离散制造车间生产现场建模及驾驶控制技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息技术的发展推动着企业生产方式的变革。越来越多的中小离散制造企业希望应用信息化手段来管理车间生产现场,实现提高企业生产效率、降低生产成本和提高产品质量的目标。然而企业信息化深入到车间生产管理时,经常会遇到很多问题。论文以构建车间生产现场驾驶舱控制系统为目标,使得管理者可以不必亲临生产现场,通过驾驶舱就能获取车间现场的实时状态,并可以控制生产过程的运行。
     构建驾驶舱控制系统需要解决三个关键技术:车间现场生产状态的建模、车间生产状态的偏差分析以及车间动态生产调度。这三个关键技术也正是车间生产管理信息化所面临的问题。
     车间现场生产状态的模型是研究其他关键技术的基础。车间生产现场的基本构成要素是工件和工作单元,两者通过工序联系在一起。三者的结合体抽象成信息节点,分析了信息节点之间的关系,并对信息节点的属性和行为作了描述。以信息节点为基本单元,描述了车间现场的生产状态。分析了车间现场的生产数据与工件状态、工序状态和工作单元的状态的关系RSD,以及信息节点状态与工件状态、工序状态和工作单元的状态的关系RSI,建立了车间现场生产数据与信息节点状态的对应关系,建立了车间现场生产状态的模型。应用信息节点的模型,简化了车间现场生产状态的建模。
     车间现场理想的生产状态由基准生产过程确定,基准生产过程由作业计划调度确定。实际的生产过程按照基准生产过程确定的节点激活顺序运行,并期望实际生产过程与基准生产过程保持一致。但由于车间生产现场存在大量的随机因素,使得实际生产过程经常偏离基准生产过程,形成实际生产状态与理想生产状态的偏差e(t)。只有同质才能比较,因此把偏差e(t)细化成生产时间偏差和生产成本偏差等,并给出了计算方法。通过引入信息节点关联模块的概念,分析了偏差e(t)在车间生产过程中传播的机理,这是分析预估偏差的基础。
     实际的车间生产过程是动态变化的,因此需要不断的重调度才能满足实际生产的需求。动态生产调度以提高企业生产效率、降低生产成本和提高产品质量为目标,是多目标优化问题。为了把多目标优化问题转换成单目标优化问题,提出了当量成本的概念。通过分析时间、成本和质量的关系,把时间、成本和质量转换成当量成本,并以当量成本最小作为调度问题的目标函数,把生产状态的偏差不超过设定的阈值作为约束条件。根据车间现场的生产状态,分析了几种触发动态生产调度的典型情况,针对这些情况的特点,给出合适的调度策略和调度算法,实现当量成本最小的调度目标。动态生产调度的实时性要求调度算法必须高效,论文结合启发式规则和邻域搜索的高效性,以时间邻域内的最优解作为启发式搜索方向,提出了信息节点分段寻优算法。
     在此研究的基础上,对驾驶舱控制系统的体系结构进行了研究,并结合实证案例对论文的理论和方法进行了阐述。
Development of Information Technology has been promoting the changes of Production Mode. More and more small and medium discrete manufacturing enterprises want to achieve the goals of improving the production efficiency, reducing the production costs and improving the products'quality by means of the workshop-production-field management with Information Technology. However, many enterprises encountered lots of problems as the Information Technology introduced into the workshop-production-field management thoroughly. To build a remote lean cockpit is the goal of this paper. The controller, without having to visit the workshop-production-field, can get the workshop production state and control the operation of the production process remotely with the lean cockpit.
     There are three key technologies, which include the modeling of the workshop production state, the analysis of the deviation of the production state and the dynamic production scheduling of the workshop-production-field, to be solved to build the remote lean cockpit. The three key technologies are the problems faced by the production management with Information Technology.
     The model of the workshop production state is the basis to research on the other key technologies. The fundamental elements of the workshop-production-field include the workpiece and the workstation. The relation between the workpiece and the workstation was built through the working procedure. Information node was the abstraction of the combination of the workpiece, the working procedure and the workstation. The relation between the information nodes has been represented, and the attributes and operations of the information node have been set forth. The workshop production state has defined on the basis of information node as a fundamental unit. The relation named RSD between the production data of the workshop and the state of the workpiece, the working procedure and the workstation has been represented. The relation named RSI between the state of the information node and the state of the workpiece, the working procedure and the workstation has also been set forth. Thus the relation between the production data and the state of the information has been established. The model of the workshop-production-state has been built accordingly. The model of the workshop-production-state is simplified by adopting the model of the information node.
