自发参量下转换产生单光子对的应用及其统计特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自发参量下转换过程利用非线性晶体的二阶非线性效应实现:一个频率较高的光子(泵浦光)在满足相位匹配的条件下,在非线性晶体内同时(时间差不超过10-15秒)产生两个频率较低的光子(下转换光),这两个光子在时间、空间以及能量方面有着高度关联的特性。到目前为止,自发参量下转换过程被认为是能够最有效地产生高度关联的单光子对的方法之一,而单光子态作为一种非经典光场,在基础量子光学实验研究、量子保密通讯、量子计算以及量子高精度测量等领域有着重要的应用。
     自从自发参量下转换过程首次在实验被观察到以来,这个过程所产生的高度关联的孪生光子对的特性就被人们进行了广泛的研究,尤其是人们可以只探测其中一个单光子,用以判定另一单光子的存在,也即在不破坏(探测)单光子的情况下预言单光子的存在,进而可以将此单光子提供给后续研究。由于自发参量下转换过程有着这一独特的优点,使得对这个过程特性的研究成为国际上各个小组的研究热点之一。本文的主要内容均是围绕自发参量下转换过程所展开,结合单光子的探测、计数统计、以及符合计数测量等手段详细地研究了下转换产生的关联光子对的分布范围,计数统计分布特性以及其在一些量子过程中的应用。
     本文的主要工作有以下几个方面:
     1.详细地回顾了目前可以在实验上产生单光子的各种方法,并给出自发参量下转换过程产生单光子所具有的独特的优点。进而介绍了自发参量下转换过程在基础物理研究,及其在量子计算、量子度量衡等方面的应用。
     2.从相位匹配条件出发,理论上分析了当泵浦源为单色平面波和飞秒脉冲时对Ⅰ类相位匹配的自发参量下转换产生的信号(闲置)光分布范围以及符合范围所造成的不同的影响。结果表明由于飞秒脉冲具有较宽的光谱分布,使得其作为泵浦源时,下转换产生的信号(闲置)光的角分布范围明显要比单色波泵浦时的范围要大。而且,泵浦脉冲的谱越宽,下转换产生的信号(闲置)光的角分布范围越大。最后,在实验上测量了当泵浦为飞秒脉冲时下转换光的角分布,结果与理论分析基本一致。
     3.研究了利用飞秒脉冲泵浦的Ⅰ类非共线相位匹配的自发参量下转换过程实现的量子鬼成像,并分析了测量带宽对量子鬼成像实验的成像范围和分辨率所造成的影响。结果表明,有限的测量带宽将会缩减所能成像的范围,但会使成像的分辨率有所提高。同时,探测时所选用的滤波片的透射线型将会影响到量子鬼成像的实验结果,通过归一化过程处理,可以消除这种影响。
     4.利用自发参量下转换过程以及一个单光子探测器,提出一个实现受激发射型探测器的理论方案,并研究了利用此类型探测器实现的反常规排列的二阶关联函数和Fano因子的测量结果,比较了其与常规探测器测量所得结果的不同,给出此类型探测器的优点。最后,在现有的实验条件下对提出的理论模型进行了测量研究,实验结果与理论分析定性一致。
     5.利用光子计数技术对自发参量下转换产生的信号光以及一个弱赝光场的光子计数统计分布进行了研究。研究发现当热光场的强度足够低时,光子计数统计分布依然满足负二项分布,但是传统理论给出的对应分布中简并因子的表达式不能与实验结果相符,传统理论具有一定的局限性。在此基础之上,用量子理论重新推导了简并因子的表达式,并给出了一个新的、通用的关于简并因子的量子力学表达式。实验结果与量子理论推出的表达式相符,证明了量子噪声在光子计数统计中的重要性。
     在这些研究工作中,属于创新性的工作有以下几点:
     1.详细地研究了利用飞秒脉冲作为自发参量下转换的泵浦源时,泵浦谱宽和探测带宽对下转换产生的信号(闲置)光分布范围和符合范围造成的影响,并与实验进行了对比,二者基本一致。
     2.研究了利用自发参量下转换过程实现的量子鬼成像中,测量带宽对量子鬼成像所造成的影响,并给出消除这种影响的方法。
     3.提出了自发参量下转换过程实现受激发射型探测器的一个理论方案,并给利用出此探测器在测量光场反常规排列函数,例如二阶关联函数以及Fano因子等中的应用。
     4.给出了热光场光子计数统计分布-负二项分布中关于简并因子的一个新的、通用的量子力学表达式。并在实验上对其进行了验证,实验结果和新的量子力学表达式相符。
Spontaneous Parametric Down Conversion (SPDC) process was realized using the second-ordered nonlinear effect of the crystal. In the condition of phase matching, a pump photon with high frequency was divided into two photons with lower frequency, and these twin photons have high correlations in time, space and energy. Up to now, SPDC was considered as one of the most effective ways to generate the single photon pair with high correlations, and the single photon state was used widely in basic quantum optics experimental researches, quantum key distribution and quantum calculating as a nonclassical field.
