电子薄膜的电子探针能谱分析技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于电子薄膜材料研究,薄膜的微观结构、成分和厚度是决定薄膜性能的一个关键因素。如何表征薄膜的微观结构、成分和厚度也一直是薄膜研究领域的一个重要课题,尤其是应用无损表征方法。扫描电子显微镜配备X射线能谱仪分析技术(电子探针能谱)能够观察微观形貌和分析薄膜的微区成分的同时,根据电子束的穿透深度可测量薄膜的厚度。其它任何薄膜分析技术都无法同时具备以上三个功能。
     采用电子探针能谱分析技术时,由于X射线激发深度较大,当薄膜厚度较小时,会同时出现薄膜层和基片的谱线,严重影响薄膜成分的分析结果。为了排除基片谱线对薄膜成分分析的干扰,本论文针对电子薄膜与集成器件国家重点实验室研制的微米及纳米薄膜材料成分与厚度表征的需要,开展了如下研究:
     1.在常规电子探针能谱分析系统的基础上,建立的掠出射角电子探针能谱分析方法,并对该分析方法进行了系统验证。通过对金属铜膜和Cd掺杂氧化锌半导体薄膜的掠出射电子探针能谱分析与常规出射电子探针定性分析对比、不同出射角条件下不同线系特征X射线的强度研究、样品倾斜对电子探针能谱定量分析精度影响等方面进行了研究,证明了该方法能够很好的解决许多电子探针常规出射分析薄膜样品时存在的困难,如电子有效作用范围深度减小,具有很好的表面灵敏性,衬底产生的荧光效应能降至最低,薄膜定量分析精确度提高。
     2.研究了在常规电子探针能谱系统中如何提高薄膜成分分析准确度的方法。从薄膜成分的电子探针能谱分析得出:同一元素的不同线系特征谱线,是影响分析结果最重要的因素。对于具有荧光效应的衬底薄膜:所选元素的特征谱线应具有衬底的荧光效应;对于不具有荧光效应的衬底薄膜:当过压比足够时,选择峰背比最大的特征谱线,在特征谱线选择正确的前提下,工作电压越大,分析结果越准确。
     3.研究发展了电子探针能谱薄膜厚度的测量技术。根据电子束的穿透深度计算薄膜的厚度。对于单一组分薄膜:可以直接通过外推衬底与薄膜特征峰强度之比(Ⅰ_(衬底)/Ⅰ_(薄膜))至“0”,对应的加速电压即为薄膜的归一化电压E_d(开始不能检测到衬底的特征X射线);而对于多组分薄膜样品,若衬底和薄膜中都含有相同元素时,借助与薄膜组份含量相同的块材标样,分别得出薄膜样品中衬底与薄膜特征峰强度之比与加速电压之间的关系,以及块材标样样品相应元素的特征峰强度之比与加速电压之间的关系。当薄膜样品中衬底与薄膜特征峰强度比的变化率与块材标样样品相应元素的特征峰强度比的变化率一至时,对应的加速电压即为多组份薄膜的归一化电压E_d。
     4.对薄膜样品中轻元素的电子探针能谱定量分析研究。通过应用轻元素标样对低能量端的峰位进行低能量端峰位校准,使低能量端的峰与模拟线很好的吻合;逐渐降低工作电压直至电子穿透深度刚好等于薄膜厚度时,能最大程度减少基片和表面吸附的影响,并结合EDAX能谱分析软件的SEC因子,可以获得令人满意的分析结果。
Microstructure, component and thickness are key factors to determine the performances in research of thin films. The methods to characterize microstructure, component and thickness of thin fihns are all through important issues in thin films field, especially the non-destructive characterization. The observation of microstructure, analysis of components in tiny regions and measurement of thickness according to penetration depth can be realized with Scanning Electron Microscope and X-ray Energy Dispersive Spectrometer (EPMA), while any other thin film-analyzing approaches don't possess the above three function simultaneously.
     Using EPMA analysis technique, when thickness of thin films is less, the spectrum line of thin film and substrate appears at the same time, which affects the element analysis results of thin films severely. To eliminate the interference from substrate spectrum, this paper discuss the following research means, aiming at analyzing and characterizing the micro- and nano-materials of thin films in the State Key Laboratory of Electronic Thin Films and Integrated Devices.
