提出一种有效的带宽分配算法。该算法在保证话音业务服务质量要求得到满足的前提下,可根据ATM VC输出速率控制接入AAL2分组话音复接器中的话音源数,或当已知接入的话音源数时,确定ATM VC的输出速率。对于带比特丢弃的AAL2分组话音复接器,按平均速率分配带宽完全满足话音服务质量要求,能获得较高的话音质量。
     第四章研究AAL2话音分组缓冲器容量和比特丢弃门限值的确定方法。提出并证明:对于带比特丢弃的AAL2分组话音复接器,当按平均速率分配带宽时,用话音分组的最大排队时延为9ms作为话音分组缓冲器容量的确定标准可很好地满足分组话音
    
    n 摘要
    服务质量要求。同时提出用话音分组为单位来表示话音分组缓冲器容量和比特丢弃门
    限值,并推导出相应的确定算法。
     第五章首先提出一种onoff话音源话音分组产生过程仿真算法。该仿真算法能将
    多个话音源复接后的分组产生时刻用一维数组来表示。而后研究AALZ分组话音复接
    器的信元装配时延。得出结论:在AALZ分组话音系统中,ATM信元装配时延由话音
    源编码速率、分组占用时长和接入AALZ分组话音复接器中的话音源数确定。当话音
    源采用 skb/s G.729编码时,可令信元装配定时器的时限值为 3ms;当话音源采用 32kb/s
    G.726编码,分组占用时长为sins且接入的话音源数较多时,一般无需使用定时器。
     第六章首先分析第三代移动通信系统无线接入网的特点和在无线接入网中引入
    AALZ技术的原因。而后提出 AALZ分组发送控制模块和 AALZ分组接收控制模块的
    设计与实现方案。AALZ分组发送控制模块支持将同一条ATM VC上的来自不同用户
    的 AALZ分组装入 ATM信元载荷域中,形成完整的 ATM信元。当需要支持的 ATM VC
    数量增加时,只需增加 AALZ分组发送控制模块,并将其进行简单的组合,即可灵活
    地扩大容量,支持更多的用户。AALZ分组接收控制模块完成了从ATM信元中提取出
    AALZ分组的功能。将AALZ分组接收控制模块与AALZ分接/交换控制模块组合,即
    可完成AALZ分接和 AALZ交换功能。设计和实现了完成AALZ分组发送控制模块和
    AALZ分组接收控制模块功能的单片FPGA芯片,芯片工作稳定,且达到预定要求。
     第七章总结全文,并对未来的研究内容做出展望。
Driven by economics, people are interested in developing an integrated service network to carry both data and voice service. Compared with traditional circuit-switched mode, packet-switched mode can carry more voice calls when the transmission links are of the same bandwidth. Besides voice, packet-switched networks can also support data and video, and provide more services support for the end user. All these contribute to the rapid development of carrying voice over packet-switched networks. ATM has in principle several intrinsic
    
    advantages over other networking technologies when it comes to voice. Among all the ATM adaptation layers, AAL2 can efficiently support low-bite-rate and delay-sensitive variable bit rate services, which is the most suitable technique for delivering voice over ATM. Delivering voice using AAL2 has received wide acceptance and much research interests.
    
    Based on the AAL2 specifications and the previous academic research, this dissertation investigates the following subjects. These subjects include the models for the AAL2 packet voice multiplexer, the bandwidth allocation algorithm suitable to the AAL2 packet voice multiplexer, the AAL2 voice packet buffer queue and the bit dropping thresholds, the ATM cell assembly delay, and the implementation of AAL2. This dissertation consists of the following seven chapters.
    
    Chapter one introduces the basic concepts of AAL2 and the current research status. Then it overviews the research contents carried out and the main achievements.
    