     Since SPDC was observed in the experiments, the photon pairs generated by it were widely investigated. Particularly, we could obtain a single photon by detecting the one of the twin photon, that's to say, we can predict the existence of a single photon without destroying it. Due to the special advantages of the SPDC, the researches in this paper are based on SPDC processes, combining the technology of single photon detecting, coincidence counting and photocounting statistics technology.
     The main research points of this paper are as follows:
     1.Parts of the ways to generate the single photon were reviewed and the advantages of SPDC were given. Then the applications of SPDC in the region of basic quantum theory researching, quantum calculating, and the quantum metrology were given.
     2.Based on the phase matching conditions, the distribution range and coincidence range of the signal and idler generated by SPDC were theoretically analyzed, when a CW wave and a femto-second pulse was used as the pump source of SPDC.The results showed that the angel distribution range of signal is wider when the femto-second pulse used as the pump because it has wide spectrum, and wider the spectrum, wider the distribution range of signal.Finally, the experimental results confirmed the analyses about the angel distribution of the signal, when femto-second pulse was used as the pump source of SPDC.
     3.The influences of detection bandwidth on the quantum ghost imaging were analyzed when a femto-second pulse was used as the pump of a type-I SPDC.The results showed that the detection bandwidth would limit the range of imaging, but would improve the visibility of ghost image.And, the line shape of the filter would influence the ghost imaging. Finally, a normalization process was shown to eliminate these influences.
     4. A theoretical scheme about a stimulated emission-based detector was proposed using the SPDC processes.And the antinormally ordered second order correlation and Fano factor were analyzed using such detector. The results were compared with the normal detector and the advantages of stimulated emission based detector were given.Finally, the theoretical scheme is confirmed in the experiments and the results matched with theoretic qualitatively.
     5.The photocounting statistic distribution of SPDC and a weak pseudo-thermal field was investigated. We found that the statistical distribution continues to be well described by the negative binomial function. However, the degeneracy factor in the distribution is observed to be markedly different from the conventional value. The Mandel theory is reexamined, and quantum fluctuation of light intensity is determined to be the source of this discrepancy. Finally, the theoretic was confirmed by the experiments.
     The creative works are as follows:
     1.The influence of femto-second pulse as the pump source of SPDC to the distribution range and coincidence range of signal and idler is analyzed, and the experimental results matched with the theoretical results.
     2.The influence of detection bandwidth to the ghost imaging process was investigated, and the ways to eliminate such influences were given.
     3.A theoretical scheme about the stimulated emission-based detector was proposed using the SPDC processes, and the applications of such detector in antinormally ordered second order correlations and Fano factor were investigated.
     4.The Mandel theory was reexamined, and a new quantum expression for the degeneracy parameter in photocounting statistics distribution for thermal field was given. And it was confirmed a correct expression by the experiments.
