基于石墨烯复合界面的DNA电化学传感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文围绕纳米材料领域的研究热点,结合石墨烯、离子液体、纳米金、纳米导电聚合物和金属氧化物等,设计合成了具有不同结构和性质的石墨烯复合界面,并将其应用于电化学传感,得到具有高灵敏度和高选择性的新型DNA电化学生物传感器。主要内容如下:
     (1)研究了离子液体功能化的石墨烯对多巴胺和嘌呤的电化学催化。离子液体功能化的石墨烯修饰电极对多巴胺和嘌呤具有很好的电催化性能,能够极大地降低氧化电位,对多巴胺和嘌呤具有较好的线性响应和较低的检测限。该传感器能够检测特定序列DNA的单碱基变异。
     (2)分别利用电化学还原法和化学还原法制得石墨烯。与化学还原法相比,电化学还原法更加简单,高效,低耗费,绿色环保,并且制得的石墨烯拥有更强的电化学催化活性。纳米金/石墨烯电极能够在中性条件下同时检测DNA的四种碱基,并且在免杂交和免标记的情况下,实现了对人工合成DNA碱基变异的识别检测。
     (3)利用DNA与石墨烯的非共价π-π堆积作用,将DNA探针固定在石墨烯/聚苯胺复合界面上。当互补DNA存在时,互补DNA与DNA探针的杂交反应会削弱DNA探针与石墨烯之间的作用力,使DNA探针(部分或全部)从石墨烯/聚苯胺复合界面脱离。通过监测DNA探针上结合的[Ru(NH3)6]3+的电化学信号变化,能够实现对花椰菜花叶病毒CaMV35S基因片段的检测。
     (4)将Fe203/石墨烯复合界面应用于蛋白质的检测。用恒电位法将Fe203沉积到石墨烯电极上。把复合电极作为固载平台,溶菌酶适体通过静电吸附作用固定到电极表面,并用电化学交流阻抗的方法检测溶菌酶。当溶菌酶存在的情况下,电极表面的适体能够结合溶菌酶,引起电极电化学阻抗信号的增强。
     (5)以组氨酸为还原剂制备水溶性石墨烯,制得的石墨烯用作一种双组分的适体传感平台。由两种蛋白质适体(凝血酶适体和溶菌酶适体)组成的DNA序列与石墨烯以π-π堆积的方式结合,将目标物溶菌酶和凝血酶作为输入,DNA上静电结合的[Ru(NH3)6]3+的电化学信号作为输出。不同目标物的加入会改变DNA/石墨烯的空间结构,引起输出信号的变化,模拟了NAND逻辑门。
     (6)用电化学共沉积的方法制备了Al3+/石墨烯的复合界面。把双链DNA固定在Al3+/石墨烯上,将低毒性的黄尿酸嵌插在双链DNA里作为电化学指示剂,通过研究黄尿酸的电化学信号变化监测DNA的损伤。实验结果表明,氧化石墨烯和一些金属离子的混合体系可以引起双链DNA的解链。
In the scope of nanomaterials fields, the nanocomposite interfaces based on graphene, ionic liquids (IL), gold nanoparticles, polymer, and metal oxides were synthesized and applied in electrochemical biosensing. The resulted novel DNA electrochemical biosensors show good performances and exhibit potential application in bioanalysis. The main points of this dissertation are addressed as follows:
     (1) Electrochemical activities of typically electrochemical targets at three kinds of modified carbon electrodes, i.e. carbon ionic liquid electrode (CILE), graphene/carbon paste electrode (CPE), and ionic liquid-functionalized graphene (IL-graphene)/CPE, were compared. The redox processes of the targets at IL-graphene/CPE were faster than those at CILE and graphene/CPE. Single base mutation of sequence-specific DNA could be discriminated by IL-graphene/CPE.
     (2) A direct electrochemical DNA sensor was constructed based on gold nanoparticles/graphene film. A precursor graphene film was fabricated on the glassy carbon electrode (GCE) using both electrochemically reduced graphene oxide (ERGNO) and chemically reduced graphene oxide (CRGNO). Electrochemical approach was green and fast, and would not result in contamination of the reduced material compared with chemical reduction, and at highly negative potential could reduce the oxygen functionalities of graphene oxide more efficiently than chemical reduction. ERGNO exhibited better electrochemical and electrocatalytic performances than CRGNO. The gold nanoparticles (AuNPs) were electrodeposited on the ERGNO/GCE to amplify the electrochemical signals. The electrochemical responses of DNA bases were investigated at AuNPs/ERGNO/GCE, which showed more favorable electron transfer kinetics than at ERGNO/GCE, demonstrating the significantly synergistic electrocatalytic effect of ERGNO and AuNPs. The synthetic sequence-specific DNA was successfully detected.
     (3) A novel DNA electrochemical biosensor was described for the detection of specific gene sequences. ERGNO was prepared on polyaniline (PAN) nanofibers modified GCE. Compared with the electrochemical reduction of graphene oxide directly on bare GCE, more positive reduction potential for graphene oxide was observed with the PAN membrane existing. The formed ERGNO/PAN nanocomposites were applied to bind single-stranded DNA (ssDNA) probe via the non-covalent assembly. After the hybridization of ssDNA probe with complementary DNA, the response of surface-bound [Ru(NH3)6]3+changed obviously, which could been adopted to recognize the DNA hybridization. This biosensor could be used to detect the sequence-specific DNA of cauliflower mosaic virus (CaMV35S) gene.
     (4) An electrochemical platform was employed for rapid detection of protein, where Fe2O3was fabricated on graphene surface using electrochemical deposition. The negatively charged lysozyme-binding aptamer (LBA) was immobilized on the positively charged Fe2O3via electrostatic interaction. Electrochemical impedance spectroscopy was adopted for the indicator-free detection of lysozyme. The LBA on the outermost layer would catch lysozyme in solution by physical affinity, which induced an increase of impedimetric signals. The results showed that the indicator-free impedimetric aptasensing strategy had good sensitivity and selectivity.
     (5) Graphene was obtained by the nontoxic reductant L-histidine, and demonstrated as a dual-analyte biosensing platform that functioned as electrochemical logic gate. Thrombin and lysozyme were used as inputs to activate the change of aptamer configuration. The electrochemical signals of redox cation [Ru(NH3)e]3+bound to the aptamer were read out as outputs in the presence of the appropriate inputs. The fabricated logic aptasensor could determine whether both specific targets were present through the built-in NAND logic gate.
     (6) The electrochemical co-deposition of Al3+/graphene composites directly from an aqueous mixture containing graphene oxide (GNO) and Al3+was presented. The obtained Al3+/graphene composites with good electrochemical activity were regarded as the appropriate immobilization platform for double-stranded DNA (dsDNA). The nontoxic redox probe xanthurenic acid (XA) was successfully applied to recognize ssDNA and dsDNA. The scission of dsDNA caused by GNO combining with some metal ions could be detected by monitoring the electrochemical signals of XA.