    Chapter two analyzes the models for the AAL2 packet voice multiplexer. A set of computation formulae for some parameters are presented, which use the UAS model to accurately predict the packet loss ratio of the AAL2 packet multiplexer without bit dropping. Then an M'/D/l/K model is built on the AAL2 packet voice multiplexer with bit dropping at the input port. Its performance is also analyzed. Simulation results show that the M'/D/l/K model works well with the AAL2 packet voice multiplexer with bit dropping at the input port.
    I.
    Chapter three discusses the bandwidth allocation algorithm suitable to the AAL2 packet
    
    voice multiplexer. A conclusion is drawn that bandwidth assignment on average rate can basically meet the quality of service requirements of AAL2 packet voice multiplexer without bit dropping if the ATM VC bandwidth is high. If the ATM VC bandwidth utilization is suitably reduced, we can further improve voice quality. Based on the above conclusion, a bandwidth allocation algorithm suitable to the AAL2 packet voice multiplexer is proposed. The algorithm can easily control the number of voice calls that can be multiplexed into the AAL2 packet voice multiplexer when the ATM VC bandwidth is given, or determine the ATM VC bandwidth if the voice calls multiplexed are known. As far as the AAL2 packet
    
    
    
    iv
    
    
    voice multiplexer with bit dropping is concerned, bandwidth assignment on average rate can well meet the quality of service requirements of packet voice and can result in good voice quality.
    
    Chapter four investigates how to determine the AAL2 packet buffer size and the bit dropping thresholds. A conclusion is drawn that for the AAL2 packet voice multiplexer with bit dropping, the buffer size which corresponds to a delay budget of 9 ms is suffice to meet the quality, of service requirements of AAL2 packet voice if bandwidth assignment on average rate is applied. In addition, the author proposes to use the number of packets to represent the bit dropping thresholds with relevant computation formulae presented.
    
    In chapter five, the simulation algorithm of voice packet generator for the on-off voice source model is given. The algorithm uses one dimension matrix to represent the arriving time of voice packets which are produced by multiple voice sources. Then the issues related to the cell assembly delay introduced by filling AAL2 packets from different users into the payloads of ATM cells are investigated. A conclusion is drawn that the cell assembly delay is affected by the voi
引文
[1] Mischa Schwartz, Broadband Integrated Networks. New York: Prentice Hall PTR, 1996.
    [2] Uyless Black, Emerging Communications Technologies 2nd Edition. New York: Prentice Hall PTR, 1997.
    [3] Uyless Black, ATM : Foundation for Broadband Networks. New York: Prentice Hall PTR, 1995.
    [4] Timothy Kwok, ATM : The New Paradigm for Internet, Intranet and Residential Broadband Services and Applications. New York: Prentice-Hall, 1998.
    [5] Shinomiya T, et al., New Global Networks and Issues in Network Performance and QoS. Proc. of IEEE ICC'99, Vancouver, Canada, June 1999, pp. 211-215.
    [6] Minzer S E. Broadband ISDN and Asynchronous Transfer Mode (ATM). IEEE Communications Magazine, Sept. 1989,27(9) : 17-24.
    [7] Ahmadi H. And W. E. Denzel, A Survey of Modern High Performance Switching Techniques. IEEE Journal on Selected Areas in Communications, Sept. 1989, 7(7) : 1091-1102.
    [8] Fischer W, et al., Data Communications Using ATM: Architecture, Protocols, and Resource Management. IEEE Communications Magazine, Aug. 1994, 32(8) : 24-33.
    [9] Shumate P. et al., Evolution of Fiber in the Residential Loop Plant. IEEE Communications Magazine, Mar. 1991, 29(3) : 68-74.
    [10] Miki T. and Komiya R., Japanese subscriber loop network and fiber optic loop development. IEEE Communications Magazine, Mar. 1991, 29(3) : 60-67.
    [11] ITU Recommendation G.722, "7 kHz Audio-Coding within 64kbit/s".
    [12] ITU Recommendation G.723. 1, "Dual-Rate Speech Coder for Multimedia Communications Transmitting at 5. 3 and 6. 3kbps", Mar. 1996.
    [13] ITU Recommendation G.726, "40-, 32-, 24-, and 16-kbps Adaptive Differential Pulse Code Modulation(ADPCM)", March 1991.
    [14] ITU Recommendation G.727, "5-, 4-, 3-, 2-bit Sample Embedded Adaptive Differential Pulse Code Modulation", Nov. 1994.
    [15] ITU Recommendation G.728, "Coding of Speech at 16 kbps Using Low-Delay Code Excited Linear Prediction", Nov. 1994.
    [16] ITU Recommendation G.729, "Coding of Speech at 8 kbps Using Conjugate Structure-Algebraic Code Excited Linear Predictive (CS-ACELP) Coding", Mar. 1996.
    [17] M. J. Fischer and T. C. Harris, A Model for Evaluating the Performance of an Integrated
    
