反射式日冕仪的设计与杂散光分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日冕是太阳大气的最外层,从过渡区顶部向外延伸到几个太阳半径,甚至更远的区域。日冕活动对地球周围空间环境变化影响重大,是空间天气预报的关键部分之一,对日冕的观测研究对太阳物理学、人类活动乃至对国家经济生活和太阳物理学研究具有重要意义。
     Lyman-alpha(拉曼阿尔法)辐射在太阳物理学和日冕物理学中占据了非常重要的地位,作为色球层光谱的主要成分,可以通过拉曼阿尔法光谱的观测分析出色球层的主要结构。对于日冕成像最大的困难是:日冕的亮度相对太阳光球层和色球场而言极为微弱,因此日冕仪的设计需要重点考虑日面照射到仪器上所引起的入瞳边缘衍射和主镜面自身散射的问题。
     本文首先介绍了日冕仪的发展历史和透射式日冕仪的基本原理,针对外遮光日冕仪的外部遮光器圆盘遮挡效果和边缘衍射光线进行了理论性计算。
     针对日冕仪反射式结构,提出了入瞳位置假设,并在轴上近似条件下计算了主物镜,次镜和成像反射镜的位置,进一步的计算和讨论了全反射式日冕仪在轴上理想成像近似时,入瞳成像即里奥光阑的位置是场镜和成像镜的焦距与间距的函数;在相同的近似条件下,得到了里奥光阑的尺寸计算公式,是关于三个物镜的焦距和间距的函数,这对以后的全反射日冕仪设计一定的参考价值。
     设计了口径为40mm、焦距为590mm的全反射式拉曼阿尔法日冕仪,传递函数接近衍射极限。利用光学分析软件建模分析了杂光情况:像面上接收入瞳边缘衍射能量约为入射能量的6.8×10-9,提出主镜面的加工要求。
     设计并装调一套球面反射式日冕仪实验装置,建立光学分析仿真模型,采用点源透射率PST曲线的方法测量了此日冕仪的杂散光水平,通过对比实际像面上子午面的杂光分布曲线,验证了仿真模型的有效性。
     最后对比了计算和测量光学系统杂散光的方法,根据杂光系数和PST函数关系式计算得到反射式日冕仪实验装置的杂光系数为0.278。
The corona is the outermost layers of the solar atmosphere, extending outwardfrom the top transition region to several radius of the sun, and even farther. Solarcorona observation is a key part of the space weather forecast,and has greatsignificance to the national economy and the solar physics research.
     Lyman-Alpha radiation, as the main components of the chromospheres spectrumoccupies very important position in solar physics and corona physics, by LymanAlpha spectrum analysis of the observation can get main structure of solarchromospheres. For corona imaging, the most difficulty is: the brightness of thecorona is too small, thus coronagraph design need serious consideration about theinstrument pupil edge diffraction and scattering caused by primary mirror, at thesame time take the initiative to increase the internal structure such as shielding andLyot stop.
     This article introduces the history of coronagraph, according to Lyot’ s coronadesign criterion, introduces the basic principle of transmission solar coronagraphwith external occulter. There is a theoretical calculation about block effect and edgediffraction of external disk, and a calculation about ghost position and strength madeby objective of multiple reflections which shows that a appropriate change positionof the Lyot spot can improve the effect of shade.
     There is a further introduction about reflection solar coronagraph and put forwarda hypothesis about the pupil position, and the approximate calculation of the positionof the mirrors under a coaxial approximation, calculation the position of the aperturewhich is a function about the focal lengths of field mirror and third mirror, hasnothing to do with the focal length of objective mirror. Under the sameapproximation condition, the size formula of the Lyot aperture which is a function ofthree mirrors’ focal lengths and distance is calculated. The calculations have aguiding effect for reflection coronagraph design.
     In this paper, a reflection Lyman alpha coronagraph which diameter is40mm withfocal length is590mm has been designed, with a transfer function is close to thediffraction limitation. Analyze the stray light of the coronagraph via a model buildby optical analysis software. The edge diffraction energy from the pupil received atthe image plant. According an empirical formula, the object mirror‘s surface rootmean square (RMS) roughness values should be below0.2nm.
     A new sphere reflection coronagraph experimental device is designed andmanufactured, which spatial resolution of the system is17.96per millimeter. Thestray light distribution curves are got in meridional direction of the simulation modelby using the Trace pro software to build the coronagraph simulation model, andcompared with experimental data. The compared result indicates the simulationmodel is reasonable. The coronagraph system stray light point source transmittancecurves are obtained and the corresponding veiling glare index of the device is0.278.