引文
[1]Novoselov K. S., Geim A. K., Morozov S. V., et al., Electric field effect in atomically thin carbon films, Science,2004,306,666-669.
    [2]Allen M. J., Tung V. C., Kaner R. B., Honeycomb carbon:a review of graphene, Chem. Rev., 2010,110,132-145.
    [3]Singh V., Joung D., Zhai L., et al., Graphene based materials:past, present and future, Prog. Mater. Sci.,2011,56,1178-1271.
    [4]Liu Y. X., Dong X. C., Chen P., Biological and chemical sensors based on graphene materials, Chem. Soc. Rev.,2012,41,2283-2307.
    [5]Kim K. S., Zhao Y., Jang H., et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature,2009,457,706-710.
    [6]Li X. S., Cai W. W., An J. H., et al., Large-area synthesis of high-quality and uniform graphene films on copper foils, Science,2009,324,1312-1314.
    [7]Sutter P. W., Flege J. I., Sutter E. A., Epitaxial graphene on ruthenium, Nat. Mater.,2008,7, 406-411.
    [8]Xiao N., Dong X., Song L., et al., Enhanced thermopower of graphene films with oxygen plasma treatment, ACS Nano,2011,5,2749-2755.
    [9]Wang Y., Xu X., Lu J., et al., Toward high throughput interconvertible graphane-to-graphene growth and patterning, ACS Nano,2010,4,6146-6152.
    [10]Shivaraman S., Barton R. A., Yu X., et al., Free-standing epitaxial graphene, Nano Lett., 2009,9,3100-3105.
    [11]Deng D., Pan X., Zhang H., et al., Freestanding graphene by thermal splitting of silicon carbide granules, Adv. Mater.,2010,22,2168-2171.
    [12]Jiao L. Y., Zhang L., Wang X. R., et al., Narrow graphene nanoribbons from carbon nanotubes, Nature,2009,458,877-880.
    [13]Hummers W., Offeman R., Preparation of graphitic oxide, J. Am. Chem. Soc.,1958,80, 1339-1339.
    [14]Kovtyukhova N. I., Ollivier P. J., Martin B. R., et al., Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations, Chem. Mater., 1999,11,771-778.
    [15]Qi X., Pu K. Y., Li H., et al., Amphiphilic graphene composites, Angew. Chem., Int. Ed., 2010,49,9426-9429.
    [16]He Q., Sudibya H. G., Yin Z., et al., Centimeter-long and large-scale micropatterns of reduced graphene oxide films:fabrication and sensing applications, ACS Nano,2010,4, 3201-3208.
    [17]Li B., Cao X., Ong H. G., et al., All-carbon electronic devices fabricated by directly grown single-walled carbon nanotubes on reduced graphene oxide electrodes, Adv. Mater.,2010,22, 3058-3061.
    [18]Qi X., Pu K. Y., Zhou X., et al., Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents, Small,2010,6,663-669.
    [19]Wu S., Yin Z., He Q., et al., Electrochemical deposition of semiconductor oxides on reduced graphene oxide-based flexible, transparent, and conductive electrodes, J. Phys. Chem. C, 2010,114,11816-11821.
    [20]Yin Z., Wu S., Zhou X., et al., Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells, Small,2010,6,307-312.
    [21]Zhou X., Huang X., Qi X., et al., In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces, J. Phys. Chem. C,2009,113, 10842-10846.
    [22]Zhou X., Wei Y., He Q., et al., Reduced graphene oxide films used as matrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin, Chem. Commun.,2010,46, 6974-6976.
    [23]Liu J., Yin Z., Cao X., et al., Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes, ACS Nano,2010,4,3987-3992.
    [24]Li D., Muller M. B., Gilje S., et al., Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol.,2008,3,101-105.
    [25]Yin Z., Sun S. Y., Salim T., et al., Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes, ACS Nano,2010,4,5263-5268.
    [26]Wu S., Yin Z., He Q., et al., Electrochemical deposition of Cl-doped n-type Cu2O on reduced graphene oxide electrodes, J. Mater. Chem.,2010,21,3467-3470.
    [27]Agarwal S., Zhou X., Ye F., et al., Interfacing live cells with nanocarbon substrates, Langmuir, 2010,26,2244-2247.
    [28]Liu J., Lin Z., Liu T., et al., Multilayer stacked low-temperature-reduced graphene oxide films:preparation, characterization, and application in polymer memory devices, Small,2010, 6,1536-1542.
    [29]Hu W., Peng C., Luo W., et al., Graphene-based antibacterial paper, ACS Nano,2010,4, 4317-4323.
    [30]Zhang L., Li X., Huang Y., et al., Controlled synthesis of few-layered graphene sheets on a large scale using chemical exfoliation, Carbon,2010,48,2367-2371.
    [31]Wang Y., Shi Z., Huang Y., et al., Supercapacitor devices based on graphene materials, J. Phys. Chem. C,2009,113,13103-13107.
    [32]Lv X., Huang Y., Liu Z., et al., Photoconductivity of bulk-film-based graphene sheets, Small, 2009,5,1682-1687.
    [33]Fan X., Peng W., Li Y., et al., Deoxygenation of exfoliated graphite oxide under alkaline conditions:a green route to graphene preparation, Adv. Mater.,2008,20,4490-4493.
    [34]Dua V., Surwade S., Ammu S., et al., All-organic vapor sensor using inkjet-printed reduced graphene oxide, Angew. Chem., Int. Ed.,2010,49,2154-2157.
    [35]He Q., Wu S., Gao S., et al., Transparent, flexible, all-reduced graphene oxide thin film transistors, ACS Nano,2011,5,5038-5044.
    [36]Williams G., Seger B., Kamat P. V., TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide, ACS Nano,2008,2,1487-1491.
    [37]Huang X., Zhou X. Z., Wu S. X., et al., Reduced graphene oxide-templated photochemical synthesis and in situ assembly of Au nanodotsto orderly patterned Au nanodot chains, Small, 2010,6,513-516.
    [38]Matsumoto Y., Koinuma M., Kim S. Y., et al., Simple photoreduction of graphene oxide nanosheet under mild conditions, ACS Appl. Mater. Inter.,2010,2,3461-3466.
    [39]Ng Y. H., Iwase A., Kudo A., et al., Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting, J. Phys. Chem. Lett., 2010,1,2607-2612.
    [40]McAllister M. J., Li J. L., Adamson D. H., et al., Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chem. Mater.,2007,19,4396-4404.
    [41]Mattevi C., Eda G., Agnoli S., et al., Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films, Adv. Funct. Mater.,2009,19,2577-2583.
    [42]Lin Z., Yao Y., Li Z., et al., Solvent-assisted thermal reduction of graphite oxide, J. Phys. Chem. C,2010,114,14819-14825.
