超声检测频域分析及对缺陷识别应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声波频域分析是把频域分析的理论和方法应用于超声检测的技术。一般来说,简单的超声波原始信号能够提供的信息是有限的,远不能满足声波分析和特征识别的需要,须对其进行一定的加工和处理。通过对域函数图谱的识别、特征提取和分析,能获得更多有用信息,以便更好地指导工程实践。
     本文依托航空件超声扫描检测系统研制项目的工程背景,主要研究在超声自动检测、无损评价中超声信号处理、超声频域分析理论、方法及其对有关工件缺陷识别的应用。论文的主要章节内容安排如下:
     第一章为绪论,介绍了课题研究背景和要求,阐述了传统超声波探伤技术的局限性,以及国内外检测中信号处理和频谱分析的现状和意义,并结合工程项目提出本文的研究内容,最后给出了论文的总体框架。
     第二章在分析常规超声检测系统组成的基础上,建立超声波频谱分析系统理论模型,结合课题要求选择设计合理的超声波频谱分析实现系统。针对不同形状和大小的缺陷的幅频特性,以及超声场与缺陷相互作用机理进行理论研究,得出计算表达式。从声辐射场理论出发,证明利用各种缺陷在幅频特性上所显示的规律可确定它们的缺陷种类。
     第三章针对超声波检测信号特点,给出超声频谱分析的基本原理与方法。根据超声检测机器人和系统频谱分析模型本身的特点,以及系统软件的要求,对频谱分析进程设计方法作了概括介绍。对频谱分析的总体要求、关键技术、主要算法及其相应软件数据结构的实现作了说明。
     第四章介绍了在自行构建的超声频谱分析系统上,进行超声频域特征应用方法与技术的研究。利用超声频谱分析法对换能器进行频率特性分析,找出适合检测的最佳状态。研究典型金属工件缺陷或结构特性对声波调制的声学机理,给出了用超声频域分析法对工件缺陷特征进行分析的实例。
     第五章探讨碳纤维复合材料孔隙率检测的频域分析理论和方法,对碳纤维复合材料孔隙率检测法进行频域实验分析和讨论,并分析了孔隙形态对超声衰减的影响。
     第六章分析超声检测频域分析的误差来源和局限性,提出了减少误差可采取的相应方法。对自己的工作进行了回顾和总结,对下一步工作提出了一些初步的设想。
Ultrasonic spectrum analysis is the ultrasonic testing technology which puts into use the spectrum analysis theory and approach. Generally speaking, simple and primitive ultrasonic signals can provide relatively limited information and therefore are far from being capable of satisfying the need of sonic analysis and feature recognition which the help of necessary processing and research. Through recognition of domain function chart as well as feature extraction and analysis, more useful information can be obtained to instruct the engineering application.
    This essay is to study under background of the project "ultrasonic scan testing system development for aircraft workpiece" ultrasonic automatic testing, ultrasonic signal processing in nondestructive evaluation, ultrasonic spectrum analysis theory, and approach as well as its application in relating workpiece-defection recognition. The six chapters of this essay are as follows:
    Chapter 1 is the preface which introduces the background and necessity of subject research, and thereafter describes the limitation of traditional ultrasonic flaw-detecting technique in addition to the current condition and significance of signal processing and spectrum analysis of testing technology in China and abroad. And along with the model engineering project the research target of this essay is then proposed to offer a general framework of the dissertation.
    Chapter 2 is to establish theoretical model of ultrasonic spectrum analysis system and to adopt in accordance with subject demands the reasonably designed practical system of ultrasonic spectrum analysis on the basis of regular ultrasonic testing system formation analysis. The calculation formula are attained aiming at the flaw spectrum features of different shapes and sizes as well as theoretical analysis of mutual function between ultrasonic field and flaws. Theory of sonic radiation field is adopted to define the flaw classification on the basis of confirmation of various flaws indicated on the frequency features.
    Chapter 3 provides primary principles and approaches of ultrasonic spectrum analysis in accordance with features of ultrasonic testing signals. With feature of ultrasonic testing robot, models of system spectrum analysis as well as demands of system software as the foundation, a general introduction of approaches of spectrum analytic processing designs is to offered. We also illustrate in this chapter the general demands, key techniques, chief calculation approaches and realization of
    
    
    corresponding software data structures.
    Chapter 4 introduces the research of application and techniques of ultrasonic spectrum features on the analytic system which has been constructed. Spectrum feature analysis of the transducer apparatus is also conducted with this approach and thus achieves the best testing status. Through the study of sonic adjustment of structure features, analytic examples of metal workpiece defect features are provided.
    Chapter 5 is to discuss spectrum analytic theory and application of void content measure testing of carbon fibre reinforced plastics in order to analyze and discuss spectrum experiment of it. The impact of void shape on ultrasonic attenuation is discussed as well.
    Chapter 6 is to analyze error sources and limitations of ultrasonic spectrum analysis and there by suggest the applicable approach to the research work, primary conception of the following research is being advanced.