     The ideal production state of the workshop-production-field is determined by benchmark production process, and the benchmark production process is formulated by production scheduling. The actual production process runs according to the activation sequence of information nodes which is determined by the benchmark production process. That the actual production process is consistent with the benchmark production process is the controller's expectation. However, the actual production process deviates from the benchmark production process frequently as there are lots of random factors in the workshop-production-field, and the deviation symboled e(t) between actual production state and ideal production state comes into being. It can be compared one variance with the other only they are homogeneous, so the deviation e(t) was subdivided into the deviation of production time and the deviation of production cost etc. The calculation methods of the deviation e(t) was represented. By introducing the concept of the correlative module of information nodes, the mechanism that the deviation e(t) influences the production process was represented. That mechanism is the basis of expounding prediction deviation.
     It needs to reschedule frequently to meet the demand of actual production with the changes in the actual production process. To improve the production efficiency of the enterprises, to reduce the production costs and to improve the products'quality are the goals of the dynamic production scheduling. That is the multi-objective optimization problem. The concept of equivalent costs was put forward to convert the multi-objective optimization problem into single-objective optimization problem. On the basis of elaborating the relation among the time, the costs and the quality, they are converted into equivalent costs. It is the objective function of the scheduling problem that minimizes the equivalent costs. And the constraints of the scheduling problem are that the deviations of the production state do not exceed the threshold quantity. Several typical situations that trigger dynamic production scheduling have been represented according to the workshop production state. In connection with the characteristics of these situations, the suitable scheduling policy and scheduling algorithm were put forward to achieve the scheduling objective which minimizes the equivalent costs. The scheduling algorithm must be efficient to meet the real-time nature of the dynamic production scheduling. The scheduling algorithm of phased optimization based on information node was put forward, with the efficient nature by combining heuristic rules and neighborhood-search algorithm that takes the optimal solution in the time neighborhood as the heuristic search direction.
     On the basis of the research above, the architecture of the remote lean cockpit was built, and the theory and methods represented in this paper are verified to be feasible with a experimental case.
引文
[1]Olhager J. and Ostlund B.. An integrated push-pull manufacturing strategy [J]. European Journal of Operational Research,1990,45:135-142.
    [2]江志斌.Petri网及其在制造系统建模与控制中的应用[M].北京:机械工业出版社,2004.5.
    [3]Jina J., Bhattacharva A. K. and Walton A. D.. Applying lean principles for high product variety and low volumes:some issues and propositions [J]. Logistics Information Management,1997,10(1):5-13.
    [4]国家发改委中小企业司.全国中小企业管理现状问卷调查报告(下)[J].上海企业,2006,11:35-38.
    [5]国家统计局服务业调查中心.2007全国中小企业信息化调查报告[J].中国制造业信息化(应用版),2008,3:59-60.
    [6]王志国.面向车间管理的离散生产系统精益运行驾驶舱研究[D].浙江大学博士学位论文,2009.10.
    [7]WANG Guo-dong, TANG Ren-zhong, WANG Zhi-guo, XIE Yi. Simulation-based predictive control for discrete production system state [C]. Proceedings of ICMTMA, Hunan, China, 2009:371-374.
    [8]张俊.基于RFID和电子看板的装配生产监控系统的研究[D].浙江大学硕士学位论文,2007.9.
    [9]余式汪.基于RFID技术的装配过程可视化管理系统研究[D].浙江大学硕士学位论文,2008.6.
    [10]Chen Xiaoming, Tang Renzhong, Wang Zhengxiao. Research on RFID-based workshop data collection technology [C].第二届亚洲工业工程与管理国际学术会议,2009.6,温州。
    [11]MESA International. MES explain:A high level vision[R]. Pittsburgh, USA:MESA International White Paper Number6,1997.