    [43]Mao S., Lu G., Yu K., et al., Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates, Adv. Mater.,2010,22, 3521-3526.
    [44]Zhu Y. W., Stoller M. D., Cai W. W., et al., Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets, ACS Nano,2010,4, 1227-1233.
    [45]Wu J., Agrawal M., Becerril H. A., et al., Organic light-emitting diodes on solution-processed graphene transparent electrodes, ACS Nano,2009,4,43-48.
    [46]Becerril H. A., Mao J., Liu Z., et al., Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano,2008,2,463-470.
    [47]Zangmeister C. D., Preparation and evaluation of graphite oxide reduced at 220℃, Chem. Mater.,2010,22,5625-5629.
    [48]Abdelsayed V., Moussa S., Hassan H. M., et al., Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature, J. Phys. Chem. Lett.,2010,1,2804-2809.
    [49]Cote L. J., Cruz-Silva R., Huang J. X., Flash reduction and patterning of graphite oxide and its polymer composite, J. Am. Chem. Soc.,2009,131,11027-11032.
    [50]Vinodgopal K., Neppolian B., Lightcap I. V., et al., Sonolytic design of graphene-Au nanocomposites. Simultaneous and sequential reduction of graphene oxide and Au(III), J. Phys. Chem. Lett.,2010,1,1987-1993.
    [51]Hassan H. M., Abdelsayed V., Khder A., et al., Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media, J. Mater. Chem.,2009,19, 3832-3837.
    [52]Wang Z., Zhou X., Zhang J., et al., Direct electrochemical reduction of single-Tayer graphene oxide and subsequent functionalization with glucose oxidase, J. Phys. Chem. C,2009,113, 14071-14075.
    [53]Zhou M., Wang Y., Zhai Y., et al., Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films, Chem. Eur. J.,2009,15,6116-6120.
    [54]Guo H. L., Wang X. F., Qian Q. Y., et al., A green approach to the synthesis of graphene nanosheets, ACS Nano,2009,3,2653-2659.
    [55]Ramesha G. K., Sampath S., Electrochemical reduction of oriented graphene oxide films:an in situ Raman spectroelectrochemical study, J. Phys. Chem. C,2009,113,7985-7989.
    [56]Fernandez-Merino M. J., Guardia L., Paredes J. I., et al., Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions, J. Phys. Chem. C,2010,114, 6426-6432.
    [57]Moon I. K., Lee J., Ruoff R. S., et al., Reduced graphene oxide by chemical graphitization. Nat. Commun.,2010,1,73/1-6.
    [58]Pei S., Zhao J., Du J., et al., Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids, Carbon,2010,48,4466-4474.
    [59]Yang X., Li L., Shang S., et al., Synthesis and characterization of layer-aligned poly(vinyl alcohol)/graphene nanocomposites, Polymer,2010,51,3431-3435.
    [60]Chang H., Wang G., Yang A., et al., A transparent, flexible, low-temperature, and solution-processible graphene composite electrode, Adv. Funct. Mater.,2010,20,2893-2902.
    [61]Das B., Prasad K. E., Ramamurty U., et al., Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene, Nanotechnology,2009,20,125705/1-5.
    [62]Putz K. W., Compton O. C., Palmeri M. J., et al., High-nanofiller-content graphene oxide-polymer nanocomposites via vacuum-assisted self-assembly, Adv. Funct. Mater.,2010, 20,3322-3329.
    [63]Zhao X., Zhang Q., Chen D., et al., Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites, Macromolecules,2010,43,2357-2363.
    [64]Szabo T., Szeri A., Dekany I., Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer, Carbon,2005,43,87-94.
    [65]Jeong H. K., Jin M., Ra E. J., et al., Enhanced electric double layer capacitance of graphite oxide intercalated by poly(sodium 4-styrensulfonate) with high cycle stability, ACS Nano, 2010,4,1162-1166.
    [66]Liu J. Q., Tao L., Yang W. R., et al., Synthesis, characterization, and multilayer assembly of pH sensitive graphene-polymer nanocomposites, Langmuir,2010,26,10068-10075.
    [67]Fan H., Wang L., Zhao K., et al., Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites, Biomacromolecules,2010,11,2345-2351.
    [68]Yang X., Tu Y., Li L., et al., Well-dispersed chitosan/graphene oxide nanocomposites, ACS Appl. Mater. Interfaces,2010,2,1707-1713.
    [69]Li J., Guo S., Zhai Y., et al., Nafion-graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium, Electrochem. Commun.,2009,11, 1085-1088.
    [70]Liu Y., Gao L., Sun J., et al., Stable nafion-functionalized graphene dispersions for transparent conducting films, Nanotechnology,2009,20,465605/1-7.
    [71]Lian Y., Liu Y, Jiang T., et al., Enhanced electromechanical performance of graphite oxide-nafion nanocomposite actuator, J. Phys. Chem. C,2010,114,9659-9663.
    [72]Zhang W. L., Park B. J., Choi H. J., Colloidal graphene oxide/polyaniline nanocomposite and its electrorheology, Chem. Commun.,2010,46,5596-5598.
    [73]Zhang K., Zhang L. L., Zhao X. S., et al., Graphene/polyaniline nanofiber composites as supercapacitor electrodes, Chem. Mater.,2010,22,1392-1401.
    [74]Wang H., Hao Q., Yang X., et al., Graphene oxide doped polyaniline for supercapacitors, Electrochem. Commun.,2009,11,1158-1161.
    [75]Murugan A. V., Muraliganth T., Manthiram A., Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage, Chem. Mater.,2009,21,5004-5006.
    [76]Gu Z., Li C., Wang G., et al., Synthesis and characterization of polypyrrole/graphite oxide composite by in situ emulsion polymerization, J. Polym. Sci. Part B:Polym. Phys.,2010,48, 1329-1355.
    [77]Bittolo-Bon S., Valentini L., Kenny J. M, Preparation of extended alkylated graphene oxide conducting layers and effect study on the electrical properties of PEDOT:PSS polymer composites, Chem. Phys. Lett.,2010,494,264-268.
    [78]Wang Y. B., Kurunthu D., Scott G. W., et al., Fluorescence quenching in conjugated polymers blended with reduced graphitic oxide, J. Phys. Chem. C,2010,114,4153-4159.
    [79]Yang H. F., Zhang Q. X., Shan C. S., et al., Stable conductive supramolecular composite of graphene sheets with conjugated polyelectrolyte, Langmuir,2010,26,6708-6712.
    [80]Muszynski R., Seger B., Kamat P. V., Decorating graphene sheets with gold nanoparticles, J. Phys. Chem. C,2008,112,5263-5266.
