高温矿井井巷热质交换理论及降温技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着浅部矿产资源的开发殆尽,矿山开采逐渐向深部发展,地温高、采掘工作面气温高的现象不可避免,矿井热害将成为继顶板、瓦斯、水、火、粉尘五大灾害的第六大灾害,而且,其危害将超过其它灾害。因此,对高温矿井热害防治理论及技术研究有十分重要的意义。
     本论文对高温矿井井巷热质交换理论及采掘工作面降温技术进行了研究。研究的具体内容和取得的研究成果如下:
     1.研究内容:湿润巷道表面对流换热量简化计算法,预测高温矿井风流状态参数的方法,采掘工作面冷负荷计算法,确保采掘工作面降温效果的空冷器出风参数及安装位置确定方法,大焓降、大温降矿用空冷器的开发。
     2.研究方法:采用理论分析和现场试验相结合的方法进行研究,并借助MATLAB计算软件对试验数据进行分析。
     3.主要成果:
     (1)以湿壁巷道与风流间的对流换热为研究对象,通过引入刘伊斯(Lewis)关系、将水蒸汽分压力和水的汽化潜热用温度的线性关系表示、引入潜热比系数和巷道表面湿度系数,并进行合理简化处理,从理论上得出了计算湿润巷道与风流间潜热交换量及湿交换量的简化计算式。分析得出:在标准大气压下,完全湿润表面的潜热交换量约为显热交换量的3.935倍,部分湿润巷道表面潜热交换量与湿润程度有关,约为显热交换量的0.2-1.57倍。
     (2)针对国内外现有矿井风流热力参数预测方法多为综合各种影响因素、并高度归纳成单一数学表达式的处理方式所存在的弊端,提出了采用多个关联数学模型预测的方法。建立的新的预测模型表达式简单可靠,既能用手工完成计算,也可借助常用计算软件编写简单程序完成。
     (3)基于以往采掘工作面冷负荷确定方法考虑因素多而复杂的问题,结合“原岩温度高于31℃的地区为一级热害区、高于37℃的地区为二级热害区”的划分原理,论证了矿井原岩温度低于30℃以下的采掘工作面不会出现高温现象。提出了“只计算原岩温度超过30℃以上部分围岩及水体放出的热量作为工作面空间降温冷负荷”的简化计算新方法。
     (4)提出了末端空冷器装机容量应包括“进风流冷负荷、工作面冷负荷及输送冷损失”三大部分的观点,并建立了计算进风流冷负荷、沿途冷损失的数学模型,论述了空冷器出口状态参数及空冷器安装位置的确定方法。
     (5)论证了“杜绝冷风流输送过程中温度升高是不可能的,但杜绝冷风流输送过程中不吸湿是有可能的;冷风流吸收1克水蒸气损失的冷量是温度升高1℃损失冷量的2.5倍”,得出了“减少冷风流中的水蒸气量更有利于保冷”的结论。因此,提出了“隔湿保冷”新理念。并运用该理念,实现冷风筒不保温情况下冷量的长距离输送。
     (6)设计开发的拼装式大温降、大焓降、大风量、干燥能力强的喷水室可将地面35-39℃的高温空气处理到5-10℃左右,温降幅度可达30℃左右,空气焓降在90kJ/kg左右,每个喷水室每小时可从风流中冷凝1180kg水(处理风量为700m3/min)。
     (7)开发了一种适用于矿井建设期间井筒及长距离大巷掘进工作面的热害防治技术。
     4.论文主要创新点:
     (1)提出了将巷道表面水分蒸发潜热交换量及湿交换量用巷道壁面温度与风流温度之差表达的新方法,并通过引入潜热比系数的概念,将湿润巷道表面潜热交换量表示成了显热换热量的倍数,简化了已有井巷表面对流换热量和湿交换量的复杂计算方法。
     (2)依据一级热害矿井和二级热害矿井的划分原理,论证了矿井原岩温度低于30℃以下的采掘工作面不会出现高温现象。提出“只计算原岩温度超过30℃以上部分围岩及水体放出的热量作为采掘工作面空间降温冷负荷”的简化计算新方法。
     (3)论证了“杜绝冷风流输送过程中温度升高是不可能的,但杜绝冷风流输送过程中不吸湿是有可能的;冷风流吸收1克水蒸气损失的冷量是温度升高1℃损失冷量的2.5倍”,得出了“减少冷风流中的水蒸气量更有利于保冷”的结论。提出了“隔湿保冷”新理念。并运用该理念,实现冷风筒不保温情况下冷量的长距离输送。
     (4)结合“隔湿保冷”理念,提出将蒸发冷却技术作为矿井降温系统冷风长距离输送的辅助降温措施,实现冷风的二次降温。
With the development of mineral resources in the shallow depleted, mining has gradually developed to the deep. The phenomenon of high temperature of the ground, coal face and roadway head is inevitable. And mine heat-harm will be the sixth-largest disaster following the top five disasters as roof, gas, water, fire and dust. Moreover, the harm would exceed them. Therefore, research about the control theory and technology on high-temperature heat-harm mine is of great significance.