引文
[01]孙传友等.测控系统原理与设计.北京:北京航空航天大学出版社,2002
    [02]中国机械工程学会无损检测分会.超声波检测(第二版).北京:机械工业出版社,2000
    [03]耿荣生,新千年的无损检测技术—从罗马会议看无损检测技术的发展方向.上海:无损检测,2001,23(1)
    [04]陈积懋,张颖.复合材料及其构什的新型综合无损检测技术.上海:无损检测.2002,24(6)
    [05]张旭辉等.超声无损检测技术的现状和发展趋势.上海:机械制造,2002,40(7)
    [06]沈建中.超声无损检测技术的新发展.北京:中国锅炉压力容器安全.1998,14(5)
    [07]应崇福,张守玉,沈建中.超声在固体中的散射.北京:国防工业出版社,1994
    [08]应崇福.超声学.北京:科学出版社,1990
    [09]李家伟,陈积懋.无损检测超声手册.北京:机械工业出版社,2002
    [10]中华人民共和国航天工业标准HB/Z59-1997.超声波检验.北京:中国航天工业总公司,1997
    [11]张家竣.无损检测技术发展的新动向.武汉:中国机械工程.1993,4(1)
    [12]王艳颖.复杂形状工件测量、建模和超声检测一体化技术研究.杭州:浙江大学博士论文,2003
    [13]张道富.基于HMM/MLP的超声检测缺陷识别方法研究及应用.杭州:浙江大学博士论文,2003
    [14]简晓明.超声检测中信号处理研究.北京:中科院声学研究所博士学位论文,1998
    [15]刘镇清.粗晶材料超声检测的信号增强与模式识别研究.上海:同济大学博士论文,1995
    [16]Ma H W, Zhang X H, Wei J. Research on an ultrasonic NDT system for complex surface parts. Journal of Materials Processing Technology, 2002, 129(3): 667-670
    [17]Mourtz A P. Ultrasonic and interlaminar properties of highly porous composites, J of composite materials, 2000, 34(3): 228-239
    [18]Stanullo J, Bojinski S, et al. Ultrasonic signal analysis to monitor damage development in short fiber-reinforced polymers. Ultrasonics, 1998, 36(6): 455-460
    [19]Stubbs D A, Zawada L P. Detection of porosity in glass ceramic matrix composites using an ultrasonic multiple-gate c-scan technique. Materials Evaluation, 1996, 54(7)
    [20]Cawley P. Low frequency NDT techniques for the detection of disband and delaminations [J]. The British Journal of Non-Destructive Testing, 1990, 32(9)
    
    
    [21]Pagliaro Louis, Hunt Art. Vibration analysis-a new ASNT NDT method[J]. Materials Evaluation, 1998, 56(7)
    [22]Neal S P, Speckman PL, Enright M A. Flaw signature estimation in ultrasonic nondestructive evaluation using the Wiener filter with limited prior information, 1993, 40(4): 347-353
    [23]Gilmore R S, Czerw G J. The use of Radiation Field Theory to Determine Size and Shape of Unknown Reflector by Ultrasonic Spectroscopy, Materials Evaluation, 1977, 35(1): 37-45
    [24]Lee D A, Crane R L. A practical method for viewing resolution-noise-bandwidth trade-offs in QNDE data reduction. Proceedings IEEE, Vol.65, 1977
    [25]Fitting D W, Adler L. Ultrasonic Spectral Analysis for Nondestructive Evaluation. Plenum Press, New York, 1981
    [26]Newhouse V L, et al. Flaw-to-Grain echo enhancement. Proceedings Ultrasonic Int. Symposium, pp152-156, 1979
    [27]Amir I, Bilgutay N M, Newhouse V L. Analysis and comparison of some frequency compounding algorithms for the reduction of ultrasonic clutter. IEEE Trans. UFFC, 1986
    [28]Sanile J, Tao Wang, Xiaomei Jin. Performance evaluation of frequency diverse Bayesian ultrasonic flaw dection. J. Acoust. Soc. Am., 1992
    [29]Chen C H, Tzu-Hung Cheng. Time-frequency analysis in ultrasonic NDT. 14th World Conference on NDT, India, 1996
    [30]Stone D E W, Clark B. Ultrasonic attenuation as a measure of void content in carbon-fiber reinforced plastics. J NDT, 1975, 8(3): 137-145
    [31]Hsu D K. A morphological study of porosity defects in graphite-epoxy. In Review of progress in quantitative nondestructive evaluation 6B, 1986