    [81]Goncalves G., Marques P., Granadeiro C., et al., Surface modification of graphene nanosheets with gold nanoparticles:the role of oxygen moieties at graphene surface on gold nucleation and growth, Chem. Mater.,2009,21,4796-4802.
    [82]Hu Y. W., Hua S. C., Li F. H., et al., Green-synthesized gold nanoparticles decorated graphene sheets for label-free electrochemical impedance DNA hybridization biosensing, Biosens. Bioelectron.,2011,26,4355-4361.
    [83]Shen J., Shi M., Li N., et al., Facile synthesis and application of Ag-chemically converted graphene nanocomposite, Nano Res.,2010,3,339-349.
    [84]Zhu C., Guo S., Zhai Y., et al., Layer-by-layer self-assembly for constructing a graphene/platinum nanoparticle three-dimensional hybrid nanostructure using ionic liquid as a linker, Langmuir,2010,26,7614-7618.
    [85]Shao Y., Zhang S., Wang C., et al., Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction, J. Power Sources,2010,195,4600-4605.
    [86]Guo S. J., Dong S. J., Wang E. K., Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet:facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation, ACS Nano,2009,4,547-555.
    [87]Scheuermann G. M., Rumi L., Steurer P., et al., Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction, J. Am. Chem. Soc.,2009,131,8262-8270.
    [88]Chen X. M., Wu G. H., Chen J. M., et al., Synthesis of "clean" and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide, J. Am. Chem. Soc., 2011,133,3693-3695.
    [89]Tang Z., Shen S., Zhuang J., et al., Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide, Angew. Chem. Int. Ed.,2010,49,4603-4607.
    [90]Zou Y. H., Liu H. B., Yang L., et al., The influence of temperature on magnetic and microwave absorption properties of Fe/graphite oxide nanocomposites, J. Magn. Magn. Mater.,2006,302,343-347.
    [91]Bin X., Chen J., Cao H., et al., Preparation of graphene encapsulated copper nanoparticles from CuCl2-GIC, J. Phys. Chem. Solids.,2009,70,1-7.
    [92]Wang G., Wang B., Wang X., et al., Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries, J. Mater. Chem.,2009,19, 8378-8384.
    [93]Hassan H., Abdelsayed V., Khder A., et al., Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media, J. Mater. Chem.,2009,19, 3832-3837.
    [94]Morishige K., Hamada T., Iron oxide pillared graphite, Langmuir,2005,21,6277-6281.
    [95]Zhang M., Lei D., Yin X., et al., Magnetite/graphene composites:microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries, J. Mater. Chem.,2010,20,5538-5543.
    [96]Fan Y., Wang L., Li J., et al., Preparation and electrical properties of graphene nanosheet/Al2O3composites, Carbon,2010,48,1743-1749.
    [97]Paek S. M., Yoo E., Honma I., Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure, Nano Lett.,2008,9,72-75.
    [98]Wang D. H., Kou R., Choi D., et al., Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage, ACS Nano,2010,4,1587-1595.
    [99]Yang S., Feng X., Ivanovici S., et al., Fabrication of graphene-encapsulated oxide nanoparticles:towards high-performance anode materials for lithium storage, Angew. Chem. Int. Ed.,2010,49,8408-8411.
    [100]Watcharotone S., Dikin D. A., Stankovich S., Graphene-silica composite thin films as transparent conductors, Nano Lett.,2007,7,1888-1892.
    [101]Yan J., Fan Z., Wei T., et al., Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes, Carbon,2010,48,3825-3833.
    [102]Manga K. K., Zhou Y., Yan Y., et al., Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties, Adv. Funct. Mater.,2009,19,3638-3643.
    [103]Zheng W. T., Ho Y. M., Tian H. W., et al., Field Emission from a composite of graphene sheets and ZnO nanowires, J. Phys. Chem. C,2009,113,9164-9168.
    [104]Xu C., Wang X., Yang L., et al., Fabrication of a graphene-cuprous oxide composite, J. Solid State Chem.,2009,182,2486-2490.
    [105]Yang S., Feng X., Wang L., et al., Graphene-based nanosheets with a sandwich structure, Angew. Chem. Int. Ed.,2010,49,4795-4799.
    [106]Chang H., Lv X., Zhang H., et al., Quantum dots sensitized graphene:in situ growth and application in photoelectrochemical cells, Electrochem. Commun.,2010,12,483-487.
    [107]Lin Y., Zhang K., Chen W., et al., Dramatically enhanced photoresponse of reduced graphene oxide with linker-free anchored CdSe nanoparticles, ACS Nano,2010,4, 3033-3038.
    [108]Nethravathi C., Nisha T., Ravishankar N., et al., Graphene-nanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide, Carbon,2009,47, 2054-2059.
    [109]Cai D., Song M., Xu C., Highly conductive carbon-nanotube/graphite-oxide hybrid films, Adv. Mater.,2008,20,1706-1709.
    [110]Yu D., Dai L., Self-assembled graphene/carbon nanotube hybrid films for supercapacitors, J. Phys. Chem. Lett.,2010,1,467-470.
    [111]Hong T. K., Lee D. W., Choi H. J., et al.,Transparent, flexible conducting hybrid multilayer thin films of multiwalled carbon nanotubes with graphene nanosheets, ACS Nano,2010,4, 3861-3868.
    [112]Li X., Wang H., Robinson J. T., et al., Simultaneous nitrogen doping and reduction of graphene oxide, J. Am. Chem. Soc.,2009,131,15939-15944.
    [113]Wei D., Liu Y., Wang Y, et al., Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties, Nano Lett.,2009,9,1752-1758.
    [114]Qu L., Liu Y, Baek J. B., et al., Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS Nano,2010,4,1321-1326.
    [115]Jiang D. E., Cooper V. R., Dai S., Porous graphene as the ultimate membrane for gas separation, Nano Lett.,2009,9,4019-4024.
    [116]Sint K., Wang B. Y., Kral P., Selective ion passage through functionalized graphene nanopores, J. Am. Chem. Soc.,2008,130,16448-16449.
    [117]Patil A. J., Vickery J. L., Scott T. B., et al., Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA, Adv. Mater.,2009,21, 3159-3164.
    [118]Liu J. B., Lin Y. L., Li Y. M., et al., Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal-carbon hybrid nanostructures via self-assembly, J. Mater. Chem.,2010,20,900-906.
    [119]Zhang J. L., Zhang F., Yang H. J., et al., Graphene oxide as a matrix for enzyme immobilization, Langmuir,2010,26,6083-6085.
    [120]Laaksonen P., Kainlauri M., Laaksonen T., et al., Interfacial engineering by proteins: exfoliation and functionalization of graphene by hydrophobins, Angew. Chem. Int. Ed., 2010,49,4946-4949.
    [121]Liu J. B., Fu S. H., Yuan B., et al., Toward a universal "adhesive nanosheet" for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide, J. Am. Chem. Soc.,2010,132,7279-7281.