     In this paper, the theory about heat and mass exchange in high temperature roadway and the cooling techniques about coal face and roadway head were studied. The specific contents of the study and obtained research results are as follows:
     1. Contents of the study:Simplified the calculation methods of convection heat transfer about wet roadway surface. The methods about predicting airflow state parameters in high temperature mine. The calculation methods of mining face cooling load. Find the export wind parameters of the air cooler and the method used for installing the air cooler to ensure the cooling effect of the coal face and roadway head. The research and development of large enthalpy drop and large temperature drop mine air coolers.
     2. Methods of the study:Combining theoretical analysis and field test, analyzing the test data using MATLAB software.
     3. Main results of the study:
     (1) Through the introduction of Lewis relationship, linear representation of the partial pressure of water vapor and the latent heat of water, latent heat ratio coefficient and the roadway surface moisture coefficient, and do a reasonable simplification, put the convection heat transfer of wet-wall tunnel and airflow as the research object, get the simplified calculation formula of latent heat exchange and wet exchange capacity between the wet roadway and airflow in theory. And analysis obtained:at the standard atmospheric pressure, the latent heat exchange capacity is about 3.935 times than sensible heat exchange capacity in completely wet surface; in partial wet roadway surface the latent heat exchange capacity is related to degree of wetness, and it's about 0.2-1.57 times the sensible heat exchange capacity.
     (2) According to the shortcomings of that most of the existing prediction method on thermal parameters of mine air heating is integration of multiple factors and highly summarized into a single mathematical expression home and abroad, proposed a predict method using multiple associated mathematical models. The new established model's expression is simple and reliable and can be calculated by hand or be completed by calculation software with simple program.
     (3) Based on the problems that previously determining methods of mining face cooling load takes many complex factors into account and "the land area where the original rock temperature above 31℃is designated as first heat-damaged area, the land area which is higher than 37℃is designated as second heat-damaged area", proposed the simple calculation method "only calculation the surrounding rock and water body's emit heat where the original rock temperature exceeds 30℃as the heat cooling load of working surface".
     (4) Proposed the viewpoint that installed capacity of terminal air cooler should include three parts "inlet airflow cooling load, working space cooling load and transmission cold loss", established calculation model that calculation the inlet airflow cooling load and cold loss along the roadway, discussed a determine method about the states parameters of the air cooler exports and the air cooler installation position.
     (5) Demonstrated "put an end to the cold airflow's temperature rise in the course of transmission is impossible, but it is possible that put an end to the cold airflow's moisture absorption in the course of transmission, the loss of cold 1 gram water vapor was absorbed by per kg cold airflow is 2.5 time the loss of the per kg airflow's self temperature rise 1℃", come to a conclusion "reducing access to cold airflow in the amount of water vapor is more conducive to keep cold". So, we proposed a "isolate wet so to keep cold" new idea here, apply this concept to achieve the cold's long-distance transmission in the case of cold tube without insulation.
     (6) Design and developed the large temperature drop, large enthalpy drop, larger wind volume, strong drying ability spray chamber which can handling the air on the ground of 35-39℃high temperature to about 5-10℃, the temperature drop rate up to about 30℃, and the air enthalpy drop in the 90kJ/kg around, each spray chamber could condensate 1180kg of water from the airflow per hour (the treated flow rate of 700m3/min).
     (7) Developed one of the thermal damage control techniques that apply to the shaft in the mine construction period and long distance roadway heading face.
