薄膜厚度的α能损法测量和γ谱探测效率的MCNP模拟描述方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄膜厚度分析在材料科学、半导体技术、光学器件及生物材料中历来受到人们的重视,随着薄膜技术的应用与发展,越来越需要有对膜厚更加准确和灵敏的测量方法和技术。通常采用的膜厚光学测量法只能给出透明材料的线性厚度,而不能对非透明材料进行厚度测量,也不能直接给出被测材料的质量厚度。由于重带电粒子穿过物质时运动方向几乎不发生改变,而粒子能量又是随穿越路径连续发生变化,因此通过测量粒子穿过薄膜后的能量损失,即可灵敏地测出薄膜的质量厚度。这种薄膜质量厚度的能损测量法,需要有已知能量的单能重带电粒子,用加速器产生这种粒子非常昂贵和不方便,由放射性核放出的α粒子满足这一单能性的要求,这种粒子源的使用也很方便,因此本文选择对用α粒子测量薄膜厚度中的问题进行研究,拟为用α能法测量薄膜厚度提供更准确的方法。
     论文分析了影响膜厚测量准确性的因素来源,认为主要原因有:一是α粒子穿过膜后的能量损失的测量误差;二是由能量损失的测量值计算膜厚时所采用的α粒子在该材料中的阻止本领的不准确。针对第一种原因,论文提出应在测量α粒子的能谱仪中,采用能量分辨率高的金硅面垒探测器和放大倍数稳定的线性脉冲放大器,以及用精密稳定的脉冲发生器对谱仪进行能量刻度,并从实验上给出了用精密脉冲发生器得到的能量线性很好的刻度曲线。针对第二种原因,论文采用分层计算法得到薄膜的总厚度,即把薄膜厚度看成由若干层构成,由于每一层非常薄,以至α粒子在该层中的能量损失率为一常数,这一常数由α粒子进入这一层的能量决定。结果表明,由分层法计算得到的Mylar膜厚度测量结果比通常不分层计算得到的结果的准确性可以提高70%以上。此外,为了扩大用α粒子能损法测量薄膜厚度的量程,本文分析了探测器所加电压大小和测量室真空度的高低对测量量程的影响,为扩大薄膜厚度测量量程提供了有意义的参考。
     土壤样品中的放射性活度用高纯锗(HPGe)γ谱仪测量是一种最准确的了解环境放射性水平的方法,也是一种研究水土流失的有效方法。该种测量方法是将待测样品与已知活度的标准样品进行比较测量得到的,当待测样品在所装样品量的多少和密度与标准样品的不一致时要产生测量误差,用蒙特卡罗(M.C)方法模拟计算可以有效地减小这一误差,该方法已在修正用γ谱仪测量土壤样品的放射性活度误差中得到了广泛的应用。用该方法计算通常情况下需对系统进行详尽的描述,特别是当样品屏蔽室的构成复杂时,这种描述就更加烦琐和容易出现描述错误。本文提出了一种简化描述的方法,即在计算用HPGe探测器对土壤样品的探测效率时,可以简化对样品屏蔽室部分的描述。通过两种描述方法的对比计算,证明了所提出的简化描述方法的正确性和方便性。该结果为用M.C方法模拟计算γ谱仪对样品发射γ射线的探测效率提供了一种方便的系统描述方法。
Analysis of the film thickness in material science, semiconductor technology, optical devices and biomaterials has always been attracting people's attention, With development of membrane technology and requirement of application, the increasing need for more accurate and more sensitivity measurement technology of film thickness. Commonly, the optical film thickness measurement method is only used for linear transparent material thickness measurement, and can also not directly measure the thickness of material's quality. Due to the direction of motion of the heavy charged particles passing the material almost being not shift and the particle energy being continuously variation with the crossing paths' charge, it can be sensitive to detect the thickness of film quality by measuring energy loss of particles through film. This method needs for knowing single-energy heavy charged particles, but it's very expensive and inconvenient for accelerations to produce this kind of particles. By radioactive nucleus releasing Alpha particles can meet the single-energy requirements and this kind of particles is very convenient to use. So we choose to study on the issues using Alpha particles to measure film thickness in order to provide a more accurate method for using the energy loss to measurement for film thickness.