引文
[1]M. Born, et al.,Principle of Optics, Cambridge University Press,7th ed.,(1999)
    [2]汪志诚,热力学 统计物理,高等教育出版社,2nded.,(1993)
    [3]M. Planck, Verh. Dt. Phys. Ges.,2,202(1900)
    [4]A. Einstein, Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Annln. Phys.,17,132(1905)
    [5]A. Compton, A quantum theory of the scattering of X-rays by light elements, Phys. Rev. 21,483(1923)
    [6]G. Lewis, et al., The conservation of photons, Nature,118,874(1926)
    [7]B.Hessmo, et al., Experimental demonstration of single photon nonlocality, Phys. Rev. Lett.92,180401 (2004)
    [8]M. Scully, et al., Quantum Optics, Cambridge University Press,(1999)
    [9]A. Einstein, The Born-Einstein letters,(1936)
    [10]A. Kuhn, et al.,Deterministic single-photon source for distributed quantum networking, Phys. Rev. Lett.89,067901 (2004)
    [11]F. Martini, et al., Single-mode generation of quantum photon states by excited single molecules in a microcavity trap, Phys. Rev. Lett.76,900(1996)
    [12]B. Lounis, et al., Single photons on demand from a single molecule at room temperature, Nature,407,491 (2000)
    [13]T. Hong, et al., On-demand single-photon state generation via nonlinear absorption, Phys.Rev. A,70,013814 (2004)
    [14]C. Kurtsiefer, et al., Stable solid-state source of single photons, Phys. Rev. Lett.85, 290 (2000)
    [15]R. Brouri, et al., Photon antibunching in the fluorescence of individual color centers in diamond, Opt. Lett.25,1294 (2000)
    [16]A. Beveratos, et al., Room temperature stable single-photon source, Eur. Phys. J. D 18,191(2002)
    [17]P. Michler, et al., A quantum dot single-photon turnstile Device, Science,290,2282 (2000)
    [18]Z. Yuan, et al.,Electrically driven single-photon source, Science,295,102 (2002)
    [19]V. Zwiller, et al., Single quantum dots emit single photons at a time:Antibunching experiments, App. Phys. Lett.,78,2476 (2001)
    [20]E. Moreau, et al.,Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities, App. Phys. Lett.,79,2865 (2001)
    [21]C. Santori, et al, Indistinguishable photons from a single-photon device, Nature,419, 594 (2002)
    [22]C.Chou, et al.,Single-photon generation from stored excitation in an atomic ensemble, Phys. Rev. Lett.92,213601 (2004)
    [23]C.Kurtsiefer, et al., High-efficiency entangled photon pair collection in type-Ⅱ parametric fluorescence, Phys. Rev. A,64,023802 (2001)
    [24]S.Takeuchi, Beamlike twin-photon generation by use of type II parametric downconversion, Opt Lett.26,843 (2001)
    [25]P. Michler, et al., Quantum correlation among photonsfrom a single quantum dotat room temperature, Nature,406,968 (2000)
    [26]C. Santori, et al., Triggered single photons from a quantum dot, Phys. Rev. Lett.,86, 1502 (2001)
    [27]J. Gerard, et al.,Strong purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,J. Light Techno.,17,2089(1999)
    [28]L. Duan, et al.,Long-distance quantum communication with atomic ensembles and linear optics, Nature,414,413 (2001)
    [29]M. Eisaman, et al., Electromagnetically induced transparency with tunable single-photon pulses, Nature,438,837 (2005)
    [30]郭光灿,量子光学 中国科技大学二系
    [31]H. Bachor, et al., A Guide to Experiments in Quantum Optics, WILEY-VCH Verlag GmbH & Co. KgaA,2nd ed. (2004)
    [32]Z. Ou, Parametric down-conversion with coherent pulse pumping and quantum interference between independent fields, Quan. Semicla. Opt,9,599(1997)