     4. The principal innovations of this paper:
     (1) Proposed a new method that represent the latent heat exchange capacity of water evaporation and wet exchange capacity in the roadway surface with airflow temperature and temperature difference, and through the introduction of the concept of coefficient latent heat, represent the wet roadway surface latent heat exchange capacity to multiples of sensible heat for the heat, all this simplified the existing complex calculation of roadway surface convection heat transfer and wet exchange capacity of the complex calculation.
     (2) Based on the principle of division about first heat-damaged mine and second heat-damaged mine, demonstrated that the coal face and roadway head where mine original rock temperature is below 30℃would not appear high-temperature behavior. Proposed following new method to simplify the calculation "only calculation the surrounding rock and water body's emit heat where the original rock temperature exceeds 30℃as the heat cooling load of working surface. "
     (3) Demonstrated "put an end to the cold airflow's temperature rise in the course of transmission is impossible, but it is possible that put an end to the cold airflow's moisture absorption in the course of transmission, the loss of cold 1 gram water vapor was absorbed by cold airflow is 2.5 time the loss of the airflow's self temperature rises 1℃", come to a conclusion "reducing access to cold airflow in the amount of water vapor, more conducive to cold". So, we proposed a "isolate wet so to keep cold" new idea here, apply this concept to achieve the cold's long-distance transmission in case of cold tube without insulation.
     (4) Connection the "isolate wet so to keep cold" concept, proposed that put evaporative cooling technology as auxiliary cooling measures in mine cooling system's cold long-distance transmission, so to achieve the secondary cooling of cold wind.
引文
[1]严荣林,侯贤文等编.矿井空调技术[M].北京:煤炭工业出版社,1994
    [2]李化敏,李华奇,周宛.煤矿深井的基本概念与判别准则[J].煤矿设计,1999,(10):5-6
    [3]李化敏,付凯.煤矿深部开采面临的主要技术问题及对策[J].采矿与安全工程学报,2006,23(4):468-471
    [4]廖波,荆留杰,田秋红.我国矿井热害现状及井下地热利用探讨[J].山西建筑,2009,35(8):193-195
    [5]王玉杰,张寅,胡许强.高地温综采工作面降温技术研究与实践[J].煤炭工程,2007,(4):54-55
    [6]王永炜.中国煤炭资源分布现状和远景预测[J].煤,2007,(5):44-45
    [7]余恒昌,邓孝等,陈碧琬.矿井地热与热害治理[M].北京:煤炭工业出版社,1991
    [8]丁向阳.国外矿井降温方法及存在问题[J].东北煤炭技术,1989,(1):6-8
    [9]杨洪新.低温岩层预冷入风流技术研究与应用[J].金属矿山,2001,(295):52-53
    [10]吴中立.矿井通风与安全[M].徐州:中国矿业大学出版社,1989
    [11]李振顶,彭辉仕.矿井热害的治理方法及效果[J].煤炭科学技术,2002,30(1):22-24
    [12]张福旺,王书庆.改变通风方式治理采面热害[J].煤矿安全,1999,(11):21-23
    [13]彭担任,隋金峰,王占国.通风降温防治采面热害[J].劳动保护科学技术,1998,18(5):41-42
    [14]仉学利,高强.超深开采高热害矿井综合降温措施[J].山东煤炭科技,2000,专刊:34-36
    [15]袁强,石琴谱.回采工作面下行风通风时降温效果及其机理的研究[J].焦作矿业学院学报,1991,23,(2):1-11
    [16]袁强,石琴谱.回采工作面下行风通风时降温效果及其机理的研究(续)[J].焦作矿业学院学报,1991,24(3):29-36
    [17]石琴谱,魏平儒.下行通风降尘、降温效果考察[J].煤炭工程师,1989,(3):1-12
    [18]G.hayen A D(德),陈遂斋译.深部煤矿热害环境的治理对策[J].平煤译萃,1994,(1):37-46
    [21]平松良雄(日).通气学[M].东京:内田老鹤圃新社,1974
    [22]约阿希姆.福斯(德).矿井气候[M].刘从孝译.北京:煤炭工业出版社,1989
    [23]谢贤平.深井降温技术的新方法[J].江西有色金属,1996,10(1):7-10
    [24]朱肇琼.国内外高温矿井降温简述[J].有色金属设计,1992,(2):20-23
    [25]梅甫定.高温矿井是否进行增风降温的判别[J].煤矿设计,1992,(4):9-12
    [26]张占荣.国外矿井深部开采的有关问题及其解决的技术途径(二)[J].矿业译丛:1988
    [27]王启晋.南非金矿的降温技术[J].有色金属,1977,(6):35-38
    [28]胡春胜.矿井空调现状及评述[J].煤矿设计,1991,(5):34-39
    [29]吴先瑞,彭毓全.德国矿井降温技术考察[J].江苏煤炭,1992,(4):8-11
    [30]雷鸣,张邻楚.谢桥矿井降温方式及空调系统的探讨[J].煤炭科学技术,1997,25(1):40-44
    [31]陈碧琬.煤矿井下空调趋势[J].煤矿安全,1990,(3):28-38
    [32]Sheer T J, Correia R M. Chaplain, E. J.; Hemp, R. Research into the use of ice for cooling deep mines [A].3rd International Mine Ventilation Congress, Harrogate, Engl, Inst of Mining& Metallurgy,1984, p.277-282
    [33]Likar J, Cade J. Ventilation design of enclosed underground structures. Tunneling and Underground Space Technology 2000,15(4):477-480.