    Circuit-and Packet-Switched Multiplex Structure. IEEE Trans. on communications, Feb. 1976,24(2) : 195-202.
    [18] G. J. Coviello, Comparative Discussion of Circuit versus Packet-Switched Voice. IEEE Trans, on communications, Aug. 1979, 27(8) : 1153-1579.
    [19] Armitage, G. J., and Adams, K. M., Packet Reassembly during Cell Loss, IEEE Network. Sept/Oct. 1993, 7(5) : 26-34.
    [20] I. Rubin, An Approximate Time-Delay Analysis for Packet-Switching Communication Networks. IEEE Trans, on Communications, Feb. 1976, 24(2) : 210-222.
    [21] W. A. Montgomery, Techniques for Packet Voice Synchronization. IEEE Journal on Selected Areas in Communications, Dec. 1983, 1(12) : 1022-1028.
    [22] N. S. Jayant and S. W. Christensen, Effects of Packet Losses in Waveform Coded Speech and Improvements Due to an Odd-Even Sample Interpolation. IEEE Trans. on Communications, Feb. 1981, 29(2) : 101-109.
    [23] C. J. Weiinstein, Fractional Speech Loss and Talker Activity Model for TASI and for Packet-Switched Voice. IEEE Trans. on Communications, Aug. 1978, 26(8) : 1253-1257.
    [24] S. Li, Study of Information Loss in Packet Voice Systems. IEEE Trans. on Communications, Nov. 1989,37(11) : 1192-1202.
    [25] Baiocchi A. et al., Loss Performance Analysis of an ATM Multiplexer loaded with High Speed On-Off Sources. IEEE Journal on Selected Areas in Communications, Apr. 1991, 9(3) : 388-393.
    [26] N. Janakiraman, B. Pagurek, and J. E. Neilson, Multiplexing Low-Speed Buffered Data Terminals. IEEE Trans. on Communications, Oct. 1980, 28(10) : 1838-1943.
    [27] Adrian E. and Eckberg JR., The Single Queue with Periodic Arrival Process and Deterministic Service Times. IEEE Trans. on communications, March. 1979, 27(3) : 556-562.
    [28] W. Hoberecht, A Layered Network Protocols for Packet Voice and Data Integration. IEEE Journal on Selected Areas in Communications, Dec. 1983, 1(6) : 1006-1013.
    [29] D. Minoli, E. Minoli, Delivering Voice over Frame Relay and ATM. Wiley Computer Publishing, 1998.
    [30] D. Minoli, E. Minoli, Delivering Voice over IP Networks. Wiley Computer Publishing, 1998,
    [31] Prycher M D. Asynchronous Transfer Mode: Solution for Broadband ISDN 2nd edition. New York : Ellis Horwood. 1993.
    [32] af-tm-0056. 000 "Traffic Management Specification Version 4. 0", 1996.
    [33] ITU-T Recommendation I.321, "B-ISDN Protocol Reference Model and its
    