    [122]Han T. H., Lee W. J., Lee D. H., et al., Peptide/graphene hybrid assembly into core/shell nanowires, Adv. Mater.,2010,22,2060-2064.
    [123]Yang Q., Pan X. J., Huang F., et al., Fabrication of high-concentration and stable aqueous suspensions of graphene, J. Phys. Chem. C,2010,114,3811-3816.
    [124]Zhou M., Zhai Y., Dong S., Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide, Anal. Chem.,2009,81,5603-5613.
    [125]Ambrosi A., Pumera M., Nanographite impurities dominate electrochemistry of carbon nanotubes, Chem. Eur. J.,2010,16,10946-10949.
    [126]McCreery R. L., Advanced carbon electrode materials for molecular electrochemistry, Chem. Rev.,2008,108,2646-2687.
    [127]Tang L., Wang Y, Li Y., et al., Preparation, structure, and electrochemical properties of reduced graphene sheet films, Adv. Funct. Mater.,2009,19,2782-2789.
    [128]Xu H. F., Dai H., Chen G. N., Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film, Talanta,2010,81,334-338.
    [129]Lu Q., Dong X. C., Li L. J., et al., Direct electrochemistry-based hydrogen peroxide biosensor formed from single-layer graphene nanoplatelet-enzyme composite film, Talanta, 2010,82,1344-1348.
    [130]Zeng Q., Cheng J. S., Tang L. H., et al., Self-assembled graphene-enzyme hierarchical nanostructures for electrochemical biosensing, Adv. Funct. Mater.,2010,20,3366-3372.
    [131]Lv W., Guo M., Liang M. H., et al., Graphene-DNA hybrids:self-assembly and electrochemical detection performance, J. Mater. Chem.,2010,20,6668-6673.
    [132]Zhang Q. A., Qiao Y, Hao F., et al., Fabrication of a biocompatible and conductive platform based on a single-stranded DNA/graphene nanocomposite for direct electrochemistry and electrocatalysis, Chem. Eur. J.,2010,16,8133-8139.
    [133]Guo S. J., Wen D., Zhai Y. M., et al., Platinum nanoparticle ensemble-on-graphene hybrid nanosheet:one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing, ACS Nano,2010,4,3959-3968.
    [134]Qian L., Yang X. R., Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor, Talanta,2006,68,721-727.
    [135]Zhou M., Shang L., Li B. L., et al., Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase-and oxidase-based biosensors, Biosens. Bioelectron.,2008,24,442-447.
    [136]Guo S. J., Li J., Ren W., et al., Carbon nanotube/silica coaxial nanocable as a three-dimensional support for loading diverse ultra-high-density metal nanostructures: facile preparation and use as enhanced materials for electrochemical devices and SERS, Chem. Mater.,2009,21,2247-2257.
    [137]Fang Y. X., Guo S. J., Zhu C. Z., et al., Self-assembly of cationic polyelectrolyte-functionalized graphene nanosheets and gold nanoparticles:a two-dimensional heterostructure for hydrogen peroxide sensing, Langmuir,2010,26, 11277-11282.
    [138]Zhou Y., Liu S., Jiang H. J., et al., Direct electrochemistry and bioelectrocatalysis of microperoxidase-11 immobilized on chitosan-graphene nanocomposite, Electroanal.,2010, 22,1323-1328.
    [139]Cao L. Y., Liu Y. L., Zhang B. H., et al., In situ controllable growth of prussian blue nanocubes on reduced graphene oxide:facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction, ACS Appl. Mater. Interfaces,2010,2,2339-2346.
    [140]Kang X. H., Wang J., Wu H., et al., Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing, Biosens. Bioelectron.,2009,25,901-905.
    [141]Cai C, Chen J., Direct electron transfer of glucose oxidase promoted by carbon nanotubes, Anal. Biochem.,2004,332,75-83.
    [142]Luo X., Killard A. J., Smyth M. R., Reagentless glucose biosensor based on the direct electrochemistry of glucose oxidase on carbon nanotube-modified electrodes, Electroanal., 2006,18,1131-1134.
    [143]Alwarappan S., Liu C., Kumar A., et al., Enzyme-doped graphene nanosheets for enhanced glucose biosensing, J. Phys. Chem. C,2010,114,12920-12924.
    [144]Zeng G. H., Xing Y. B., Gao J. A., et al., Unconventional layer-by-layer assembly of graphene multilayer films for enzyme-based glucose and maltose biosensing, Langmuir, 2010,26,15022-15026.
    [145]Shan C. S., Yang H. F., Song J. F., et al., Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene, Anal. Chem.,2009,81,2378-2382.
    [146]Yang M. H., Choi B. G., Park H., et al., Development of a glucose biosensor using advanced electrode modified by nanohybrid composing chemically modified graphene and ionic liquid, Electroanal.,2010.22,1223-1228.
    [147]Shan C. S., Yang H. F., Han D. X., et al., Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing, Biosens. Bioelectron.,2010,25,1070-1074.
    [148]Wang Y., Shao Y. Y., Matson D. W., et al., Nitrogen-doped graphene and its application in electrochemical biosensing, ACS Nano,2010,4,1790-1798.
    [149]Huang K. J., Niu D. J., Sun J. Y., et al., Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA, Colloids Surf., B,2011,82,543-549.
    [150]Yin H. S., Zhou Y. L., Ma Q. A., et al., Electrocatalytic oxidation behavior of guanosine at graphene, chitosan and Fe3O4 nanoparticles modified glassy carbon electrode and its determination, Talanta,2010,82,1193-1199.
    [151]Ambrosi A., Pumera M., Stacked graphene nanofibers for electrochemical oxidation of DNA bases, Phys. Chem. Chem. Phys.,2010,12,8943-8947.
    [152]Lim C. X., Hoh H. Y., Ang P. K., et al., Direct voltammetric detection of DNA and pH sensing on epitaxial graphene:an insight into the role of oxygenated defects, Anal. Chem., 2010,82,7387-7393.
    [153]Muti M., Sharma S., Erdem A., et al., Electrochemical monitoring of nucleic acid hybridization by single-use graphene oxide-based sensor, Electroanal.,2011,23,272-279.
    [154]Zhao J., Chen G. F., Zhu L., et al., Graphene quantum dots-based platform for the fabrication of electrochemical biosensors, Electrochem. Commun.,2011,13,31-33.
    [155]Wang Y., Li Y. M., Tang L. H., et al., Application of graphene-modified electrode for selective detection of dopamine, Electrochem. Commun.,2009,11,889-892.
    [156]Tan L., Zhou K. G., Zhang Y. H., et al., Nanomolar detection of dopamine in the presence of ascorbic acid at β-cyclodextrin/graphene nanocomposite platform, Electrochem. Commun.,2010,12,557-560.