    [12]Blanc P., Demongodin I. and Casmgna P.. A holonic approach for manufacturing execution system design:an industrial application [J]. Engineering Applications of Artificial Intelligence,2008,21 (3):15-330.
    [13]Babieeanu and Chen F.F.. Development and applications of holonic manufacturing systems:A survey[J]. Journal of Intelligent Manufacturing,2006,17(1):111-131.
    [14]Cheng F T, Chang C F and Wu S L. Development of holonic manufacturing execution systems[J]. Journal of Intelligent Manufacturing,2004,15:253-267.
    [15]Jean Marcelo Simao, Paulo Cezar Stadzisz and Gerard Morel. Manufacturing execution systems for customized production [J]. Journal of Materials Processing Technology,2006,179:2683-275.
    [16]Cheng F T, Shen E. and Deng J. Y.. Development of a system framework for the computer integrated MES:A distributed Object-Oriented approach [J]. International Journal of CIM,1999,12 (51):384-402.
    [17]Cheung M. E.,Yeung W. H.R.. HSCF:A holonic Shop Floor Control framework for flexible manufacturing systems[J]. International Journal of CIM,2000,13(2):121-138.
    [18]GLanger and Leo Airing. An architecture for agile Shop Floor Control systems[J]. Journal of Manufacturing Systems,2000,19 (4):267-281.
    [19]J. Blazewicz, W. Domschke and E. Pesch. The job shop scheduling problem:conventional and new solution techniques [J]. Europe Journal of Production Research,1996,93(1):1-33.
    [20]Michael McClellan. Applying manufacturing execution system [M]. The St. Lucie Press, 1997.
    [21]郑大钟,赵千川.离散事件动态系统[M].北京:清华大学出版社,2001.1.
    [22]Zhou MC,Venkatesh K.Modelling, simulation and control of flexible manufacturing systems:a petri net approach[M]. Singapore:World Scientific,1999.
    [23]廖伟志,古天龙,李文敬,黄容伟.模糊柔性制造系统的混杂Petri网建模与调度[J].计算机集成制造,2008,14(11):2134-2141.
    [24]段波,赵稳庄等.Petri网在制造系统建模与仿真中的应用[J].航空精密制造技术,2008,44(5):53-58.
    [25]林宋.制造系统的Petri网建模[J].北方工业大学学报,2002,14(3):71-75.
    [26]Furcas R,Giua A Piccaluga A and Seatzu C. Modeling production systems with inventory using hybrid Petri Nets[C]. Proceedings of the 2001 IEEE International Conference on Control Applications,2001.9,434-440.
    [27]胡柯,郭壮辉.Petri网方法及其在制造系统研究中的应用[J].系统仿真技术,2006,2(4):222-225.
    [28]张继红,黄大贵.基于Petri网的智能加工中心系统建模与仿真[J].现代制造工程,2006,8,64-66.
    [29]张伦彦,杨建军,郭仲福.基于仿真的单元化制造系统层次建模技术研究[J].成组技术与生产现代化,2006,23(1):15-19.
    [30]张君一,谢里阳.基于随机Petri网的基本加工单元故障分析[J].组合机床与自动化加工技术,2007,9:47-50.
    [31]Ramadge P. J. and Wonham W.M.. Supervisory control of discrete event processes[M]. Feedback Control of Linear and Nonlinear Systems, Berlin:Springer,1982,39:202-214.
    [32]Ramadge P. J. and Wonham W. M.. Supervisory control of a class of discrete event processes[J].SIAM J. Control and Optimization,1987,25(1):206-230.
    [33]Ramadge P. J. and Wonham W.M.. Modular supervisory control of discrete event systems [M]. Analysis and Optimization of Systems, Berlin:Springer,1986,83:202-214.
    [34]Yoo T. S. and Stephane Lafortune. A general architecture for decentralize supervisory control of discrete-event systems [J]. Discrete Event Dynamic Systems,2002,12(3):335-337.
    [35]Thierry Jeron, Herve Marchand, Sophie Pinchinat and Marie-Odile Cordier. Supervision patterns in discrete event systems diagnosis[R]. France,2006.
    [36]胡蜂,温熙森,孙国基.离散事件动态系统理论及应用[J].电脑与信息技术,2001,5:10-20.