     1. Based on the general EPMA system, grazing-exit EPMA (GE-EMPA) analysissystem is set up and evaluated systematically. Through qualitative analysis between the GE-EMPA and general EMPA of Cu metal thin film and ZnO semiconductor thin film adulterated with Cd, different characteristic X-ray intensity with different exit angle, the effect of incline to the quantitative analysis of electron probe spectrum, and some other studies, this method is proved to solve many problems of analyzing general electron probe exit of thin films, such as depth decrease of electron effect range, good surface sensitivity, fluorescence effect from the substrate dropping to the bottom, increased precision of quantitative analysis for thin films, etc.
     2. The methods for improving analysis precision of thin fihns are demonstrated with general EMPA analysis technique. From the X-ray spectrum analysis of thin films, it's found that-different characteristic X-ray line of one element is a factor that impacts the analysis result most. For thin films and substrate with fluorescence effect, if any element is affected by fluorescence from substrate, characteristic X-ray line of the chose elements should have fluorescence effect from the substrate. For thin films and substrate without fluorescence effect-with enough overvoltage ratio, the biggest peak to background ratio (P/B) should be chose; when the characteristic X-ray line is chose exactly, the bigger work voltage is, the more precise analysis result.
     3. Thickness measurement of thin films with EMPA is investigated. According to the penetration depth of electron beam, thickness of thin films is calculated. For the thin film with single element, with extrapolating the characteristic X-ray peak ratio of substrate to thin film to "0", the corresponding accelerating voltage is the normalization voltage Ed (the characteristic X-ray of substrate can't be tested at the beginning). For thin films with many elements, if the thin film and substrate have same elements, the relationship between accelerating voltage and element intensity ratio of thin film to substrate, as well as the relationship between accelerating voltage and standard bulk pattern can be got. The change speed of characteristic X-ray peak ratio of substrate to thin film and standard bulk are identical, the corresponding accelerating voltage is the normalization voltage Ed.
     4. Quantitative analysis of light elements of thin films is implemented with EMPA. Through adjusting the position of low energy peak marked with light element, low energy peak and simulation line inosculate primely. With decreasing work voltage gradually until electron penetration depth and thickness of thin films are identical, the effect of substrate and surface absorption can be reduced furthest, combining with SEC factor in EDAX spectrum analysis software, satisfactory analysis consequences can be obtained.
引文
[1]杨邦朝,王文生.薄膜物理与技术.成都:电子科技大学出版社,1994,15.
    [2]吴自勤,王兵.薄膜生长.北京:科学出版社,2001,3.
    [3]C.E.Fiori,D.E.Newbury.Artifacts observed in energy-dispersive X-ray spectrotry in the scanning electron microscopy.Scanning Electron Microscopy,1988,5(1):401-422.
    [4]E.B.Varhegyi,S.Jonda,I.V.Perczel,et al.AES,SIMS,XPS Analysis and electrical conductance of Ta-doped SrTiO_3 thin films.Sensors and Actuators B:Chemical,1998,47(1):164-170.
    [5]Mizutani.Yoshiyuki.Surface analysis.Journal of Japanese Society of Tribologists,1996,41(1):5-6.
    [6]B.N.Dain,E.I.Rau,D.O.Savin.Isotropic scanning In electron-probe devices and systems of image manipulation.Bulletin of the Academy of Sciences of the USSR,1981,47(6):60-64.
    [7]M.Mohai.XPS multiQuant:multimodel XPS quantification software.Surface and Interface Analysis,2004,36(8):828-832.
    [8]T.H.Chen,T.I.Shih.Usage of SAM on fatigue crack of solder joint induced by thermal reliability test.Conference Proceedings from the International Symposium for Testing and Failure Analysis,2006:228-229.
    [9]L.Blarre,N.Perrimon,E.Anciant,et al.HYDRA,a new multiple heads APS based star sensor:Description and discussion of the robustness improvement enabled by the APS technology.Advances in the Astronautical Sciences,2007,128(12):551-566.
    [10]A.R.Cholach,V.M.Tapilin,On the DAPS capability for testing the chemisorbed species location.Reaction Kinetics and Catalysis Letters,2000,71(1):65-70.
    [11]A.A.Salem,G.Stingeder,M.Grasserbauer,et al.SIMS and RBS analysis of leached glass:reliability of RSF method for SIMS quantification.Journal of Materials Science:Materials in Electronics,2000,7(6):373-379.
    [12]Ch.Meinecke,J.Vogt,R.Schmidt-Grund,et al.RBS studies on coated micro-dimensional glass fibers used as micro-resonators.2006,249(1):387-389.
    [13]EDAX INC.Process & Analytical Instruments.2005.
    [14]I.Alexander,Y.Michael,M.Eizenberg.Quantitative analysis of Ti-Si-Ge/Si-Ge/Si structures by EDS and AES.Mikrochimica Acta,2000,132(12),461-465.