    [34]Sheer T J, Chaplain E J, Correia R M. Some recent development in the use of ice for cooling mines [J]. Journal of the Mine Ventilation Society of South Africa,1985,38(6): 18-24
    [35]Eschenburg H M W, Middleton, J. V. G. et al.1000 Ton per day ice plant for underground cooling at Harmony gold mine[J]. International Journal of Refrigeration,1986,9(6): 357-361
    [36]Eschenburg H M W, Hemp, R. et al. Use of ice for underground cooling at Harmony gold mine[J]. South African Inst of Mining& Metallurgy,1986,(1):203-210
    [37]Voss J. Use of ice for air cooling [J]. Glueckauf& Translation,1987,123(7):176-181
    [38]亨普R.矿井冷却用的29MW冰冷系统[A].董维武译.第四届国际矿井通风会议论文集,1989
    [39]威利R J M.南非金矿采用新的降温技术[J].刘组春译.世界煤炭技术,1988,(8):11-16
    [40]石建中,刘堂文.深井冰冷冻系统[J].工业安全与防尘,2001,27(12):14-15
    [41]Sheer T J. Pneumatic conveying of ice particles through mine-shaft pipelines [J]. Power Technology,1995,85(3):203-219
    [42]Fujita T. Hydraulic transport of ice-water mixtures [J]. Trans of the JAR,1993,10(3): 349-356
    [43]Correia R M, Sheer T J, Chaplain, E. J. Pneumatic conveying of ice into deep mines [J]. Journal of Pipelines,1987,6(2):155-167
    [44]王景刚,乔华,冯如彬.深井降温冰冷却系统的应用[J].暖通空调,2000,30(4):76-77
    [45]Pherson M J. Subsurface ventilation and environmental engineering [M]. London: Chapman&Hall,1993
    [46]Stewart. W E, Gute. G D, Chandrasekharan. J, Saunders. C K. Modeling of the melting process of ice stores in rectangular thermal energy storage tanks with multiple ice openings [J]. ASHRAE Transactions.1995,101(1):66-78
    [47]Stewart W E, Gute. G D, Saunders. C K. Ice-melting and melt water discharge temperature characteristics of packed ice beds for rectangular storage tanks [J]. ASHRAE Transactions. 1995,101(1):79-89
    [48]Stewart W E, Saunders. C K., Gute. G. D, Stickler. L A. Icepack-modeling the ice-filling and ice-melting processes of thermal energy storage tanks [J]. ASHRAE Transactions. 1995,101(1):1335-1338
    [49]王景刚,冯如彬,乔华.粒状冰融解实验研究[J].暖通空调,2001,31(2):5-8
    [50]陆耀庆.实用供热空调设计手册[M].北京:中国建筑工业出版社,1993
    [51]赵荣义,范存养,薛殿华等.空气调节[M].北京:中国建筑工业出版社,1994
    [52]清华大学,同济大学,西安冶金建筑学院等.空气调节[M].北京:中国建工业出版社,1986
    [53]木村建一.空气调节的科学基础[M].单寄平译.北京:中国建筑工业出版社,1981
    [54]井上宇市.空气调节手册[M].范存养等译.北京:中国建筑工业出版社,1986
    [55]机电部第十设计研究院.空气调节设计手册[M].北京:中国建筑工业出版社,1986
    [56]薛殿华.空气调节[M].北京:清华大学出版社,1991
    [57]刘何清,吴超,王卫军等,矿井降温技术研究评述[J].金属矿山,2005,(6):43-46
    [58]Starfield, A.M. The Flow of Heat into the Advancing Stope [J]. Mine Vent. Soc. S. Afr,