    [33]D. Magde, et al.,Study in ammonium dihydrogen phosphate of spontaneous parametric interaction tunable from 4400 to 16000 A, Phys. Rev. Lett.,18,905(1987)
    [34]C. Hong, et al., Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett.,59,2044(1987)
    [35]A. Ourjoumtsev, et al.,Quantum homodyne tomography of a two-photon Fock state, Phys. Rev. Lett. 96,213601 (2006)
    [36]R. Alleaume, et al.,Photon statistics characterization of a single-photon source, New Journal of Physics,6,85 (2004)
    [37]Y. Shih, Entangled biphoton source-property and preparation, Rep. Prog. Phys.,66, 1009(2003)
    [38]M. Rubin, et al., Theory of two-photon entanglement in type-II optical parametric down-conversion,Phys. Rev. A,50,5122(1994)
    [39]Y.Shih, et al, New type of Einstein-Pldolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion Phys.Rev. Lett.,61,2921 (1988)
    [40]T. Yarnall, et al.,Experimental violation of Bell's Inequality in spatial-parity space, Phys. Rev. Lett.,99,170408 (2007)
    [41]T. Pittman, et al.,Optical ghost imaging by means of two-photon quantum entanglement, Phys. Rev. A,52, R3429(1995)
    [42]D. Bouwmeester, et al.,Experimental quantum teleportation, Nature,390,575(1997)
    [43]J. Pan, et al., Experimental entanglement swapping:entangling photons that never interacted, Phys.Rev. Lett.,80,3891(1998)
    [44]A. Lvovsky, et al.,Quantum state reconstruction of the single-photon Fock state, Phys. Rev. Lett.,87,050402 (2001)
    [45]D. Bouwmeester, et al., Observation of three-photon Greenberger-Horne-Zeilinger entanglement, Phys. Rev. Lett.,82,1345(1999)
    [46]J. Pan, et al., Experimental demonstration of four-photon entanglement and high-fidelity teleportation, Phys. Rev. Lett.,86,4435 (2001)
    [47]Z. Zhao, et al., Experimental demonstration of five-photon entanglement and open-destination teleportation, Nature,430,54 (2004)
    [48]C. Lu, et al., Experimental entanglement of six photons in graph states, Nature Physics,3,91 (2007)
    [49]Z. Zhao, et al.,Experimental demonstration of a nondestructive Controlled-NOT quantum gate for two independent photon qubits, Phys. Rev. Lett.,94,030501 (2005)
    [50]G.Brida, et al., Single-photon detector calibration by means of conditional polarization rotation, J. Opt. Soc. Am. B,22,488 (2005)
    [51]G Brida, et al.,Quantum efficiency measurement of photon detectors by means of correlated photons,J. Opt. Soc. Am. B,16,1623 (1999)
    [52]A. Abouraddy, et al.,Ellipsometric measurements by use of photon pairs generated by spontaneous parametric downconversion, Opt. Lett.26,1717 (2001)
    [53]E. Dauler, et al.,Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision, J. Res. Natl.Inst. Stand. Technol.,104,1 (1999)
    [1]P. Kwiat, et al., New high-intensity source of polarization-entangled photon pairs, Phys. Rev. Lett.75,4337(1995)
    [2]D. Magde, et al.,Study in ammonium dihydrogen phosphate of spontaneous parametric interaction tunable from 4400 to 16000 A, Phys. Rev. Lett.,18,905(1987)
    [3]C.H. Bennett, et al.,Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70,1895(1993)
    [4]K. Mattle et al., Dense Coding in Experimental Quantum Communication, Phys. Rev. Lett.76,4656(1996)
    [5]D. Deutsch et al., Rapid solution of problems by quantum computation, Proc. R. Soc. London, Ser. A,439,553(1992)
    [6]T. Pittman, et al., Optical ghost imaging by means of two-photon quantum entanglement, Phys. Rev. A,52, R3429(1995)