    Applications".
    [34]ITU-T Recommendation Ⅰ.361, "B-ISDN ATM Layer Specification", 1991.
    [35]ITU-T Recommendation Ⅰ.362, "B-ISDN ATM Adaptation Layer (AAL) Functional Description", 1991.
    [36]ITU-T Recommendation Ⅰ.363, "B-ISDN ATM Adaptation Layer (AAL) Specification", 1993.
    [37]ITU-T Recommendation Ⅰ.356, "B-ISDN ATM Layer Cell Transfer Performance", Geneva, 1993.
    [38]ITU-T Recommendation Ⅰ.371 "Traffic Control and Congestion Control in B-ISDN", Helsinki, 1993.
    [39]孙海容等,ATM技术、概念、原理和应用,电子科技大学出版社,1995。
    [40]孙海容,李乐民,高速信息公路中的快速分组交换技术,电信科学,1995(10):2-9。
    [41]李津生等,综合业务数字网与异步转移模式,中国科技大学出版社,1993。
    [42]程时端等,异步传递模式,人民邮电出版社,1995。
    [43]Farkouh S. C. Managing ATM-Based Broadband Networks. IEEE Communications Magazine. May 1993, 31(5): 82-86.
    [44]D. J. Wright, Voice over ATM: An Evaluation of Implementation Alternatives. IEEE Communication Magazine, May 1996, 34(5): 72-80.
    [45]D. J. Wright, Voice over ATM: An Evaluation of Network Architecture Alternatives. IEEE Networks, Sept./Oct.1996, 10(5): 22-27.
    [46]af-vota-0078.000 "Circuit Emulation Service Interoperability Specification Version 2.0", Jan. 1997.
    [47]af-vtoa-0083.000 "Voice and Telephony ATM to the Desktop Specification", May 1997.
    [48]af-vtoa-0083.001 "Voice and Telephony ATM to the Desktop Specification", Feb. 1999.
    [49]af-vtoa-0085.000 "Specifications of (DBCES)-Dynamic Bandwidth Utilization-in 64kbps Time Slot Trunking over ATM-Using CES", July 1997.
    [50]af-vtoa-O089.000 "Voice and Telephony over ATM-ATM Trunking Using AAL1 for Narrowband Services Version 1.0", July 1997.
    [51]af-vtoa-0119.000 "Low Speed Circuit Emulation Services(LSCES)", May 1999.
    [52]中华人民共和国通信行业标准,“B-ISDN ATM 适配层(AAL)类型2技术规范”。
    [53]中华人民共和国通信行业标准,“AAL类型2(AAL2)信令协议技术规范(能力集-1)。
    [54]af-vtoa-0113.000 "ATM Trunking Using AAL2 for Narrowband Services", Feb. 1999.
    [55]af-vmoa-0145.000 "Voice and Multimedia Over ATM-Loop Emulation Service Using AAL2", July 2000.
    
    
    [56] K. Sriram, T. G. Lyons and Y.-T. Wang, Anomalies Due to Delay and Loss in AAL2 Packet Voice Systems: Performance Models and Methods of Mitigation. IEEE Journal on selected areas in communications, Jan. 1999, 17(1) : 4-17.
    [57] K. Sriram and Y.-T. Wang, Voice over ATM Using AAL2 and Bit Dropping: Performance and Call Admission Control. IEEE Journal on selected areas in communications, Jan. 1999, 17(1) : 18-28.
    [58] K.Sriram and D. M. Lucantoni, Traffic Smoothing Effects of Bit Dropping in a Packet Voice Multiplexer. IEEE Trans, on Communications, July 1989, 37(7) : 703-712.
    [59] K. Sriram and W. Whitt, Characterizing Superposition Arrival Processes in Packet Multiplexers for Voice and Data. IEEE Journal on Selected Areas in Communications, Sept. 1986, 4(6) : 833-846.
    [60] D. W. Petr, L. A. Dasilva, Jr., and V. S. Frost, Priority Discarding of Speech in Integrated Packet Networks. IEEE Journal on Selected Areas in Communications, June 1989, 7(5) : 644-656
    [61] 赵慧玲,张国宏,胡林,石友康,ATM、帧中继、IP技术与应用,电子科技大学出版社, 1998.
    [62] FRF. 1. 1 "Frame Relay User-network Implementation Agreement", Jan. 1996.
    [63] FRF.3. 1 "Multiprotocol Encapsulation Implementation Agreement", 1997.
    [64] FRF. 12 "Frame Relay Fragmentation Implementation Agreement", 1997.
    [65] R. Braden, D. Clark, and S. Shenker, Integrated Services in the Internet Architecture: An Overview. IETF RFC 1663, June 1994.
    [66] S. Blake et al., An Architecture for Differentiated Services. IETF RFC 2475, Dec. 1998.
    [67] E. Crawley et al., A Framework for QoS-Based Routing in the Internet. IETF RFC 2386, Aug. 1998.
    [68] S. Shenker, C. Partridge and R. Guerin, Specification of Guaranteed Quality of Services. IETF RFC 2212, Sept. 1997.
    [69] Bill Goodman, Internet Telephony and Modem Delay. IEEE Network, May/June 1999, 13(3) : 8-17.
    [70] AHemming S., Jonathan R., The IETF Internet Telephony Architecture and Protocols. IEEE Network, May/June 1999, 13(3) : 18-23.
    [71] P. L. Tien and M. C. Yuang, Intelligent Voice Smoother for Silence-Suppressed Voice over Internet. IEEE Journal on selected areas in communications. Jan. 1999, 17(1) : 29-41.
    [72] N. Anerousis et al., TOPS: an Architecture for Telephony over Packet Networks. IEEE Journal on selected areas in communications. Jan. 1999, 17(1) : 91-108.
    