    [37]戴华平.一类混杂Petri网的极大代数模型研究[J].浙江大学学报(工学版),2004,38(12):1629-1632.
    [38]王书亭.刘继红,吴义忠,钟毅芳.排队网络在制造系统中的应用及其三维仿真实现[J].小型微型计算机系统,2004,25(1):48-52.
    [39]田乃硕.多服务台休假排队系统的进展[J].燕山大学学报,1998,22(1):32-35.
    [40]Manish K. Govll and Michael C. Fu. Queuing theory in manufacturing:a survey [J]. Journal of manufacturing Systems,1999,18(3):214-240.
    [41]Hong Wan, Bruce E. Ankenman and Barry L. Nelson. Controlled sequential bifurcation:A new factor-screening method for discrete-event simulation[J]. Operations Research,2006,54 (4):743-755.
    [42]SCL Koh. MRP-controlled batch-manufacturing environment under uncertainty [J]. Journal of the Operational Research Society,2004,55:219-232.
    [43]Robert G. and Sargent. Event graph modeling for simulation with an application to flexible manufacturing systems [J]. Management Science,1998,34 (10):1231-1251.
    [44]Vlatka Hlupic and Ray J. Paul. Simulation modeling of flexible manufacturing systems using Activity Cycle Diagrams[J]. Journal of Operational Research society,1994,45 (9):1011-1023.
    [45]Young Jun son and Richard A.Wysk. Automatic simulation model generation for simulation-based,real-time shop floor control [J]. Computer in Industry,2001, 45 (10):291-308.
    [46]Dietrich B. L.. A taxonomy of discrete manufacturing systems[J]. Operations Research, 1991,39(6):886-902.
    [47]Jay Steeke, Young-Jun son and Richard A.Wysk. Resource modeling for the integration of the manufacturing enterprise[J]. Journal of manufacturing Systems,2001, 19 (6):407-427.
    [48]Han-pang Huang and Po-chu Chang. Specification, modeling and control of a flexible manufacturing cell [J]. INT. J. PROD. RES.,1992,30 (11):2515-2543.
    [49]吴梅磊.离散型制造执行系统(MES)研究[D].山东大学硕士学位论文,2007.3,1-2.
    [50]彭昱,陈蔚芳.在制品管理中条码技术的应用[J].航空制造技术,2007,(2):98-101.
    [51]马放,严迎建.条码技术在制造业中的应用研究[J].组合机床与自动化加工技术,2001,(5):46.
    [52]潘开灵,肖治宇.条码技术在生产管理中的应用研究[J].企业技术开发,2007,26(1):78-82.
    [53]陈磊,乔增伟.条形码技术在车间在制品管理系统的应用研究与实现[J].科学技术与工程,2007,7(10):2408-2411.
    [54]金维佳,叶文华.精益生产方式下基于条形码的在制品跟踪与管理系统研究[J].电力技术与自动化,2006,35(1):111-114.
    [55]Cheonshik, San-Yep Nam,Duk-Je Park. Product control system using RFID tag information and data mining [C]. ICUCT 2006, LNCS 4412, pp.100-109,2007.
    [56]George Q. Huang, Y. F. Zhang and P.Y.Jiang. RFID-based wireless manufacturing for walking-worker assembly islands with fixed-position layouts [J]. Robotics and Computer-Integrated Manufacturing,2007,23:469-477.
    [57]George Q. Huang,Y. F. Zhang, X. Chen and Stephen T.Newman. RFID-enabled real-time wireless manufacturing for adaptive assembly planning and control [J]. Intell Manuf, 2008,19:701-713.
    [58]Li-Chih Wang, Sian-Kun Lin and Li-Ping Huang. A RFID based agile manufacturing planning and control system [C]. RSKT 2009, LNCS 5589,pp.441-451,2009.
    [59]www.rfidjournal.com.
    [60]杜晓明,葛世伦.基于RFID和条形码的中小企业仓库管理系统研究[J].组合机床与自动化加工技术,2010,(2):106-112.
    [61]邓大权,刘彦宏,张洪仁.基于RFID和条形码识别技术的装备维修器材管理应用研究[C].中国兵工学会第十四届测试技术年会暨中国高等教育学会第二届仪器科学及测控技术年会,2008.