    1966,19:13-18
    [59]Fisecor Steve. Modern diesels emit less and perform better[J]. Coal Age,1996, 105(10):40-42
    [60]Gutzwiler Les, Kuli, Thomas J. Coal mine ventilation returns to centrifugal fans[J]. Mining Engineering,1999,51(9):34-36
    [61]Jankowski J A, Colinet J F. Update on face-ventilation research for improved longwall-dust control [J]. Mining Engineering,2000,51(3):45-52
    [62]Mahdi A A, Mcpherson M J. An introduction to automatic control of mine ventilation systems [J]. Min.Technol,1971,53:5-10
    [63]Mutmansky J M, WangAiping. Patterns of methane emission and their effects on mining costs in underground mining operations [J]. Mining Engineering,1999,51(1):65-70
    [64]New mesh systems add flexibility to ventilation controls and rib protection [J]. Coal Age, 1996,104(3):40
    [65]Petrov N N. Methods of problem solution and technique development of mine ventilation [P]. Fiziko-tekhnicheskie Problem Razrabotki Poleznykh Iskopaemykh n 2Mar-Apr,1994,2: 117-127
    [66]Trutwin W. Use of digital computers for the study of non-steady states and automatic control problems in mine ventilation networks[J]. Internet, J. RockMech. Min. Sci. Geomech,1972,9:289-323
    [67]Vutukuri V S. Air leakage in ventilation ducting and the design of auxiliary ventilation systems [J]. Mining Engineer,1983,143 (262):37-43
    [68]Wala A M, Stoltz J R, Thompson E. Natural ventilation pressures in a deep salt mine-a case study [J]. Mining Engineering,2002,54 (3):37-42
    [69]Wala Andrzej M. Teaching the principles of mine fire using an intelligent computer-aided instruction [J]. Proceedings-Frontiers in Education Conference,1996,3:1391-1396
    [70]杨德源.矿井风流热交换[J].煤矿安全,1980,(9):21-27
    [71]杨德源.矿井风流热交换[J].煤矿安全,1980,(10):8-14
    [72]王英敏,朱毅.计算机仿真在巷道围岩与风流热交换研究中的应用[J].煤矿安全,1984,(6):1-9
    [73]平松,天野,小门.井下风流温度及湿度的预测计算法[J].周芬如译.煤矿安全,1981,(5):48-53
    [74]岑衍强,胡春胜,侯祺棕,井巷围岩与风流间不稳定换热系数的探讨[J].阜新矿业学院学报,1987,6(3):105-114
    [75]岑衍强,侯祺棕.矿内热环境工程[M].武汉工业大学出版社1989.
    [76]侯祺棕,沈伯雄.井巷围岩与风流间热湿交换的温湿度预测模型[J].武汉工业大学学报,1997,(3):123-127
    [77]刘景秀.矿山进风井风温变化规律探析[J].武汉理工大学学报,2002,24(1):75-77
    [78]程卫民,陈平.我国煤矿矿井空调的现状及亟待解决的问题[J].暖通空调,1997,(1):17-19
    [79]吴世跃,王英敏.干壁巷道传热系数的研究[J].铀矿冶,1989,(4):55-58
    [80]吴世跃,王英敏.湿壁巷道传热系统及传质系数的研究[J].煤炭学报,1993,18(1):41-50
    [81]秦跃平,秦凤华,党海政.用差分法解算巷道围岩与风流不稳定换热准数[J].湘潭矿业学院学报,1998,13(1):6-10
    [82]吴强,秦跃平,郭亮等.掘进工作面围岩散热的有限元计算[J].中国安全科学学报,2002,12(6):33-36
    [83]周西华,王继仁,卢国斌等.回采工作面温度场分布规律的数值模拟[J].煤炭学报,2002,27(1):25-28
