DNA生物传感器快速检测病原微生物的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着分子生物学和生物技术的发展,DNA分子识别技术不断提高。相比传统的以微生物表型特征为基础的检测方法,基于DNA识别技术的分子生物学检测方法,具有快速、敏感性和特异性高的优点,非常适用于病原微生物的临床检测和鉴定。同时随着越来越多的动植物、微生物基因组序列得到测定,这些巨量的信息为我们开启了进行大量生物学分析和检测的大门。DNA生物传感器是集分子生物学、现代物理、现代化学、微电子技术于一体的新型基因分析技术,具有快速、敏感、高效、高通量等优点,在生物工程、临床医学、环境监测、食品分析等领域具有重要的意义。目前已有包括光学传感器、石英晶体传感器、电化学传感器等众多类型的DNA传感器,根据是否选用标记物,这些传感器可分为标记型和非标记型两大类。标记型DNA传感器对DNA的识别,是通过检测DNA上标记的信号分子所引起的光学、电化学等信号的改变。非标记型DNA传感器则直接检测DNA杂交形成复合体过程中引起的光学、质量以及电化学的改变。
     本研究主要分两部分,第一部分我们将真菌核糖体分型技术、DNA生物传感器技术和纳米金信号放大技术相结合,以纳米金为信号分子,建立了一种适合临床实验室应用的病原性真菌检测DNA传感器检测系统。第二部分我们将表面等离子体共振(surface plasmonresonance,SPR)传感器技术与肽核酸探针技术相结合,对无信号分子的DNA的直接、简便、快速检测方法进行了初步探索。实验的主要方法及结果如下:
     第一部分基于纳米金的标记型生物传感器同时检测多个病原性真菌1.通过查阅文献报道并进行临床调查,确定以20余种临床常见的病原性真菌为检测目标,包括念珠菌、曲霉菌、毛霉菌、皮肤癣菌等。
     2.通过临床常见病原性真菌,包括酵母菌、浅部真菌和深部真菌共14个属30种真菌的核糖体RNA(ribosomal RNA,rRNA)基因序列的比对,以真菌5.8S rRNA基因和28S rRNA基因的保守序列,设计真菌通用引物,可扩增真菌5.8S rDNA部分序列、ITS 2(内转录间隔区2).全序列、28S rDNA的部分序列。利用该通用引物建立了真菌rRNA基因通用PCR扩增方法并进行了优化。该通用PCR方法对20种靶真菌均可扩增出目的DNA带,大小在259~531 bp之间。所有非真菌样品扩增结果均为阴性。
     3.为简化PCR方法和减少标本用量,利用基因释放剂直接制备病原性真菌DNA模板。该方法操作非常快速、简单,整个模板制备过程仅需30min左右,而传统方法通常都需要2h以上。
     4.在相同条件下利用AlleleID 6.0软件设计了针对各靶真菌ITS2序列的种特异性寡核苷酸探针,利用生物信息学方法对所有探针进行分析筛选,并利用反向膜杂交技术进行验证。结果表明所选用探针特异性强、可靠性好,且探针间Tm值相差仅1℃,具有相同的杂交条件。
     5.建立并优化了纳米金显色目视DNA芯片检测系统,包括:最佳点样探针浓度;最适杂交温度、杂交时间;最佳银染显色方法;自身质量控制系统。该技术具有很好的特异性,对热带念珠菌扩增产物和白色念珠菌的检测敏感性分别达到50fmol/L和10cfu/ml,且检测结果可以用肉眼直接观察或普通光学仪器记录。
     6.为验证该检测技术用于临床样品检测的可靠性和实用性。用该检测系统对临床样品直接进行检测,分别检测了真菌感染标本的阳性培养物、加入标准菌株制备的模拟临床标本以及含菌的临床标本。本法的检测结果与常规经典检测鉴定方法结果一致,证明本检测方法准确可靠,可用于临床样品的检测。
     以上结果表明:我们建立的通用PCR结合纳米金DNA传感器技术,具有敏感、特异、操作简单快速的优点。整个检测过程可在6h内完成,而传统方法需要2~4天。与传统的基因芯片技术相比,其技术和设备要求、检测成本大大降低。能部分满足临床检测的通量要求,适合在临床开展,有望成为临床微生物实验室传统真菌检测技术理想的替代方法。
     第二部分基于SPR和bis-PNA的非标记型生物传感器
     1.采用一种全新的二维SPR折射率成像方法—“并行扫描光谱表面等离子体共振成像方法”。这项技术具有SPR传感器一贯的高折射率灵敏度的特点,且能提供定量的被测平面的二维折射率分布图,其中每点的亮度值与折射率直接线性对应;本方法采用线形光束照明探测,一次探测一维区域,扫描探测二维平面区域,探测速度快,具有很高的信息通量。
     2.针对流感病毒M基因,设计合成了bis-PNA探针。其中Hoogsteen链的C碱基用J(pseudoisocytosine)碱基检测替换,消除了C碱基在杂交过程中需要质子化的影响,使探针在中性杂交环境中具有较好的稳定性,既保证其高结合率又有较好的特异性。
     3.将巯基修饰的bis-PNA探针固定在金膜上,制成微阵列,直接与甲型流感病毒M基因扩增产物杂交,然后进行SPR扫描分析。该技术检测敏感性为1pmol/L的双链DNA分子。
     结合并行扫描光谱表面等离子体共振传感器系统和bis-PNA技术,我们构建了一种无需任何标记的生物传感器技术,并进行了初步验证。结果表明该方法可直接检测双链DNA,无需对其进行变性处理。具有操作简单快速、检测通量高的优点。但目前离实际应用还有一段距离,在探针的设计、杂交条件、检测系统的稳定性等方面还需进一步优化提高。
The DNA recognition technology is continuously improved with the development of molecular biology and biotechnology.Compared to traditional detection methods based on phenotypic characteristics of the pathogenic microorganisms,the molecular diagnostic techniques based on DNA recognition technology are the preferable choice for the detection and identification of the pathogenic microorganism since they can offer the high speed,sensitivity and specificity.The information obtained from genome sequencing projects has opened the door to tremendous biological analysis and detection.DNA sensor technology integrates molecular biology with physics,chemistry and micro-electronic technology,has advantages of high speed,sensitivity and specificity,and high throughput. It can be used in the fields of biological engineering,clinical medicine, environmental monitoring,foodstuff analysis,and so on.According to label or not,the DNA biosensors can be divided into two categories,one is label-based DNA biosensor and another is label-free biosensor.The label-based DNA biosensor is based on changes of optical and electrochemical signal caused by signaling molecule.The label-free biosensor is based on changes of optical,mass or electrochemical signal caused by hybridization of nucleic acid.