     This paper analyzes analyses the source of factors impacting of film thickness measurement accuracy, the main reasons including: First, measurement error of energy loss of Alpha particles through the film, the Second, inaccurate prevention capability of Alpha particles in the material which are adopted to calculate thickness of film using the method of measuring energy loss.. A response to the first reason, in the energy spectrometer, the paper put forward to use high-energy resolution Au-Si surface barrier detector and stable magnification linear amplifier and exact stable the pulse generator to achieve energy scale for spectrograph and get very good energy linearity scale curve for precision pulse generator. A response to the second reason, this paper calculates the total thickness of thin films by delamination, as the film thickness constituted by a number of layers, each layer is very thin. Alpha particles as well as the level of energy loss rate for a constant, constant from the Alpha particles enter this level of energy decisions. The results showed that Layered calculated by the Mylar film thickness measurement results are usually not stratified than the calculated accuracy of the results can more than a 20%increase. Furthermore, in order to expand use of Alpha particles can damage film thickness measurement of the range, This paper analyzes the extra voltage detector size and vacuum measurement of the level of the measuring range, To broaden the film thickness measurement range to provide meaningful information..
     Soil samples of radioactivity of high purity germanium(HPGe)γspectrometer measurement is the most accurate understanding of the environment of radioactive standards, as well as a study of soil erosion in an effective manner. The types of measurement is known to the unknown sample and the standard sample activity compared to the measured, When the analyse in the sample loaded samples of the number and density of the samples and standards to produce inconsistent measurement error, Monte Carlo(M. C) simulation method can effectively reduce the error, The method has been used in the amendmentγspectrometer to measure soil samples radioactivity error has been widely used. Using the method normally required under the system detailed description, especially when the sample room shielding a complex, this description of the more cumbersome and prone to error description. This paper presents a simplified description of the method that is used in the calculation of HPGe detectors on soil samples detection efficiency, Samples can be simplified to shield part of the room description. Two methods described by contrast, proved that the proposed simplified description of the accuracy and convenience. The results for the use of simulation methods M.Cγemission spectrometer to sample theγ-ray detection efficiency provides a convenient system Description.
引文
[1] 谭震宇,何延才,Monte Carlo方法计算薄膜厚度测定背散射常数C(E_0)[J],山东工业大学学报,2000年12月Vol.30,(528——534)。
    [2] Niedrig H. Electron back scattering from thin films [J] J Appl Phys, 1982, 53(4): 15~49
    [3] Sheng Y Q, Munz P, SchultheissR. The determination of the thickness of ultrathin metal and semiconductor films on convention semiconductor substrates [J], Phys Star Sol, 1985,9 (a): 121~128
    [4] Schlichting D, Berger D, Niedrig H, Thickness determination of ultrathin films using back scattered electron spectra of a new to roidal electronstatic spectrometer[J], Scanning, 1999,21:197~203
    [5] 来倩茜,李戈杨,竺品芳,毛顺娟,纳米薄膜厚度的X射线测量[J]理化检验—物理分册2000年12月Vol 36 549~551
    [6] Terada S, Murakami H, Nishihagi K et al 1999 proceedings of Advanced Semiconductor Manufacturing Conference and Workshop (ASMC) (IEEE) 414
    [7] 张进城,郝跃等,基于透射谱的GaN薄膜厚度测量[J]。物理学报,2004年4月
    [8] 考林基 SOI技术——21世纪的硅集成电路技术[M]北京;科学出版社,1993:1~82
    [9] 李艳,卢殿通,SMOX材料薄膜厚度的测量和分析[J]。北京师范大学学报(自然科学版),2003年2月 Vol.39:54~57
    [10] Luna - Moreno D, De la Rosa - Cruz E, Cuevas F J. Refractive index measurement of pure and Er3 + - doped Zr02 - Si02 solgel film by using the Brewster angle technique[J]. Opt Materials, 2002, 19:275~281.
    [11] Schutzmann S, CasalboniM, Matteis F De. Refractive index measurements of thin films using both Brewster and m - line technique: A combined experimental setup [J].J Non - Crystalline Solids, 2005, 351: 1814~1818.
    [12] Shabana H M. Determination of fiml thickness and refractive index by interfeiometry[J]. Polymer Testing, 2004, 23: 695~702.
    [13] Chen K H, Hsu C C, Su D C. A method for measuring the complex refractive index and thickness of a thin metal film [J]. Appl Phys B, 2003, 77: 839~842.
    [14] Tepper T, Ross C A. Pulsed laser deposition and refractive index measurement of fully substituted bismuth iron garnet films [J].J Crystal Growth, 2003, 255: 324~331.
    [15] Jacques M Laniel, Jean - Michel Menard, Karine Turcotte. Refractive index measurements of planar chalcogenide thin film [J]. J Non - Crystalline Solids, 2003, 328:183~191.