    [84]周西华,王继仁,单亚飞等,掘进巷道风流温度分布规律的数值模拟[J].中国安全科学学报,2002,12(2):19-23
    [85]English L M, Wang Y J. Characteristic curves revisited:a more logical approach to determing operating points [J]. Mining Engineering (Littleton, Colorado),1998,50(3): 65-68
    [86]Brake D J, Rick. Fan total pressure or fan static pressure:Which is correct when solving ventilation problems [J]. Mine Ventilation Society of South Africa,2002,55(1):6-11
    [87]Chow W K. On ventilation design for underground car park [J]. Tunneling and Underground Space Technology,1995,10:225-245
    [88]Auld G An estimation of fan performance for leaky ventilation ducts [J]. Tunneling and Underground Space Technology incorporating Trenchless Technology Research,2004, 539-549
    [89]Hartman H L, Mutmansky J M, Ramani R V, et al. Mine Ventilation and Air Conditioning, Third Edition [M], John Wiley and Sons,1997
    [90]高建良,张生华,杨明.对显热比变化规律的理论分析[J].中国安全科学学报,2004,14(3):96-98
    [91]高建良,张学博.围岩散热计算及壁面水分蒸发的处理[J].中国安全科学学报,2006,16(9):23-28
    [92]高建良.巷道断面与风筒断面形状对局部通风工作面热环境模拟结果的影响[J].焦作工学院学报,2004,23(1):1-6
    [93]高建良,魏平儒.掘进巷道风流热环境的数值模拟[J].煤炭学报,2006,31(2):201-205
    [94]高建良,张学博.潮湿巷道风流温度与湿度变化规律分析[J].中国安全科学学报,2007,17(4):136-139
    [95]高建良,张学博.潮湿巷道风流温度及湿度计算方法研究[J].中国安全科学学报,2007,17(6):114-119
    [96]高建良,杨明.巷道围岩温度分布及调热圈半径的影响因素分析[J].中国安全科学学报,2005,15(2):73-76
    [97]侯祺棕,沈伯雄.调热圈半径及其温度场的数值解算模型[J].湘潭矿业学院学报,1997,12(1):9-16
    [98]张麟.高温热害矿井巷道隔热支护技术及发展前景[J].世界煤炭技术,1994(10):
    [99]梁德辉.国外有色金属高温矿井的通风降温技术[J].中国矿山工程,1988(5):8-15
    [100]冯兴隆,陈日辉.国内外深井降温技术研究和进展[J].云南冶金,2005,34(5):7-10
    [101]郭文兵,涂兴子,姚荣等.深井煤矿巷道隔热材料研究[J].煤炭科学技术,2003,31(12):23-27
    [102]姚嵘,张玉波,王凯等,粉煤灰对深井煤矿巷道隔热材料性能的影响[J].煤炭转化,2002,25(3):89-91
    [103]袁非亮,董呈杰,蒋良富等,浅析双层空气层隔热风筒[J].南方金属,2005(6):22-26
    [104]张林、杜伯超,桂开文.矿井制冷系统管道保冷技术的研究[J].湘潭矿业学院学报,1992,7(s1):23-30
    [105]周西华,单亚飞,王继仁.井巷围岩与风流的不稳定换热[J].辽宁工程技术大学学报,2002,21(3):264-265
    [106]张汉君.地温预热过程中井巷调热圈若干问题的探讨[J].黄金,1992,13(6):19-20
    [107]A.H谢尔班(苏).矿井降温指南[M].黄翰文译.北京:煤炭工业出版社,1982
    [108]平松良雄(日),通风学(中译本)[M].北京:煤炭工业出版社,1981
    [109]岑衍强,内野健一,井上雅弘.矿内通风温度预测计算中热力学常数的研究[J].武汉建材学院学报,1984(3):251-265
    [110]杨世铭.传热学[M].北京:高等教育出版社,1980
    [111]章熙民,任泽霈,梅飞鸣等.传热学[M].北京:中国建筑工业出版社,1985
    [112]McAdams, W.H. Heat Transmissiong [M].3rd Ed., McGraw-Hill Book Company, New York,1954.
    [113]Holman, J.P. Heat Transfer [M], McGraw-Hill Book Company, New York,1981.
    [114]E.M.斯帕罗,R.D.塞斯著,,辐射传热[M].顾传保,张学学译.北京:高等教育出版社,1982.
    [115]杨贤荣,马庆芳.辐射换热角系数手册[M].北京:国防工业出版社,1982.
    [116]雷柯夫A..B.热传导理论[M].裘烈钧,丁履德译.北京:高等教育出版社,1956.