    [32]Nair S M , Hsu D K and Rose J H. Porosity estimation using the frequency dependence of the ultrasonic attenuation. J Nondestr Eval, 1989, 8:13-26
    [33]Daniel I M, Wooh S C, Komsky I. Quantitative porosity characterization of composite materials by means of ultrasonic attenuation measurements. J Nondestr Eval, 1992, 11 : 1-8
    [34]Reynolds W N, Wilkinson S J. The analysis of fiber-reinforced porous composite materials bythe measurement of ultrasonic wave velocities. Ultrasonics, 1978, 16:159-163
    [35]Thompson R B, Gray T A. Analytical diffraction corrections to ultrasonic scattering measurements. In Review of Progress in Quantitative Nondestructive Evaluation, Plenum Press, New York, 1983
    [36]Jeong H, Hsu D K. Effects of Voids on the Mechanical Strength and Ultrasonic Attenuation
    
    of Laminated Composites. Journal of Composite Materials, 1997, 31(3): 276-292
    [37]Legros N, Jen C K, Ihara I. Ultrasonic evaluation and application of oriented polymer rods. Ultrasonic, 1999, 37(4): 291-297
    [38]Beltzer A I, Brauner N SH, Waves of an arbitrary frequency in random fibrous composites via the K-K relations. J Mech Phys Solids, 1985, 33:471-487
    [39]Josaf Krautkrmer, Herbert Krautkrmer. Werkstoffprüfung mit Ultraschall. Speringer-Verlag, 1986
    [40]周晓军,徐志农,莫锦秋等.超声波C扫描图像的缺陷模式识别.合肥:模式识别与人工智能,1998,11(2)
    [41]周晓军等.含孔隙碳纤维复合材料的声衰减模型.北京:复合材料学报,1997,14(3)
    [42]周晓军等.碳纤维复合材料分布孔隙率的超声衰减检测方法.北京:复合材料学报.1997,14(3)
    [43]杨克己.基于神经网络的检测声学信号处理与实践.杭州:浙江大学博士论文,1997
    [44]周晓军.突变信号相平面特征小波分析及其检测声学中应用.杭州:浙江大学博士论文,1993
    [45]刘涛.曲面构件超声检测机器人技术及可视化研究.杭州:浙江大学硕士学位论文,2003
    [46]李甫永.超声检测中信息管理及缺陷分析与识别研究.杭州:浙江大学硕士学位论文,2003
    [47]徐燕.超声检测机器人中的人机交互及数据管理技术研究.杭州:浙江大学硕士学位论文,2002
    [48]陈庆平.超声检测机器人中的工件曲面数据处理及接口中若干技术研究.杭州:浙江大学硕士学位论文,2002
    [49]刘俊霞.计算机图像处理和识别技术在超声无损检测中的研究与应用.杭州:浙江大学硕士学位论文,1996
    [50]莫锦秋.超声波检测信号频谱分析及超声波C扫描装置控制系统研制.杭州:浙江大学硕士学位论文,1993
    [51]孙即祥等.现代模式识别.长沙:国防大学出版社,2002
    [52]华云波译.无损检测—超声检验—及其声场的表征.上海:无损检测,2002,24(5)
    [53]李喜孟等.无损检测.北京:机械工业出版社,2001
    [54]李喜孟,林莉.超声波频谱分析技术.大连理工大学材料系NDT教研室.1999
    [55]等.用超声频谱法确定缺陷性质的理论研究.上海:无损检测,1979,1(6)
    [56]David J.Kruglinski,Scot Wingo.George Shepherd.Programming Visual C++6.0技术内幕(第五版)(修订版).北京:北京希望电子出版社,2001
    
    
    [57]夏云庆.Visual C++6.0数据库高级编程.北京:北京希望出版社,2002
    [58]美国无损检测学会.美国无损检测手册—超声卷.上海:世界图书出版社.1996
    [59]仲维畅.超声波探伤技术的局限性和可靠性.丹东:无损探伤,1996,18(3)
    [60]刘镇清.超声无损检测中的谱分析技术.上海:无损检测,2001,23(2)
    [61]刘镇清.超声无损检测与评价中的信号处理及模式识别.上海:无损检测,2001,23(1)
    [62]刘镇清.增强超声探伤信号的分离谱处理方法.上海:无损检测,2001,23(5)
    [63]刘镇清.超声无损检测的若干新进展.上海:无损检测,2000,22(9)
    [64]晏荣明.提高超声无损检测分辨力的方法.上海:无损检测,1997,19(4)
    [65]王小民,李明轩.复合材料的超声检测与评价.北京:应用声学,1998,17(6)
    [66]陈岳军.信号处理和识别技术在超声检测中的应用.北京:压力容器,1996,13(5)
    [67]胡广书.数字信号处理—理论、算法与实现.北京:清华大学出版社,1998
    [68]余卞章等.数字信号处理.西安:西北工业大学出版社,2000
    [69]郑中兴,胡绍海.超声检测中的定性.上海:无损检测,1994,16(1)
    [70]卢文祥等.机械测试·信息·信号分析(第二版).上海:华中理工大学出版社,1998
    [71]屠耀元.超声检测中的信号分析技术.上海:无损检测,1992,15(5)
    [72]陈卫华等.数字式超声波探伤仪的现状与展望.上海:无损检测,1994,17(6)
    [73]陈积懋,余南延.胶接结构与复合材料的无损检测.北京:国防工业出版社,1984
    [74]殷福亮等.数字信号处理C语言程序集.沈阳:辽宁科学出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700