引文
[1] Singh A K, Siingh D, Singh R P. Space weather: physics, effects andpredictability[J]. Surveys in geophysics,2010,31(6):581-638.
    [2]范全林冯尚学,2005.空间天气与航空安全,[J]气象水文,256-58
    [3]王劲松,吕建永,2009,12空间天气[M]气象出版社,2010.1-3
    [4]林元章.太阳物理导论[M].北京:科学出版社,2000.1-6.
    [5]李保权,朱光武,林华安,等.天基X射线掠入射成像望远镜发展现状[J].空间科学学报,2004,24(4):302-311.
    [6] Gardner L, Kohl J, Cranmer S, et al. The advanced solar coronal eXplorermission (ASCE)[C]. SPIE,1999,3764:134~146.
    [7] Llebaria A, Lamy P, Bout M. Lessons learned from the SOHO LASCO-C2calibration [C]. SPIE,2003,5171:26~36.
    [8]王家龙.90年代天体物理学[M].北京:高等教育出版社,1996.79-81
    [9]王水,李波,赵寄昆.日冕物质抛射[J].天文学进展,2000,(3):192.doi:10.3969/j.issn.1000-8349.2000.03.002.
    [10] Aschwanden M J. Physics of the solar corona-an introduction [M].Berlin:springer-verlag,2004.3-27
    [11]胡中为,赵海斌,姚进生.日全食时的日冕光学观测[J].科学通报,2009,(13):1841-1849
    [12] Martin D A, Gordon N J R. Magnetic fields and the structure of the solar corona[J].Solar Physics,1969.131-149.doi:10.1007/BF00145734.
    [13]章振大.日冕物理学[M].北京:科学出版社,2000.54-98
    [14] Domingo V, Fleck B, Poland A. The SOHO Mission: an overview [J].SolarPhysics,1995.1-37.doi:10.1007/BF00733425.
    [15]Schwann T. C Y, Donovan R, Marsche E. Space weather eXplorer-The KuaFumission[J].Advances in Space Research,2008,(1):190-209. doi:10.1016/j.asr.2007.04.049
    [16]http://imagine.gsfc.nasa.gov/docs/science/mysteries_l1/corona.html
    [17]Friedman G M, Sanders J E. Origin and occurrence of dolostones [J].Developments in sedimentology,1967,9:267-348.
    [18]http://nssdc.gsfc.nasa.gov/nmc/eXperimentDisplay.do?id=1971-083A-01
    [19]http://en.wikipedia.org/wiki/Skylab
    [20]Bohlin J D, Frost K J, Burr P T, et al. Solar maximum mission[J]. Solar Physics,1980,65(1):5-14.
    [21]Burkepile J T, Cyr O C S. A revised and expanded catalogue of mass ejectionsobserved by the Solar Maximum Mission coronagraph [J]. NASA STI/ReconTechnical Report N,1993,93(26):556.
    [22]Hiei E, Okamoto T, Tanaka K. Observation of the flare of12June1982byNorikura coronagraph and Hinotori[J]. Solar physics,1983,86(1-2):185-191.
    [23]Tsuneta S, Hara H, Shimizu T, et al. Observation of a solar flare at the limb withthe YOHKOH Soft X-ray Telescope[J]. Publications of the Astronomical Society ofJapan,1992,44: L63-L69.
    [24]Domingo V, Fleck B, Poland A I. SOHO: the solar and heliosphericobservatory[J]. Space Science Reviews,1995,72(1-2):81-84.
    [25]Brueckner G E, Howard R A, Koomen M J, et al. The large angle spectroscopiccoronagraph (LASCO)[J]. Solar Physics,1995,162(1-2):357-402.
    [26]Kaiser M L, Kucera T A, Davila J M, et al. The STEREO mission: Anintroduction[M]//The STEREO Mission. Springer New York,2008:5-16.
    [27]Howard R A, Moses J D, Vourlidas A, et al. Sun Earth connection coronal andheliospheric investigation (SECCHI)[J]. Space Science Reviews,2008,136(1-4):67-115.
    [28]Thompson W T, Davila J M, Fisher R R, et al. COR1inner coronagraph forSTEREO-SECCHI[C]//Astronomical Telescopes and Instrumentation. InternationalSociety for Optics and Photonics,2003:1-11.