    [117]J.P.霍尔曼.传热学[M].马庆芳,马重芳等译.北京:人民教育出版社,1980.
    [118]Wiebelt, J.A. Engineering Radiation Heat Transfer, Holt, Rinehart and Winston, Inc.1966.
    [119]Schneider, P.J., Conduction Heat Transfer [M]. Addison-Wesley Publishing Company, 1955.
    [120]钱滨江,伍贻文.简明传热手册[M].北京:高等教育出版社,1984.
    [121]B.A.奥西波娃.传热学实验研究[M].蒋章焰、王传院译.北京:高等教育出版社,1982.
    [122]J.R.威尔蒂著.工程传热学[M].任泽霈、罗棣庵译.北京:人民教育出版社,1982.
    [123]Kays, W.M. Crawford, M.E. Convective Heat and Mass Transfer [M]. Second Ed. McGraw-Hill Book Company, New York,1980.
    [124]Rohsenow, W.M. and Hartnett, J.P. Handbook of Heat Transfer [M]. McGraw-Hill Book Company, New York,1975
    [125]Warner, C. Y. and Arpaci, V. S., Int. J. Heat and Mass Transfer[M].1968
    [126]Churchill, S. W., Chu, H. H. S., Int. J. Heat and Mass Transfer[M].1975
    [128]Yang, S. M., International Symposium on Heat Transfer. Beijing,1985, paper No.Ⅰ-1.
    [129]连之伟.热质交换原理与设备[M].北京:中国建筑工业出版社,2006
    [130]侯棋棕.高温矿井气温计算探讨[J].煤炭工程,1989(1):10-14
    [131]侯棋棕.平顶山八矿采面风流热力规律研究[J].煤炭科学技术,1987(10):12-15
    [132]黄翰文.矿井风温预测的统计研究[J].煤炭学报,1981(3):50-59
    [133]张素芬.高温采面热力特性的研究[J].煤炭科学技术,1991(9):30-61
    [134]张国枢,王省身.火风压的计算及其影响因素分析[J].中国矿业大学学报,1983(3):66-79
    [135]董海燕.矿井对流换热系数计算及其影响因素分析[J].矿业安全与环保,1987(2):30-37
    [136]宋学义,屠佳忠.热水型高温采场通风参数的研究[J].湖南冶金,1987(4):12-16
    [137]王英敏.矿内空气动力学与矿井通风系统[M].冶金工业出版社,1994
    [138]孟庆林,陈启高,冉茂裕等.关于蒸发换热系数he的证明[J].太阳能学报,1999,20(2):216-219
    [139]Smithsonian. Smithsonian Meteorological Tables [s]. Washington:Smithsonian Institution.1984
    [140]ASHRAE. ASHRAE Handbook [Z]. Atlanta:American Society of Heating, Refrigerating and Air-conditioning Engineers Inc.2000
    [141]周西华,梁茵,王小毛等.饱和水蒸汽分压力经验公式比较[J].辽宁工程技术大学学报,2007,26(3):331-333
    [142]孟庆林.建筑外表面被动蒸发冷却研究[D].重庆建筑大学,1995
    [143]黄书翔,孙京凯,陈金玉.浅谈唐口煤矿降温技术[J].煤矿安全,2007(6):63-65
    [144]井上雅弘等.湿润巷道热传导计算[J],侯棋棕译.采矿技术,1985,(7):28-29
    [145]日本九州煤矿技术联盟.煤矿井下热环境问题(第二部应用篇)[R].福冈:报告会九州煤矿技术联盟,1984
    [146]井上雅弘.煤矿井下热环境条件预测研究[D].福冈:九州大学,1984。
    [147]田岛茫平.采煤工作面通风温度实用计算法[J].周相臣译.日本矿业会志,1980,96(1110):565-567
    [149]刘玉顺.矿井风流温度的近似计算[J].黄金,1991,12(7):24-27
    [150]汪峰,王雷,于宝海等.高温矿井风流热力参数测定及其变化规律和热湿源的分析[J].煤矿现代化,2004,60(3):51-53
    [151]杨胜强,郭海泉,孙兆东等.三河尖高温矿井风流热力参数测定及变化规律分析[J].江苏煤炭,1995,(3):41-43
    [152]赵以蕙.矿井通风与空气调节[M].徐州:中国矿业大学出版社,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700