    [15]S.J.B.Reed.Electron Microprobe Analysis,Cambridge University Press,1985,279-326.
    [16]G.W.Lorimer,S.A.Al-Salman,G.Cliff.Developments in Electron Microscopy and Analysis,I987,369-376.
    [17]Y.Yoneda,T.Horiuehi.Rev.Sei.Instrum.1971,42,1069.
    [18]C.Streli.Recent advances in TXRE Applied Spectroscopy Reviews,2006,41(5):473-489.
    [19]巩岩,陈波,尼启良,等.同步辐射掠出射X射线荧光分析薄膜膜厚术.高能物理与核物理,2005,29(11):1104-1106.
    [20]K.Tsuji.Grazing-exit electron probe X-my microanalysis(GE-EPMA):Fundamental and applications.Spectrchimica Acta Part B,2005,60(11):1381-1391.
    [21]Z.Spolnik,K.Wagatsuma,K.Tsujia.Grazing-exit electron probe X-ray microanalysis of ultra-thin films and single particles with high-angle resolution.Analytica Chimica Acta,2002,455(18):245-252.
    [22]K.Tsuji,Z.Spolnik,K.Wagatsuma.Enhancement of electron-induced X-ray intensity for single particles under grazing-exit conditions.Spectrochimica Acta Part B,1999,54(14):1243-1251.
    [23]N.Shibata,S.Okubo,K.Yonemitsu.Depth-dependent non-destructive analysis of thin overlayers using total-reflection-angle X-ray spectroscopy.Applied Surface Science,1996,100(46):69-72
    [24]K.Tsuji,K.Saito,Z.Spolnik.Localized thin-film analysis by grazing-exit electron probe microanalysis.Spectrochimica Acta Part B,2002,57(3):897-906.
    [25]K.Tsuji,Z.Spolnik,K.Wagatsuma.Behavior of the continuous X-ray background in grazing-exit electron probe X-ray microanalysis.Spectrochimica Acta Part B,2001,56(32):2497-2504.
    [26]仇德满.薄膜外全反射角X射线能谱分析研究:[硕士学位论文].保定:河北大学,2004.
    [27]王浩,邹积岩.薄膜厚度测量技术.微细加工技术,1993,1(14):55-61.
    [28]李仁锋,吴嘉丽,谭刚.多晶硅薄膜厚度测量技术.2006,33(4):9-11.
    [29]袁庆龙,徐立华.电子显微镜测量薄膜厚度的方法.山西矿业学院学报,1994,12(4):281-287.
    [30]F.L.Ng,J.Wei,F.K.Lai,et al.Metallic thin film depth measurements by X-ray microanalysis.Applied Surface Science,2006,252(1):3972-3976.
    [31]陈振宇,周剑雄.扫描电镜用于微米纳米尺度的测量及其标准化探讨.电子显微学报,2006,25(增刊):137-138.
    [32]D.A.Swell,G.Love,V.D.Scott,Universal correction procedure for electron-probe microanalysis:I.measurement of X-ray depth distributions in solids,Journal of Physics D:Applied Physics,1985,18(7):1233-1243.
    [33]C,L.Churms,S.Kritzinger.Instrument-Invariant Method of Film Thickness Determination by Means of Substrate to Film X-ray Peak Intensity Rationing.Thin Solid Films,1987,148(3):67-74.
    [34]G.F.Bastin,J.M.Dijkstra,H.J.M.Heijligers.Experimental determination of the surface ionization in electron probe microanalysis,Materials Chemistry and Physics,2003,81(2):219-223.
    [35]I.Pozsgai.Mass thickness determination and microanalysis of thin films in the TEM—Revisited.Ultramicroscopy,2007,107(24):191-197.
    [36]F.Sweeney,T.C.Carol,D.McColl,et al.Probing nitride thin films in 3-dimensions using a variable energy electron beam.Materials Research Society Symposium-Proceedings,2000,595:101-106.
    [37]Kerry W.Habiger,Charles Stein.Thickness Measurement of Thin Films:Comparison of Techniques using Characteristic X-ray Line Ratio Techniques.Thin Solid Films,1992,215(1):108-114.
    [38]程万荣,高巧君,吴自勤.物理学报,1982,31(1):30-37.
    [39]徐萃章.电子探针分析原理.北京:科学出版社,1990.
    [40]Q.Tixer,J.Philibert,Reactive diffusion in thin films.Applied Surface Science,1979,53(1):74-81.