    [157]Hong W. J., Bai H., Xu Y. X., et al., Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors, J. Phys. Chem. C,2010, 114,1822-1826.
    [158]Shang N. G., Papakonstantinou P., McMullan M., et al., Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes, Adv. Funct. Mater.,2008,18,3506-3514.
    [159]Dey R. S., Raj C. R., Development of an amperometric cholesterol biosensor based on graphene-Pt nanoparticle hybrid material, J. Phys. Chem. C,2010,114,21427-21433.
    [160]Feng L. Y., Chen Y., Ren J. S., et al., A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells, Biomaterials,2011,32,2930-2937.
    [161]Wu X. M., Hu Y. J., Jin J., et al., Electrochemical approach for detection of extracellular oxygen released from erythrocytes based on graphene film integrated with laccase and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), Anal. Chem.,2010,82,3588-3596.
    [162]Guo C. X., Zheng X. T., Lu Z. S., et al., Biointerface by cell growth on layered graphene-artificial peroxidase-protein nanostructure for in situ quantitative molecular detection, Adv. Mater.,2010,22,5164-5167.
    [163]Choi B. G., Park H., Park T. J., et al., Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors, ACS Nano,2010,4,2910-2918.
    [164]Wang L., Zhang X. H., Xiong H. Y., et al., A novel nitromethane biosensor based on biocompatible conductive redox graphene-chitosan/hemoglobin/graphene/room temperature ionic liquid matrix, Biosens. Bioelectron.,2010,26,991-995.
    [165]Li J., Guo S. J., Zhai Y. M., et al., High-sensitivity determination of lead and cadmium based on the nafion-graphene composite film, Anal. Chim. Acta,2009,649,196-201.
    [166]Li J., Guo S. J., Zhai Y. M., et al., Nafion-graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium, Electrochem. Commun., 2009,11,1085-1088.
    [167]Gong J. M., Zhou T., Song D. D., et al., Monodispersed Au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury (Ⅱ), Sens. Actuat. B,2010,150,491-497.
    [168]Du H. J., Ye J. S., Zhang J. Q., et al., A voltammetric sensor based on graphene-modified electrode for simultaneous determination of catechol and hydroquinone, J. Electroanal. Chem.,2011,650,209-213.
    [169]Gan T. A., Hu C. G., Chen Z. L., et al., Fabrication and application of a novel plant hormone sensor for the determination of methyl jasmonate based on self-assembling of phosphotungstic acid-graphene oxide nanohybrid on graphite electrode, Sens. Actuat. B-Chem.,2010,151,8-14.
    [170]Wang C., Zhang L., Guo Z. H., et al., A novel hydrazine electrochemical sensor based on the high specific surface area graphene, Microchim. Acta,2010,169,1-6.
    [171]Kang X. H., Wang J., Wu H., et al., A graphene-based electrochemical sensor for sensitive detection of paracetamol, Talanta,2010,81,754-759.
    [172]Yin H. S., Ma Q. A., Zhou Y. L., et al., Electrochemical behavior and voltammetric determination of 4-aminophenol based on graphene-chitosan composite film modified glassy carbon electrode, Electrochim. Acta,2010,55,7102-7108.
    [173]Li J. A., Chen J. H., Zhang X. L., et al., A novel sensitive detection platform for antitumor herbal drug aloe-emodin based on the graphene modified electrode, Talanta,2010,83, 553-558.
    [174]Du H. J., Ye J. S., Zhang J. Q., et al., Graphene nanosheets modified glassy carbon electrode as a highly sensitive and selective voltammetric sensor for rutin, Electroanal., 2010,22,2399-2406.
    [175]Shan C. S., Yang H. F., Han D. X., et al., Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene, Biosens. Bioelectron.,2010,25, 1504-1508.
    [176]Guo C. X., Lu Z. S., Lei Y., et al., Ionic liquid-graphene composite for ultratrace explosive trinitrotoluene detection, Electrochem. Commun.,2010,12,1237-1240.
    [177]Song S. P., Qin Y., He Y., et al., Functional nanoprobes for ultrasensitive detection of biomolecules, Chem. Soc. Rev.,2010,39,4234-4243.
    [178]Cederquist K. B., Keating C. D., Curvature effects in DNA:Au nanoparticle conjugates, ACS Nano,2009,3,256-260.
    [179]Keighley S. D., Li P., Estrela P., et al., Optimization of DNA immobilization on gold electrodes for label-free detection by electrochemical impedance spectroscopy, Biosens. Bioelectron.,2009,23,1291-1297.
    [180]Kjallman T. H., Peng H., Soeller C., et al., Effect of probe density and hybridization temperature on the response of an electrochemical hairpin-DNA sensor, Anal. Chem.,2008, 80,9460-9466.
    [181]Mertens J., Rogero C., Calleja M., et al., Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films, Nat. Nanotechnol.,2008,3,301-307.
    [182]Guo X. F., Gorodetsky A. A., Hone J., et al., Conductivity of a single DNA duplex bridging a carbon nanotube gap, Nat. Nanotechnol.,2008,3,163-167.
    [183]Li D., Song S. P., Fan C. H., Target-responsive structural switching for nucleic acid-based sensors, Accounts Chem. Res.,2010,43,631-641.
    [184]Tosar J. P., Branas G., Laiz J., Electrochemical DNA hybridization sensors applied to real and complex biological samples, Biosens. Bioelectron.,2010,26,1205-1217.
    [185]Dorst B. V., Mehta J., Bekaert K., et al., Recent advances in recognition elements of food and environmental biosensors:a review, Biosens. Bioelectron.,2010,26,1178-1194.
    [1]Wei D., Ivaska A., Applications of ionic liquids in electrochemical sensors, Anal. Chim. Acta, 2008,607,126-135.
    [2]Safavi A., Maleki N., Farjami E., et al., Simultaneous electrochemical determination of glutathione and glutathione disulfide at a nanoscale copper hydroxide composite carbon ionic liquid electrode, Anal. Chem.,2009,81,7538-7543.
    [3]Xiao F., Zhao F. Q., Mei D. P., et al., Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M= Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film, Biosens. Bioelectron.,2009,24,3481-3486.
    [4]Yang H. F., Shan C. S., Li F. H., et al., Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid, Chem. Commun., 2009,26,3880-3882.
    [5]Shan C. S., Yang H. F., Han D. X., et al., Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene, Biosens. Bioelectron.,2010,25, 1504-1508.
    [6]Shan C. S., Yang H. F., Song J. F., et al., Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene, Anal. Chem.,2009,81,2378-2382.
    [7]Kovtyukhova N. I., Ollivier P. J., Martin B. R., et al., Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations, Chem. Mater., 1999,11,771-778.