    [7]B.Shi et al., Generation of a pulsed polarization entangled-photon pair via a two-crystal geometry, Phys. Rev. A,67,043804 (2003)
    [8]D. Bouwmeester, et al.,Observation of three-photon Greenberger-Horne-Zeilinger entanglement, Phys.Rev. Lett.,82,1345 (1999)
    [9]H. Bachor, et al., A Guide to Experiments in Quantum Optics, WILEY-VCH Verlag GmbH & Co. KgaA,2nd ed. (2004)
    [10]Y. Shih, Entangled biphoton source-property and preparation, Rep. Prog. Phys.,66, 1009(2003)
    [11]Crystal Guide 97/98, Crystal & Mete rials, Fuzhou, Fujian, CASIX Inc.1998
    [12]V. Krylov et al., Femtosecond noncollinear and collinear parametric generation and amplification in BBO crystal, Appl. Phys. B,70,163 (2000)
    [13]姚建铨 非线性光学频率变换及激光调谐技术,科学出版社,(1995)
    [14]李永明,自发参量下转换过程的单光子测量及量子态重构,硕士毕业论文,(2004)
    [15]Y. Kim, et al., Measurement of the spectral properties of the two-photon state generated via type-II spontaneous parametric down-conversion, QTuA5, CLEO (2005)
    [16]B. Jost, et al., Spatial correlations of spontaneously down-conversion photon pairs detected with a single-photon-sensitive CCD camera, Opt. Express,3,81(1998)
    [17]O. Jedrkiewicz, et al., Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion. Phys. Rev. Lett.,93,243601 (2004)
    [1]赵凯华等,光学,北京大学出版社,(1982)
    [2]T. Pittman, et al.,Optical ghost imaging by means of two-photon quantum entanglement, Phys. Rev. A,52, R3429(1995)
    [3]M. Bache, et al.,Ghost imaging using homodyne detection, Phys. Rev. A,70,023823 (2004)
    [4]A. Abouraddy, et al.,Role of entanglement in two-photon imaging, Phys. Rev. Lett.,87, 123602 (2001).
    [5]A. Gatti, et al.,Correlated imaging, quantum and classical, Phys. Rev. A,70,013802 (2004)
    [6]A. Gatti, et al., Ghost imaging with thermal light:comparing entanglement and classical correlation, Phys. Rev. Lett.,93,093602 (2004)
    [7]J. Cheng, et al., Incoherent Coincidence Imaging and Its Applicability in X-ray Diffraction, Phys. Rev. Lett.,92,093903 (2004)
    [8]Y. Cai, et al., Ghost imaging with incoherent and partially coherent light radiation, Phys. Rev. E,71,056607 (2005)
    [9]A. Valencia, et al., Two-photon imaging with thermal light, Phys. Rev. Lett.,94, 063601(2005)
    [10]F. Ferry, et al.,High-resolution ghost image and ghost diffraction experiments with thermal light, Phys. Rev. Lett.,94,183602 (2005)
    [11]M. D'Angelo, et al.,Resolution of quantum and classical ghost imaging, Phys.Rev. A, 72,013810(2005)
    [12]R. Bennink, et al.,"Two-photon" coincidence imaging with a classical source, Phys. Rev. Lett.,89,113601 (2002)
    [13]A. Gatti, et al.,Quantum entangled images, Phys. Rev. Lett.,83,1763 (1999)
    [14]A. Gatti, et al.,Entangled imaging and wave-particle duality:from the microscopic to the macroscopic realm, Phys. Rev. Lett.,90,113603 (2003)
    [15]E. Puddu, et al.,Ghost imaging with intense fields from chaotically seeded parametric downconversion, Opt. Lett.32,1132 (2007)
    [16]D. Zhang, et al.,Correlated two-photon imaging with true thermal light, Opt. Lett.,30, 2354(2005)
    [17]G. Scarcelli, et. al.,Experimental study of the momentum correlation of a pseudo-thermal field in the photon-counting regime, Phys. Rev. A,70,051802R (2004)
    [18]Y.Cai, et al., Ghost interference with partially coherent radiation, Opt. Lett.,29,2716 (2004)
    [1]A. Einstein, Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Annln. Phys.,17,132 (1905)
    [2]D. Walls and G Milburn, Quantum Optics (Sringer-Verlag, New York,1995),2nd ed.