    [62]刘晓松.基于嵌入式技术的便携式数据采集分析仪的研究与实现[D].北京工业大学硕士学位论文,2008.5.
    [63]沈炜.基于RFID的MES数据采集系统研究[D].同济大学硕士学位论文,2008.3.
    [64]张鹏飞.超低功耗无线数据采集系统研究和设计[D].南京信息工程大学硕士学位论文,2007.5.
    [65]杨朋伟.基于Zigbee的低功耗数据采集系统设计[D].西安工业大学硕士学位论文,2009.4.
    [66]周彬.基于OPC技术工业现场数据采集软件IOServer的设计与应用[D].江苏大学硕士学位论文,2007.12.
    [67]王燚.ARM9数据采集平台的设计和μC/OS-Ⅱ操作系统的移植[D].西安电子科技大学硕士学位论文,2009.1.
    [68]陈波.基于ARM处理器的数据采集系统设计[D].武汉科技大学硕士学位论文,2009.5.
    [69]武涛.数据采集与显示控制系统设计[D].哈尔滨工程大学硕士学位论文,2009.3.
    [70]李莉.基于ARM处理器和嵌入式实时操作系统的数据采集装置设计[D].太原理工大学硕士学位论文,2006.4.
    [71]杨现德.嵌入式工业数据采集网络节点的开发[D].山东大学硕士学位论文,2008.9.
    [72]M. Florian, J. K. Lenstra and A. H. G. Rinnooy Kan. Deterministic production planning: algorithms and complexity [J]. Management Science,1980,26 (7):669-679.
    [73]Graves S C. A review of production scheduling [J]. Operations Research,1981, 29 (4):646-675.
    [74]梁秋荣.基于遗传算法的APS生产调度优化研究[D].中国地质大学硕士学位论文,2008.5.
    [75]陆启明.作业计划与生产调度在交通控制材料生产管理中的应用研究[D].同济大学硕士学位论文,2005.5.
    [76]刘亮,齐二石.基于APS与MES集成的车间生产计划与调度方法研究[J].制造技术与机床,2006,(9):24-28.
    [77]王丹,张浩,陆剑峰.基于瓶颈约束的APS算法研究与应用[J].机电一体化,2007,13(6):35-39.
    [78]J. J.Moder, C.R.Phillips and E.W.Davis. Project management with CPM[M]. NewYork:Van Nostrand-Reingold,1983.
    [79]Hillier F S and Lieberman G J. Introduction to operations research[M]. Oakland. CA:Holden-day,1980.
    [80]McClain J 0 and Thmas L J. Operations management:production of goods and services [M]. Englewood. Cliffs:NJ-PRENTICE-HALL,1985.
    [81]B Buxey. Production scheduling:practice and theory[J]. Operational Res.,1989, 39:17-31.
    [82]Panwalker S S and Iskander W. A survey of scheduling rules [J]. Operations Research, 1977,25(1):45-61.
    [83]Blacks tone J H, Phi lips D T and Hogg G T. A state-of-the-art survey of dispatching rules for manufacturing job shop operations [J]. Int J of Prod Res,1997,35(7):2065-2082.
    [84]Glover F. Paths for integer programming and links to artificial intelligence [J]. Computer Operations,1986,13(5):533-549.
    [85]刘忠耀.塑料制品生产过程的调度研究[D].广东工业大学硕士学位论文,2007.5.
    [86]刘忠耀,彭重嘉,伍乃骐.基于禁忌搜索算法的生产调度[J].微计算机信息,2008,24(6):55-56,18.
    [87]宋晓宇,孟秋宏,曹阳.求解Job Shop调度问题的改进禁忌搜索算法[J].系统工程与电子技术,2008,30(1):93-96.
    [88]Metropolis N.Rosenblatt A N and Rosenblatt M N. Equation of state calculation by fast computing machines[J]. J. Chem. Phys.,1953,21 (6):1087-1092.
    [89]李岐强.具有约束指导的模拟退火算法[J].系统工程,2001,19(3):49-55.
    [90]陈华根,吴健生,王家林,陈冰.模拟退火算法机理研究[J].同济大学学报(自然科学版),2004,32(6):802-805.