    
    [73] Xipeng Xiao and Lionel, Internet QoS: A Big Picture. IEEE Network, Mar./Apr. 1999, 13(3) : 8-18.
    [74] S. Deering et al., Internet Protocol, version 6 (IPv6) Specification. IETF RFC 1883, Dec. 1995.
    [75] R. Hinden et al., IP Version 6 Addressing Architecture. IETF RFC 1884, Dec. 1995.
    [76] David C. Lee et al., The Next Generation of the Internet: Aspects of the Internet Protocol Version 6. IEEE Network, Jan./Feb. 1998, 12(1) : 23-33.
    [77] R. Braden et al., Resource Reservation Protocol (RSVP)-version 1 Functional Specification. IETF RFC 2205, Sept. 1997.
    [78] F. Baker, J. Krawczyk and A. Sastry, RSVP Management Information Base using SMIv2. IETF RFC 2206, Sept. 1997.
    [79] L Berger et al., RSVP Extensions for IPSEC Data Flows. IETF RFC 2207, Sept. 1997.
    [80] L. Zhang et al., RSVP: A New Resource Reservation Protocol. IEEE Network, Sept./Oct. 1993, 7(5) : 8-18.
    [81] H. Schulzrinne, RTP: A Transport Protocol for Real-Time Applications. IETF RFC 1889, Jan. 1996.
    [82] H. Schulzrinne, RTP Profile for Audio and Video Conference with Minimal Control. IETF RFC 1890, Jan. 1996.
    [83] M. Laubach, Classical IP and ARP over ATM. IETF RFC 1577, Jan. 1994.
    [84] af-lane-0021. 000, "LAN Emulation Over ATM Version 1. 0", Jan. 1995.
    [85] af-lane-0038. 000, "LAN Emulation Client Management Specification Version 1. 0", Sept. 1995.
    [86] af-lane-0050. 000, "LAN Emulation Over ATM Version 1. 0 Addendum", Dec. 1995.
    [87] af-lane-0057. 000, "LAN Emulation Servers Management Specification 1. 0", Mar. 1996.
    [88] af-lane-0084. 000, "LAN Emulation Version 2. 0 LUNI Interface", July 1997.
    [89] af-lane-0093. 000, "LAN Emulation Client Management Specification Version 2. 0", Oct. 1998.
    [90] af-lane-0112. 000, "LAN Emulation Over ATM Version 2-LNNI Specification", Feb. 1999.
    [91] af-mpoa-0087. 000, "Multi-Protocol Over ATM Specification Version 1. 0", July 1997.
    [92] af-mpoa-0092. 000, "Multi-Protocol Over ATM Version 1. 0 MIB", July 1998.
    [93] af-mpoa-0114. 000, "Multi-Protocol Over ATM Specification Version 1. 1", May 1999.
    [94] af-mpoa-0129. 000, "MPOA v1. 1 Addendum on VPN Support", Oct. 1999.
    [95] P. Newman et al., Ipsilon Flow Management Protocol Specification for IPv4 Version 1. 0. IETF RFC 1953, May 1996.
    