    [3]M. Ueda, et al., Reversibility in quantum measurement processes, Phys. Rev. Lett.,68, 3424(1992)
    [4]M. Ueda, et al., Logical reversibility in quantum measurement:General theory and specific examples, Phys. Rev. A,53,3808(1996)
    [5]N. Bloembergen, Solid state infrared quantum counters,Phys. Rev. Lett.,2,84(1959)
    [6]L. Mandel, Antinormally ordered correlations and quantum counters, Phys. Rev.152, 438(1966)
    [7]H. Lee, Generalized antinormally ordered quantum phase-space distribution functions, Phys. Rev. A 50,2746(1994)
    [8]R. Hanbury-Brown, t. al., Correlation between Photons in two Coherent Beams of Light, Nature,177,27(1956)
    [9]U.Fano, Ionization Yield of Radiations. Ⅱ.The Fluctuations of the Number of Ions, Phys. Rev.72,26(1947)
    [10]H. Bachor, et al.,A Guide to Experiments in Quantum Optics, WILEY-VCH Verlag GmbH & Co. KgaA,2nd ed. (2004)
    [11]Hardy, et al., Inequalities, Cambridge University Press,(1951)
    [12]C. Gardiner, et al.,Quantum Noise, Springer-Verlag,2nd ed. (2000)
    [13]R. Glauber, The Quantum Theory of Optical Coherence, Phys. Rev.130,2529(1963)
    [14]K. Usami, et al., Observation of antinormally ordered Hanbury Brown-Twiss correlations, Phys. Rev. Lett.,92,113601 (2004)
    [15]R. Loudon, The Quantum Theory of Light (Oxford University Press, New York,2000), 3rd ed.
    [16]Z. Y.Ou, et al.,Relation between input and output states for a beam splitter, Opt. Commu.63,118(1987)
    [17]北京光学仪器厂生产。
    [18]J. Wenger, et al.,Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification, Opt. Lett. 29,1267 (2004)
    [19]M. O. Scully, et al.,Quantum Optics, Cambridge University Press,(1997)
    [20]J. W.Goodman, Statistics Optics, (A Wiley-Interscience Publication 1985)
    [21]A. Mosseta, et. al.,Direct experimental characterization of the Bose-Einstein distribution of spatial fluctuations of spontaneous parametric down-conversion, Eur. Phys. J. D,28,447 (2004)
    [22]郭光灿,量子光学,中国科学技术大学二系
    [23]Pulse Check,德国APE公司生产。
    [1]N.S.Nightingale, A new silicon avalanche photodiode counting detector module for astronomy, Experimental Astronomy 1,407(1991).
    [2]J. Han, et al.,Separation of long DNA molecules in a microfabricated entropic trap array, Science 288,1026 (2000).
    [3]P.Townsend, Experimental investigation of the performance limits for first telecommunications-window quantum cryptography systems, IEEE Photonics Technology Letters 10,1048(1998); J. Rarity, et al., Secure free-space key exchange to 1.9km and beyond, Journal of Modern Optics 48,1887 (2001).