    [41]K.Tsuji,K.Saito,Z.Spolnik.Characterization of small areas of thin-films by grazing-exit electron probe X-ray microanalysis.Materials Transactions,2002,43(3):414-416.
    [42]阿特伍德(著),张杰等(译).软X射线与极紫外辐射的原理和应用.北京:科学出版社,2003,50-59.
    [43]谢处方,饶克谨.电磁场与电磁波.北京:高等教育出版社,2005,242.
    [44]G.W.Lorimer,S.A.Al-Salman,G.Cliff.Developments in Electron Microscopy and Analysis,1987,369-376.
    [45]E.Rau,H.Hoffmeister,R.Sennov,et al.Comparison of experimental and Monte Carlo simulated BSE spectra of multilayered structures and 'in-depth' measurements in a SEM.J.Phys.D:Appl.Phys.,2002,35(7):1433-1437.
    [46]胡幼华,潘荫荣,朱惠彪.多元组份薄膜的特征X射线强度的蒙特卡罗模拟计算方法.华东师范大学学报(自然科学版),2000,3(9):50-56.
    [47]D.Newbury,D.Wollman,G.Hilton,et al.Energy Dispersive X-ray Spectrometry by Microcalorimetry for the SEM.Mikrochim Acta,2002,138(5):265-275.
    [48]D.B.Williams,M.Watanabe,A.J.Papworth,et al.Quantitative characterization of the composition,thickness and orientation of thin films in the analytical electron microscope.Thin Solid Films,2003,424(34):50-55.
    [49]吴自勤,高巧君,葛森林.二元合金成分的无标样X光能谱定量分析.物理学报,1989,29(4):485-494.
    [50]GB/T 17359-1998.电子探针和扫描电镜X射线能谱定量分析方法通则.
    [51]F.Sweeney,T.C.Carol,D.McColl,et al.Probing nitride thin films in 3-dimensions using a variable energy electron beam.Materials Research Society Symposium-Proceedings,2000,595:101-106.
    [52]F.L.Ng,J.Wei,F.K.Lai,et al.Metallic thin film depth measurements by X-ray microanalysis,Applied Surface Science,2006,252(28):3972-3976.
    [53]J.Cockett,W.Kerry.Thickness measurements of thin films:comparison of techniques using characteristic X-ray line ratio techniques.Thin Solid Films,1992,215(1):108-114.
    [54]E.Weavers,A.piegari.Thin film thickness measurement:a comparison of various techniques.Thin Solid Films,1985,124(3):249-257.
    [55]R.Pascual,J.Schumacher.Thin film thickness measurement using the energy-dispersive spectroscopy technique a scanning electron microscope.Thin Solid Films,1990,185(2):279-286.
    [56]D.A.Sewell,G.Love,V.D.Scott,Universal correction procedure for electron-probe microanalysis:I.measurement of X-ray depth distributions in solids,Journal of Physics D:Applied Physics,1985,18(7):1233-1243.
    [57]G.F.Bastin,J.M.Dijkstra,H.J.M.Heijligers.Experimental determination of the surface ionization in electron probe microanalysis,Materials Chemistry and Physics,2003,81(2):219-223.
    [58]范志新.多种功能材料最佳掺杂含量定量理论的研究.河北工业大学学报,2002,31(2):79-83.
    [59]R.C.Reedy,J.F.Geisz,A.J.Ptak,et al.Characterization of light element impurities in gallium-nitride-phosphide by SIMS analysis.Applied Surface Science,2004,231(1):808-812.
    [60]常玉春,杨晓天,王金忠等.等离子MOCVD系统生长ZnO薄膜掺N2和掺NH3特性比较.发光学报,2004,25(2):143-147.
    [61]张庆瑜.氮化钛薄膜的高分辨AES谱和XPS谱研究.真空科学与技术,1996,16(1):29-35.
    [62]张庆瑜,马腾才.薄膜定量分析中的Auger线型分析方法.大连理工大学学报,1997,37(2):147-154.
    [63]韩小元,卓尚军,王佩玲.X射线荧光光谱法表征薄膜进展.光谱学与光谱分析,2006,26(1):159-165.
    [64]徐乐英,尚玉华,郭延风等.电子探针定量分析超轻元素中的几个问题.分析测试学报,1994,13(5):37-41.
    [65]J.R.Ares,A.Pascual,I.J.Ferrer.A methodology to reduce error sources in the determination of thin film chemical composition by EDAX.Thin solid film,2004,24(6):207-210.
    [66]I.M.Kotschau,A.Weber,P.Pistor.Advanced X-ray methods for chalcogenide thin film analysis.Thin Solid Films,2007,515(23):5992-5996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700