    
    [96] P. Newman et al., Transmission of Flow Labelled IPv4 on ATM Data Links Ipsilon Version 1. 0. IETF RFC 1954, May 1996.
    [97] P. Newman et al., Ipsilon's General Switch Management Protocol Specification Version 1. 1. IETF RFC 1987, Mar. 1998.
    [98] P. Newman et al., Ipsilon's General Switch Management Protocol Specification Version 2. 0. IETF RFC 2297, Mar. 1998.
    [99] Y. Rekhter et al., Cisco Systems' Tag Switching Architecture Overview. IETF RFC 2105, Feb. 1997.
    [100] G. Eneroth et al., Applying ATM/AAL2 as Switching Technology in Third-Generation Mobile Access Networks. IEEE Communications Magazine, June 1999, 37(6) : 112-122.
    [101] Baranitharan Subbiah, and Sudhir Dixit, Low-Bit-Rate Voice and Telephony over ATM in Cellular/Mobile Networks. IEEE Personal Communications, Dec. 1999, 6(6) : 37-43.
    [102] K. Sriram, R.S. McKinney, and M.H. Sherif, Voice Packetization and Compression in Broadband ATM Networks. IEEE Journal on Selected Areas in Communications, Apr. 1991, 9(3) : 294-304.
    [103] K. Kondo and M. Ohno, Packet Speech Transmission on ATM Networks Using a Variable Rate Embedded ADPCM Coding Scheme. IEEE Trans, on Communications. Feb./Mar./April 1994, 42(2/3/4) : 243-247.
    [104] J. N. Daigle and J. D. Langford, Models for Analysis of Packet Voice Communications Systems. IEEE Journal on Selected Areas in Communications, Sept. 1986, 4(6) : 847-855.
    [105] J. N. Daigle and J. D. Langford, Queuing Analysis of a Packet voice Communication System. Conf. Rec. IEEE INFOCOM'85, Washington, DC. Mar. 1985, pp. 18-26.
    [106] H. Heffes and D. M. Lucantoni, A Markov-Modulated Characterization of Packetized Voice and Data Traffic and Related Statistical Multiplexer Performance, IEEE Journal on Selected Areas in Communications, Sept. 1986, 4(6) : 856-868.
    [107] T. E. Stern, A Queuing Analysis of Packet Voice. Proc. IEEE Global Telecommunication Conf., San Diego, CA, Dec. 1983, pp. 2. 5. 1-2. 5. 6.
    [108] Y. C. Jenq, Approximations for Packetized Voice Traffic in Statistical Multiplexer. Proc. IEEE Infocom. Apr. 1984, pp. 256-259
    [109] San-Qi Li, A new Performance Measurement for voice Transmission in Burst and Packet Switching. IEEE Transactions on Communications, Oct. 1987, 35(10) : 1083-1094.
    [110] R. Nagarajan et al. Approximation Techniques for Computing Packet Loss in
    
    Finite-Buffered Voice Multiplexers. IEEE Journal on Selected Areas in Communications, April 1991, 9(3) : 368-377.
    [111] C. Yuan and J. A. Silvester, Queuing Analysis of Delay Constrained Voice Traffic in a Packet Switching System. IEEE Journal on Selected Areas in Communications, June 1989, 7(5) : 729-738.
    [112] T. Suda et al. Performance Evaluation of a Packetized Voice System-Simulation Study. IEEE Transactions on Communications, Jan. 1984, 32(1) : 97-102.
    [113] S. Dravida and K. Sriram, End-to-End Performance Models for Variable Bit Rate Voice Over Tandem Links in Packet Networks. IEEE Journal on Selected Areas in Communications, June 1989, 7(5) : 718-728.
    [114] I. Norros et al. The Superposition of Variable Bit Rate Sources in an ATM Multiplexer. IEEE Journal on Selected Areas in Communications, April 1991, 9(3) : 378-387.
    [115] H. Saito et al. An Analysis of Statistical Multiplexing in an ATM Transport networks. IEEE Journal on Selected Areas in Communications, April 1991, 9(3) : 359-367.
    [116] L. G. Dron et al. Delay Analysis of Continuous Bit Rate Traffic Over an ATM Network. IEEE Journal on Selected Areas in Communications, April 1991, 9(3) : 402-407.
    [117] H. Le Pocher, V. C. M. Leung and D. W. Gillies, An Efficient ATM Voice Service with Flexible Jitter and Delay Guarantees. IEEE Journal on selected areas in communications, Jan. 1999, 17(1) : 51-62.
    [118] F. Beritelli, A. Lombardo, S. Palazzo, and G.Schembra, Performance Analysis of an ATM Multiplexer Loaded with VBR Traffic Generated by Mulitmode Speech Coders. IEEE Journal on selected areas in communications, Jan. 1999, 17(1) : 63-81.
    [119] Roger C. F. Tucker, Accurate method for analysis of a packet-speech mulitplexer with limited delay. IEEE Trans. on Communications, Apr. 1988, 36(4) : 479-483.
    [120] Mischa Schwartz: Broadband Integrated Networks. Prentice Hall PTR, 1996, 130-138, 139-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700