    [8]Wang G., Yang J., Park J., et al., Facile synthesis and characterization of graphene nanosheets, J. Phys. Chem. C,2008,112,8192-8195.
    [9]Ni Z., Wang Y., Yu T., et al., Raman spectroscopy and imaging of graphene, Nano Res.,2008, 1,273-291.
    [10]Hernandez Y., Nicolosi V., Lotya M., et al., High yield production of graphene by liquid phase exfoliation of graphite, Nat. Nanotechnol.,2008,3,563-568.
    [11]Sakhaee-Pour A., Ahmadian M. T., Vafai A., Potential application of single-layered graphene sheet as strain sensor, Solid State Commun.,2008,147,336-340.
    [12]Wang Y., Li Y. M., Tang L. H., et al., Application of graphene-modified electrode for selective detection of dopamine, Electrochem. Commun.,2009,11,889-892.
    [13]Sun W., Yang M. X., Jiao K., Electrocatalytic oxidation of dopamine at an ionic liquid modified carbon paste electrode and its analytical application, Anal. Bioanal. Chem.,2007, 389,1283-1291.
    [14]Kim Y. R., Bong S., Kang Y. J., et al., Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes, Biosens. Bioelectron.,2010,25, 2366-2369.
    [15]Wang G. Y., Liu X. J., Luo G. A., et al., α-Cyclodextrin incorporated carbon nanotube-coated electrode for the simultaneous determination of dopamine and epinephrine, Chin. J. Chem., 2005,23,297-302.
    [16]Sun W., Li Y. Z., Duan Y. Y., et al., Direct electrocatalytic oxidation of adenine and guanine on carbon ionic liquid electrode and the simultaneous determination, Biosens. Bioelectron., 2008,24,988-993.
    [17]Yin H. S., Zhou Y. L., Ma Q., et al., Electrochemical oxidation behavior of guanine and adenine on graphene-Nafion composite film modified glassy carbon electrode and the simultaneous determination, Process Biochem.,2010,45,1707-1712.
    [18]Wang Z. H., Xiao S. F., Chen Y., β-Cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine, J. Electroanal. Chem., 2006,589,237-242.
    [1]Yang D., Velamakanni A., Bozoklu G., et al., Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method, Carbon,2009,47,68-72.
    [2]Tung V. C., Allen M. J., Yang Y., et al., High-throughput solution processing of large-scale graphene, Nat. Nanotechnol.,2009,4,25-29.
    [3]Fan X., Peng W., Li Y., et al., Deoxygenation of exfoliated graphite oxide under alkaline conditions:a green route to graphene preparation, Adv. Mater.,2008,20,4490-4493.
    [4]Hernandez Y., Nicolosi V., Lotya M., et al., High-yield production of graphene by liquid-phase exfoliation of graphite, Nat. Nanotechnol.,2008,3,563-568.
    [5]Zhou M., Wang Y. L., Zhai Y. M., et al., Controlled synthesis of large-Area and patterned electrochemically reduced graphene oxide films, Chem. Eur. J.,2009,15,6116-6120.
    [6]Guo H. L., Wang X. F., Qian Q. Y., et al., A green approach to the synthesis of graphene nanosheets, ACS Nano,2009,3,2653-2659.
    [7]Baby T. T., Aravind S. S., Arockiadoss T., et al., Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor, Sensor. Actuat. B-Chem.,2010, 145,71-77.
    [8]Shan C. S., Yang H. F., Han D. X., et al., Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing, Biosens. Bioelectron.,2010,25,1070-1074.
    [9]Zhang X. Z., Jiao K., Liu S. F., Hu Y. W., Readily reusable electrochemical DNA hybridization biosensor based on the interaction of DNA with single-walled carbon nanotubes, Anal. Chem.,2009,81,6006-6012.
    [10]Sun W., Li Y. Z., Duan Y. Y., et al., Direct electrocatalytic oxidation of adenine and guanine on carbon ionic liquid electrode and the simultaneous determination, Biosens. Bioelectron., 2008,24,988-993.
    [11]Cash K. J., Heeger A. J., Plaxco K. W., et al., Optimization of a reusable, DNA pseudoknot-based electrochemical sensor for sequence-specific DNA detection in blood serum, Anal. Chem.,2009,81,1608-1614.
    [12]Ricci F., Bonham A. J., Mason A. C., et al., Reagentless, electrochemical approach for the specific detection of double-and single-stranded DNA binding proteins, Anal. Chem.,2009, 81,1608-1614.
    [13]Zhang W., Yang T., Zhuang X. M., et al., An ionic liquid supported CeO2 nanoshuttles-carbon nanotubes composite as a platform for impedance DNA hybridization sensing, Biosens. Bioelectron.,2009,24,2417-2422.
    [14]Zhang W., Yang T., Li X., et al., Conductive architecture of Fe2O3 microspheres/self-doped polyaniline nanofibers on carbon ionic liquid electrode for impedance sensing of DNA hybridization, Biosens. Bioelectron.,2009,25,428-434.
    [1]Cao Q., Rogers J. A., Ultrathin films of single-walled carbon nanotubes for electronics and sensors:a review of fundamental and applied aspects, Adv. Mater.,2008,20,29-53.
    [2]Zhang X. Z., Jiao K., Liu S. F., et al., Readily reusable electrochemical DNA hybridization biosensor based on the interaction of DNA with single-walled carbon nanotubes, Anal. Chem., 2009,81,6006-6012.
    [3]Chang H. X., Tang L. H., Wang Y., et al., Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection, Anal. Chem.,2010,82,2341-2346.
    [4]Geim A. K., Graphene:status and prospects, Science,2009,324,1530-1534.
    [5]Postma H. W. C., Rapid sequencing of individual DNA molecules in graphene nanogaps, Nano Lett.,2010,10,420-425.
    [6]Lu C. H., Yang H. H., Zhu C. L., et al., A graphene platform for sensing biomolecules, Angew. Chem. Int. Ed.,2009,48,4785-4787.
    [7]Tang Z. W., Wu H., Cort J. R., et al., Nanobiosensors:constraint of DNA on functionalized graphene improves its biostability and specificity, Small,2010,6,1205-1209.
    [8]Zhang C. Q., Li G. C., Peng H. R., Large-scale synthesis of self-doped polyaniline nanofibers, Mater. Lett.,2009,63,592-594.
    [9]Lien T. T. N., Lam T. D., An V. T. H., et al., Multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole DNA biosensor for label-free detection of genetically modified organisms by QCM and EIS, Talanta,2010,80,1164-1169.
    [10]Cheng A. K. H., Ge B. X., Yu H. Z., Aptamer-based biosensors for label-free voltammetric detection of lysozyme, Anal. Chem.,2007,79,5158-5164.
    [1]Therk C. Gold L., Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase, Science,1990,249,505-510.
    [2]Ellington A. D., Szostak J. W., In vitro selection of RNA molecules that bind specific ligands, Nature,1990,346:818-822.