    [16] 顾永健,刑进华 用Lloyd干涉测量薄膜的厚度和折射率[J].常数理工学院学报,2006年11月Vol.20:30~35
    [17] 王锡明等,螺旋CT在谓分区及胃臂厚度测量中的价值[J],医学影像学杂志,2001年Vol.11:290~292
    [18] 楼荣训,单能电子在铝中射程及其半吸收厚度的测定[J]。宁波大学学报(理工版),2002年6月。Vol.15:17~19
    [19] 许立梓等,用β射线在线测试薄膜厚度的计算机测量系统[J],广东工业大学学报,1999年6月。Vol.16:5~8
    [20] 徐家云,白立新等,α粒子能损法测量薄膜厚度的准确性和灵敏度[J]原子能科学技术,2005年11月。Vol.39:495~497
    [21] 陈英琦等,用γ射线能谱法测量材料的吸收系数和厚度[J],同位素,2004年2月。
    [22] 黄玉东,沈毅等,用β射线技术在线监测复合材料预浸带树脂含量[J],材料工程,1997年,第一期
    [23 许世军 薄膜厚度测控技术中的物理原理[J],物理与工程,2001年2月,VOL.11:38~41
    [24] 丁小平,刘圣康 射线检测管道垢厚方法的研究进展[J],原子核物理评论,2005年3月。VOL22 NO.1 122~124。
    [25] 巩岩等,同步辐射掠出射X射线荧光分析薄膜厚度[J],高能物理与核物理,2005年11月,VOL.29.NO.11 1104~1106。
    [26] 赵辉等,小角X射线散射结晶聚合物过渡层厚度的测量[J],物理学报,2004年4月,VOL.53.NO.4:1247~1250。
    [27] 冯仕猛等,一种软X射线多层膜界面粗糙度的计算方法[J],光学学报,2003年8月,VOLO.23 NO.8:980~983。
    [28] 张国勇,张鹏祥,测昔高温超导YBCO薄膜厚度的一种新方法[J],物理学报,2001年8月,VOL.50.NO.8:1451~1455
    [29] 卢希庭,江栋兴等,原子核物理[M],北京:高等教育出版社,2000。
    [30] 刘运祚,常用放射性核素衰变纲图[M],北京:原子能出版社(第一版),1982。
    [31] 乔录成等。高纯锗γ谱仪对环境样品探测效率的模拟计算[J],四川大学学报,2003,40(2):301
    [32] 梁勇飞等。基于用MCNP程序模拟的HPGe γ谱仪的屏蔽[J],核电子学与探测技术,2003,23(2):182
    [33] 张斌全等。蒙特卡罗方法计算用于低能光子测量的高纯锗探测器的效率[J],核电子学与探测技术,2005,25(3):274
    [34] 白立新等。中子产额活化测量法中γ—γ符合探测效率的模拟计算[J],强激光与粒子束,2004,16(4):461
    [35] 林旭升,能谱探测效率影响的模拟计算[J],汕头大学学报,1998,13(2):19
    [36] Padmanabhan, Dhanesh, et al A study using Monte Carlo simulation for failure probability calculation in reliability — based optimization[J].Optim Eng. 2006,7(3):297-316.
    [37] Wu, lun-qiang, et al. Primary study on holdup measurement of ~(235)U in pipe using γ-ray spectrometry and Monte Carlo simulation [J]。 Nuclear Science and Techniques, 2006, 17(4): 241-244。
    [38] 陈忠等。土壤样品的含水量对HPGe γ谱仪的探测效率的影响[J],核电子学与探测技术,2005,23(3):318
    [39] 邓力,谢仲生特征γ谱蒙特卡罗模拟方法的改进[J],计算物理,2002年5月,VoL13,NO。3 253~258
    [40] 师学明,沈姚崧,伍钧 低能α粒子与中子耦合运输模拟[J],原子核物理评论,2006年6月,VOL.23.NO.2 123~126
    [41] 江海燕,吴宜灿,罗乐 α粒子对人体癌细胞损伤过程的蒙特卡罗模拟及分析[J],前沿进展,2004年,33(9)652~655
    [42] 复旦大学,清华大学,北京大学合编.原子核物理实验方法[M].北京:原子能出版社,1997.
    [43] 复旦大学,清华大学,北京大学合编.原子核物理实验方法(上册).原子能出版社,1985.
    [44] 复旦大学,清华大学,北京大学合编.原子核物理实验方法(下册).原子能出版社,1985.
    [45] J.F. Ziegler, J.P. Biersack and U. Littmark, The Stopping and Range of Ion in Solids, Pergamon Press Inc York, 1984.
    [46] G.F. Knoll, Radiation Detection and Measurement ,John Wiley & Sons Inc. ,New York, 1979
    [47] P. Richard, Methods of Experimental Physics, Vol. 17, p. 25, Academic PressInc., New York, 1980.
    [48] P. Marmier and E. Sheldon, Physics of Nuclei and Particles, Vol. 1, Chapter 4, Academic Press Inc., New York ,1969.
    [49] 北京大学,复旦大学主编.核物理实验[M].原子能出版社,1989
    [50] 丁富荣,班涌,夏宗璜辐射物理[[M],北京大学出版社,2004年10月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700