    [29]刘煜.国内首架日冕仪落户云南丽江[J].天文爱好者,2014(1):60-63.
    [30]Tu C Y, Schwenn R, Donovan E, et al. Space weather eXplorer–The KuaFumission[J]. Advances in Space Research,2008,41(1):190-209.
    [31]Rense W A. Intensity of lyman-alpha line in the solar spectrum[J]. PhysicalReview,1953,91(2):299.
    [32]Lyot B. The study of the solar corona and prominences without eclipses (GeorgeDarwin Lecture,1939)[J]. Monthly Notices of the Royal Astronomical Society,1939,99:538.
    [33]Bohlin J D, Koomen M J, Tousey R. Rocket-coronagraph photometry of the7March,1970corona from3to8.5R s[J]. Solar Physics,1971,21(2):408-417.
    [34]Evans J W. Observations of the Solar Emission Corona Outside Eclipse[J].Publications of the Astronomical Society of the Pacific,1957:421-426.
    [35]Phillips K J H, Read P D, Gallagher P T, et al. SECIS: The solar eclipse coronaleclipse imaging system[J]. Solar Physics,2000,193(1-2):259-271.
    [36]Fisher R R, Lee R H, MacQueen R M, et al. New Mauna Loa coronagraphsystems[J]. Applied optics,1981,20(6):1094-1101.
    [37]Illing R M E, Hundhausen A J. Observation of a coronal transient from1.2to6solar radii[J]. Journal of Geophysical Research: Space Physics (1978–2012),1985,90(A1):275-282.
    [38]Fort B, Morel C, Spaak G. The reduction of scattered light in an externalocculting disk coronagraph[J]. Astronomy and Astrophysics,1978,63:243-246.
    [39]Newkirk Jr G, Bohlin D. Reduction of scattered light in the coronagraph[J].Applied optics,1963,2(2):131-140.
    [40]Boivin L P. Reduction of diffraction errors in radiometry by means of toothedapertures[J]. Applied optics,1978,17(20):3323-3328.
    [41]Thompson W T, Davila J M, Fisher R R, et al. COR1inner coronagraph forSTEREO-SECCHI[C]//Astronomical Telescopes and Instrumentation. InternationalSociety for Optics and Photonics,2003:1-11.
    [42]Newkirk Jr G, Bohlin D. Scattered light in an externally occulted coronagraph[J]. Applied Optics,1964,3(4):543_1.
    [43]Anderson I M, Harju J, Knee L B G, et al. A molecular disk and dense outflow inCorona Australis[J]. Astronomy and Astrophysics,1997,321:575-590.
    [44]Kohl J H, Noci G, Antonucci E, et al. Measurements of HI and O VI velocitydistributions in the extended solar corona with UVCS/SOHO and UVCS/SPARTAN201[J]. Advances in Space Research,1997,20(1):3-14.
    [45]Baoyin H, Mcinnes C R. Solar sail halo orbits at the Sun–Earth artificial L1point[J]. Celestial Mechanics and Dynamical Astronomy,2006,94(2):155-171.
    [46]Vives S, Lamy P L, Vial J C. Optical design of the Lyman alpha coronagraph forthe Lyot microsatellite[C]//Optical Science and Technology, SPIE's48th AnnualMeeting. International Society for Optics and Photonics,2004:298-306.
    [47]李达,孟艳丽,陈波.反射式拉曼阿尔法日冕仪杂光分析[J].光学学报,2012,32(8):167-171.
    [48]Reininger F M. Stray light performance optimization through systemdesign[C]//SPIE's1994International Symposium on Optics, Imaging, andInstrumentation. International Society for Optics and Photonics,1994:17-28.
    [49]丁福建.空间相机杂散光抑制和外遮光罩结构研究[D].上海中国科学院海生命科学研究院,2000
    [50]郝云彩,肖淑琴,王丽霞.星载光学遥感器消杂光技术现状与发展[J].中国空间科学技术,1995,3:40-50
    [51]Mehalick K I, Morbey C L. Stray light analysis of the Lyman FUSE fine errorsensor[C]//SPIE's1996International Symposium on Optical Science, Engineering,and Instrumentation. International Society for Optics and Photonics,1996:339-349.