    [4]A. Steinberg, et al.,Measurement of the single-photon tunneling time, Phys. Rev. Lett. 71,708(1993)
    [5]J. Goodman, Statistical Optics, A Wiley-Interscience publication,(1985)
    [6]L. Mandel, Sub-Poissonian photon statistics in resonance fluorescence, Opt. Lett.,4, 205(1979)
    [7]W. Martienssen, et al.,Fluctuation Measurements in mixed light fields, Phys. Rev.145, 285(1966)
    [8]G. Bedard, et al., Approximate formulas for photoelectric counting distributions, Phys. Rev.160 1496(1967)
    [9]L. Mandel, Intensity fluctuations of partially polarized light, Proc. Phys. Soc.,81 1104 (1963)
    [10]R. Vyas, Photon-counting statistics of the subthreshold nondegenerate parametric oscillator, Phys. Rev. A,46,395 (1992)
    [11]J. Abate, et al., Photon statistics of a dye laser, Phys. Rev. A,14,788(1976)
    [12]P. Magill, et al.,Photoelectric counting distributions for a noise-modulated system, Phys. Rev. Lett.,16,911(1966)
    [13]C. Freed, et al., Photoelectron statistics produced by a laser operating below the threshold of oscillation, Phys. Rev. Lett.,15,943(1965)
    [14]G.Bedard, Photo counting statistics of Gaussian light, Phys. Rev.151,1038 (1966)
    [15]C.Mehta, et al.,Photon counting statistics with thermal light having a multiple-peak spectrum, Phys. Rev. A,11 1634 (1975)
    [16]S.Fray, et al., Photon-counting distributions of modulated laser beams, Phys. Rev. 153,357(1967)
    [17]F. Paleari, et al., Thermal photon statistics in spontaneous parametric downconversion, Opt. Express.12,2816 (2004)
    [18]A. Mosset, et al., Direct experimental characterization of the Bose-Einstein distribution of spatial fluctuations of spontaneous parametric down-conversion, Eur. Phys. J. D,28,447 (2004)
    [19]G. Taylor, et al., Interference fringes with feeble light, Proc. of the Cambridge philosophical society,15,114(1909)
    [20]P. Kwiat, et al.,New high-intensity source of polarization-entangled photon pairs, Phys. Rev. Lett. 75,4337(1995)
    [21]H. Bachor, et al.,A Guide to Experiments in Quantum Optics,WILEY-VCH Verlag GmbH & Co. KgaA,2nd ed. (2004)
    [22]P. Eberhard, et al.,Detection efficiency and dark pulse rate of Rockwell (SSPM) single photon counters, Proceedings of the IEEE International Conference on Applications of Photonics Technology (ICAPT 94), Toronto, Canda, June 22(1994)
    [23]J. Kim, et al., Multiphoton detection using visible light photon counter, Appl. Phys. Lett. 74,902(1999)
    [24]A. Miller, et all, Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,Appl. Phys. Lett.83,791 (2003).
    [25]M. Fujiwara, et al., Multiphoton discrimination at telecom wavelength with charge integration photon detector, Appl. Phys. Lett. 86,111119 (2005).
    [26]http://www.photondetection.com/pub/top/
    [27]李刚,高精细度微光学腔及单原子的控制与测量,山西大学博士毕业论文(2007)
    [28]B.Cabrera, et al., Detection of single infrared, optial, and ultraviolet photons using superconducting transition edge sensors, Appl. Phys. Lett.73,735(1998)
    [29]A. Miller, et al., Letters to Bochor, (2003)
    [30]A.Verevkin, et al., Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range, Appl. Phys. Lett.,80, 4687(2002)
    [31]D. James, et al., Atomic vapor-based high efficiency optical detectors with photon number resolution, Phys. Rev. Lett.89,183601 (2002)
    [32]L. Mandel, Theory of photoelectric detection of light fluctuations, Proc. Phys. Soc.(London),84,435(1964)
    [33]L. Mandel, Fluctuations of photon beams:the distribution of the photo-electrons, Proc. Phys. Soc.(London),74,233(1959)
    [34]S.Rice, Mathematical analysis of random noise, Bell Syst. Tech. J.,24,46(1945)
    [35]D. Walls and G Milburn, Quantum Optics (Sringer-Verlag, New York,1995),2nd ed.
    [36]F. Arecchi, Phy. Rev. Lett., Measurement of the Statistical Distribution of Gaussian and Laser Sources,15,912(1965)
    [37]S. Mori, et al.,On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide Opt. Commun.,264,156 (2006)
    [38]L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge university press,1995)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700