    [3]Robertson D. L., Joyce G. F., Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA, Nature,1990,344,467-468.
    [4]Du D., Liu J., Zhang X. Y., et al., One-step electrochemical deposition of a graphene-ZrO2 nanocomposite:Preparation, characterization and application for detection of organophosphorus agents, J. Mater. Chem.2011,21,8032-8037.
    [5]Paek S. M., Yoo E., Honma I., Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure, Nano Lett.,2008,9,72-75.
    [6]Wang D. H., Choi D., Li J., et al., Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion, ACS Nano,2009,3,907-914.
    [7]Zhang Y. P., Li H. B., Pan L. K., et al., Capacitive behavior of graphene-ZnO composite film for supercapacitors, J. Electroanal. Chem.,2009,634,68-71.
    [8]Yang S., Feng X., Ivanovici S., et al., Fabrication of graphene-encapsulated oxide nanoparticles:towards high-performance anode materials for lithium storage, Angew. Chem. Int. Ed.,2010,49,8408-8411.
    [9]Wu Z. S., Wang D. W., Ren W. C., et al., Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors, Adv. Funct. Mater.,2010,20,3595-3602.
    [10]Rafiee M. A., Rafiee J., Srivastava I., et al., Fracture and fatigue in graphene nanocomposites, Small,2010,6,179-183.
    [11]Zhan T. R., Xi M. Y., Wang Y., et al., Direct electrochemistry and electrocatalysis of myoglobin immobilized on Fe2O3 nanoparticle-sodium alginate-ionic liquid composite-modified electrode, J. Colloid Interf. Sci.,2010,346,188-193.
    [12]Zhang L., Ni Y. H., Wang X. H., et al., Direct electrocatalytic oxidation of nitric oxide and reduction of hydrogen peroxide based on α-Fe2O3 nanoparticles-chitosan composite, Talanta, 2010,82,196-201.
    [1]Wang J., Katz E., Digital biosensors with built-in logic for biomedical applications-biosensors based on a biocomputing concept, Anal. Bioanal. Chem.,2010,398, 1591-1603.
    [2]Zhou M., Du Y.,Chen C. G., et al., Aptamer-controlled biofuel cells in logic systems and used as self-powered and intelligent logic aptasensors, J. Am. Chem. Soc.,2010,132, 2172-2174.
    [3]Zhou M., Chen C. G., Du Y., et al., An IMP-reset gate-based reusable and self-powered "smart" logic aptasensor on a microfluidic biofuel cell, Lab Chip,2010,10,2932-2936.
    [4]Tam T. K., Strack G., Pita M., Biofuel cell logically controlled by antigen-antibody recognition towards immune-regulated bioelectronic devices, J. Am. Chem. Soc.,2009,131, 11670-11671.
    [5]Li T., Wang E. K., Dong S. J., Potassium-lead-switched G-quadruplexes:a new class of DNA logic gates, J. Am. Chem. Soc.,2009,131,15082-15083.
    [6]Voelcker N. H., Guckian K. M., Saghatelian A., et al., Sequence-addressable DNA logic, Small,2008,4,427-431.
    [7]Feng X. L., Duan X.. R., Liu L. B., et al., Fluorescence logic-signal-based multiplex detection of nucleases with the assembly of a cationic conjugated polymer and branched DNA, Angew. Chem.,2009,121,5420-5425.
    [8]Bi S., Yan Y. M., Hao S. Y., et al., Colorimetric logic gates based on supramolecular DNAzyme structures, Angew. Chem. Int. Ed.,2010,49,4438-4442.
    [9]Liu Y. Q., Offenhusser A., Mayer D., An electrochemically transduced XOR logic gate at the molecular level, Angew. Chem. Int. Ed.,2010,49,2595-2598.
    [10]Guo H. L., Wang X. F., Qian Q. Y., et al., A green approach to the synthesis of graphene nanosheets, ACS Nano,2009,3,2653-2659.
    [11]Li X. X., Shen L. H., Zhang D. D., et al., Electrochemical impedance spectroscopy for study of aptamer-thrombin interfacial interactions, Biosens. Bioelectron.,2008,23,1624-1630.
    [I]Niu S. Y., Zhao M, Ren R, et al., Carbon nanotube-enhanced DNA biosensor for DNA hybridization detection using manganese (Ⅱ)-Schiff base complex as hybridization indicator, J. Inorg. Biochem.,2009,103,43-49.
    [2]Erdem A., Kerman K., Meric B., et al., Methylene blue as a novel electrochemical hybridization indicator, Electroanal.,2001,13,219-223.
    [3]Sturney R. G., Wild C. P., Hardie L. J., Removal of red light minimizes methylene blue-stimulated DNA damage in oesophageal cells:implications for chromoendoscopy, Mutagenesis,2009,24,253-258.
    [4]Shen L., Ji H. F., Theoretical exploration of the photosensitive properties of xanthurenic acid, a tryptophan metabolite in cataractous human lenses, Dyes Pigments,2008,76,646-649.
    [5]Zhang W., Yang T., Jiao K., Ultrasensitive indicator-free and enhanced self-signal nanohybrid DNA sensing platform based on electrochemically grown poly-xanthurenic acid/Fe2O3 membranes, Biosens. Bioelectron.,2013,31,182-189.
    [6]Duskova K., Sierra S., Fernandez M. J., et al., Synthesis and DNA interaction of ethylenediamine platinum(II) complexes linked to DNA intercalants, Bioorgan. Med. Chem., 2012,20,7112-7118.
    [7]Wong E. L., Gooding J. J., Electronic detection of target nucleic acids by a 2,6-disulfonic acid anthraquinone intercalator, Anal. Chem.,2003,75,3845-3852.
    [8]Wong E. L., Gooding J. J., Charge transfer through DNA:A selective electrochemical DNA biosensor, Anal. Chem.,2006,78,2138-2144.
    [9]Mancin F., Scrimin P., Tecilla P., et al., Artificial metallonucleases, Chem. Commun.,2005, 2540-2548.
    [10]Friedman A. E., Chambron J. C., Sauvage J. P., et al., Molecular light switch for DNA: Ru(bpy)2(dppz)2+, J. Am. Chem. Soc.,1990,112,4960-4962.
    [11]Sheng X., Lu X. M., Chen Y. T., et al., Synthesis, DNA-binding, cleavage, and cytotoxic activity of new 1,7-dioxa-4,10-diazacyclododecane artificial receptors containing bisguanidinoethyl or diaminoethyl double side arms, Chem. Eur. J.,2007,13,9703-9712.
    [12]Camargo M. A., Neves A., Bortoluzzi A. J., et al., Efficient phosphodiester hydrolysis by luminescent terbium (Ⅲ) and europium (111) complexes, Inorg. Chem.,2010,49,6013-6025.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700