    [52]Plesseria J Y, Mazy E, Defise J M, et al. Straylight analysis of the external baffleof COROT[C]//5th International Conference on Space Optics.2004,554:543-550.
    [53]Lee J, Rogers J D, Liang C, et al. Stray-light analysis for multimodal miniaturemicroscope[C]//International Symposium on Optical Science and Technology.International Society for Optics and Photonics,2002:53-61.
    [54]Stauder J L, Esplin R W, Zollinger L, et al. Stray-light analysis of the SABERtelescope[C]//SPIE's1995International Symposium on Optical Science, Engineering,and Instrumentation. International Society for Optics and Photonics,1995:264-270.
    [55]高郭鹏.双反射系统的杂散光抑制研究[D].中国科学院研究生院(西安光学精密机械研究所),2009.
    [56]Breault R P, Greynolds A W, Gauvin M A. Stray Light Analysiswith Apart/Pade.Version8.7[C]//30th Annual Technical Symposium. International Society for Opticsand Photonics,1987:105-125.
    [57]Fender J S. Stray radiation analysis programs (GUERAP III-APART/PADE): auser's viewpoint[C]//1980Huntsville Technical Symposium. International Societyfor Optics and Photonics,1981:94-103.
    [58]岑兆丰,李晓彤,朱启华.光学系统杂散光分析[J].红外与激光工程,2007,36(3):300-304.Ions
    [59]Pompea S M, Shepard D F, Anderson S. BRDF measurements at6328angstroms and10.6micrometers of optical black surfaces for spacetelescopes[C]//32nd Annual Technical Symposium. International Society for Opticsand Photonics,1989:236-247.
    [60]Stover J C. Optical scattering: measurement and analysis[M]. Bellingham,Washington: SPIE optical engineering press,1995.
    [61]Asmail C. Bidirectional scattering distribution function (BSDF): a systematizedbibliography[J]. J. of Research of the National Institute of Standards and Technology,1991,96(2):512-223.
    [62]史光辉.消除卡塞格林系统杂散光的措施[J].光学精密工程,1997(05)
    [63]International organization for standardization1994. ISO9358:1994: Optics andoptical instruments–Veiling glare of image forming systems–Definitions andmethods of measurement. International Organization for Standardization, Geneva,Switzerland.
    [64]Liu B Q, Zhao X L, Han Y Z, er al. Research of real-time measureing system forveiling glare indeX of optical system [C]. SPIE,2002,4927:533-537.
    [65]Stauder J, Zollinger R E. Stray light analysis of the SABER telescope[C]. SPIE,1995,2553,264-270.
    [66]李辉.光学杂光分析方法研究[D].西安,中国科学院西安光学精密机械研究所,1996.
    [67]Breault R P. Stray light analysis of CRISTA the CRyougrnic infraredspectrometer and telescope of the atmosphere[C]. SPIE,1990,1331,64-80.
    [68]李辉,李英才,薛鸣球.光学系统黑斑法杂光系数和PST间的联系[J].光子学报,1996,25(10),920-923.
    [69]车念增,阎达远.辐照度学与光度学[M].北京,北京理工大学出版社,1990,23-38.
    [70]郁道银,谈恒英.工程光学[M].北京,机械工业出版社,2007.
    [71]Bergener D W, Pompea S M, Shepard D F et al. Stray light rejectionperformance of SIRTF:A Comparison[C]. SPIE,1984:65-72.
    [72]Robert P B. Current technology of stray light[C]. SPIE,1986,675:2-12.
    [73]刘军,张斌珍.微弱信号探测技术[M].北京,电子工业出版社,2005,107-120.
    [74]杨文志等.光学测量[M].北京,北京理工大学出版社,1995,248-251.
    [75]Pompea S F, Pfisterer R N, Morgan J S. A stray light analysis of the sloan digitalsky point observatory3.5-meter telescope system [C]. SPIE,2002,4842,128-123.
    [76]Pompea M, Mentzell J E, Sigemend W E. Astray light analysis of the sloandigital sky survey telescope [C]. SPIE,1992,1753,172-182.
    [77]钟兴,贾继强.空间相机消杂光设计及仿真[J].光学精密工程,2009,17(3),621-625.
    [78]Seals R D, McIntosh M B. Advanced baffles: knife-edged diffuse-absorptive anddual reflective baffles[C]. SPIE,1992,1753:196-208.
    [79]Lambda Research Corporation. EO-1Stray Light Analysis Report No.3[R].1998,1-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700