    [91]陈华根,李丽华,许惠平,陈冰.改进的非常快速模拟退火算法[J].同济大学学报(自然科学版),2006,34(8):1121-1125.
    [92]杨卫波,赵燕伟.求解TSP问题的改进模拟退火算法[J].计算机工程与应用,2010,46(15):34-36.
    [93]Holland J H. Adaptation in natural and artificial system[M]. Michigan:Michigan University Press,1975,125-128.
    [94]Karr C L. Design of an adaptive fuzzy logic controller using genetic algorithm[C]. Proc of the 4th International Conference on Genetic Algorithms, San Francisco:Morgan Kaufmann,1991:450-457.
    [95]Esposito A,Marinaro M and Oricchio D. Approximation of continuous and discontinuous mappings by growing neural RBF-based algorithm[J]. Neural Networks,2000, 13(6):651-665.
    [96]Fonesca C M, Flemming P J. Model selection using a simplex reproduction genetic algorithm[J]. Signal Processing,1999,78 (3):321-327.
    [97]Pal S K. Genetic algorithms for pattern recognition[M]. Boca Raton. Fla:CRC Press, 1996.
    [98]Kadaba N,Nygard K E, Juell P J. Integration of adaptive machine learning and knowledge-based systems for routing and scheduling applications [J]. Expert Systems with Applications,1991,2(1):15-27.
    [99]金菊良,丁晶.遗传算法及其在水科学中的应用[M].成都:四川大学出版社,2000.
    [100]黄德才,郭海东.基于JIT的非等同并行多机调度问题的混合遗传算法[J].计算机集成制造系统,2004,10(3):298-302.
    [101]肖力.基于遗传算法的生产调度优化方法研究[D].华中科技大学硕士学位论文,2006.4.
    [102]马晓兰.基于遗传算法的生产调度问题研究[D].同济大学硕士学位论文,2008.3.
    [103]杨红红.遗传算法在制造系统计划与调度优化中的应用[D].上海交通大学博士学位论文,2002.1.
    [104]姜桦,李莉,乔非,吴启迪.蚁群算法在生产调度中的应用[J].计算机工程,2005,31(5):76-78.
    [105]顾幸生.粒子群优化算法及其在生产调度中的应用[D].华东理工大学博士学位论文,2006.
    [106]王忠仁.基于混合蚁群算法的车间作业调度问题求解[D].电子科技大学硕士学位论文,2008.5.
    [107]Hageman J A,Wehrens R and Sprang H A. Hybrid genetic algorithm-tabu search approach for optimising multilayer optical coatings[J]. Analytica Chimica Acta,2003, 490(1-2):211-222.
    [108]任子武,伞冶.实数遗传算法的改进及性能研究[J].电子学报,2007,35(2):269-274.
    [109]潘全科,朱剑英.基于进化算法和模拟退火算法的混合调度算法[J].机械工程学报,2005,41(6):224-227.
    [110]赵传信.混合粒子群算法应用研究[D].中山大学硕士学位论文,2005.6.
    [111]Wallace J. Hopp and Mark L. Spearman. Factory physics foundations of manufacturing management, second edition[M].北京:清华大学出版社,2002.11.
    [112]梁韦华,于海斌.动态生产调度管理系统的研究与实现[J].信息与控制,2002,31(6):504-507.
    [113]曹岩,郭颜军,赵汝嘉.基于MAS的动态生产调度与控制及系统开发[J].小型微型计算机系统,2006,27(5):924-929.
    [114]Nilsson N. J.著,郑扣银,庄越挺译.人工智能[M].北京:机械工业出版社,2000.9.
    [115]姜启源,谢金星,叶俊.数学模型(第三版)[M].北京:高等教育出版社,2003.8.
    [116]唐任仲,周广民,汤洪涛.过程管理建模技术分析[J].浙江大学学报(工学版),2002.7,36(4):385-388.
    [117]耿素云,屈婉玲,张立昂.离散数学(第二版)[M].北京:清华大学出版社,1999.9.
    [118]Johan J. A survey of multi-objective optimization in engineering design[R]. Technical report IKP-R-1097,Department of Mechanical Engineering,Sweden,2000.
    [119]安伟刚.多目标优化方法研究及其工程应用[D].西北工业大学博士学位论文,2005.10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700