     The dissertation includes two parts.In partⅠ,employing the ribosomal gene-typing technology,DNA biosensor technology and nano-amplification technique,a label-based DNA biosensor technique for simultaneously detection and identification clinical common pathogenic fungi was developed.Due to the high efficiency,low cost,good specificity and sensitivity,this technique offers a reliable alternative to conventional methods for the detection and identification of clinical-important fungal pathogens.In partⅡ,we explore a label-free biosensor based on surface plasmon resonance(SPR) and dimeric peptide nucleic acid(bis-PNA) as a platform for detection of indicator free DNA.
     The main results were as follows:
     PartⅠ:A DNA biosensor based on nanogold for simultaneously detection and identification clinical common pathogenic fungi.
     1.In accordance with the literature report and the clinical investigation,20 kinds of clinical important pathogenic fungi were selected as the target pathogen in this study,including Candida, Aspergillus,mucoraceae,dermatophytes,and so on.
     2.Based on the multi-alignment of the ribosome RNA(rRNA) gene sequences among 30 species of pathogenic fungi belonging to 14 genera,a pair of universal primers were designed for the amplification of the ITS2 regions of rRNA.The forward primer is complementary to the conserved sequence of 5.8S rRNA,and the reverse primer is complementary to the conserved sequence of 28S rDNA.A universal PCR amplification method was established and optimized to common pathogenic fungal strains. Using this PCR amplification method,PCR products of 20 target fungi showed target band of 259-531 bp respectively,and all non-fungal samples were no PCR products.
     3.By using GeneReleaser,the procedure of the preparation of DNA templates is much more simple and faster(0.5h) than that of conventional methods(>2h).
     4.The species-specific oligonucleotide probes targeting ITS2 sequences were designed using AlleleID 6.0,analyzed and screened by bioinformatical technology,then verified by a universal PCR combined reverse blot hybridization.It turned out that the selected probes were all of high specificity and reliability,and had the same hybridization conditions.
     5.A DNA biosensor technique integrating nano-gold labeling,silver stain enhancement and the microarray technique was developed and optimized,including the optimal spotting concentrations of probes,the optimal hybridization temperature and time,the optimal procedure of silver stain enhancement and perfect self quality control system.The results showed that the method had ideal specificity and its detection sensitivity reached 50fmol/L for amplicon of Candida tropicalis and 10 cells/ml for Candida albicans.The hybridization signal can be observed visually or recorded by optic scanner.
     6.The method was further verified by fugus cultures from clinical specimens,mimic clinical samples spiked with standard fungal strains and clinical infectious samples.It was showed that the results of the DNA biosensor were completely consistent with that of traditional techniques, and our method was feasible for detection of clinical samples obtained from patients suffering from fungal pathogens.
     Therefore,the experiments mentioned above have proved that established nanogold-amplification technique-based DNA biosensor combining with universal PCR provides a simple,rapid,sensitive and specific method for the identification of fungal pathogens.The analysis is simple to perform and can be completed in 6 hours,compared with 2~4 days for conventional methods.Compared with the classical DNA biosensor,our method do not requires the expensive labeling material and complex detection equipment,so the efficacy/cost is greatly increased.It can meet the high throughput demand of clinical detection,and promise to be a alternative to conventional methods for the detection and identification of fungal pathogens in the clinical laboratories.
     PartⅡA label-based DNA biosensor based on SPR and bis-PNA 1.In this study,a parallel scan SPR imaging technique was adopted into SPR biosensor.This technique has the advamage of high sensitivity as the other SPR technique.The technique can offer two-dimensional quantificational distribution map of reflective index(RI) on the sensing plane.The pixels on the map have brightness linearly correspond to their RI.Another advantage of this technique is that the parallel scan method makes it a fast imaging,high-throughput analyzing technique.
     2.A specific bis-PNA probe was designed for M gene of influenza virus.The cytosine bases in N-terminal half of bis-PNA are replaced by pseudoisocytosine bases(J base),which do not require protonation to form triplexes,so it has high affinity to dsDNA and high specificity at neutral pH.
     3.The thiol-modified bis-PNA probe was immobilized to the surface of gold membrane by Au-SH bond.The dsDNA could hybridize with bis-PNA without denaturation.The detection sensitivity of the method reached 1pmol/L.
     Combining with SPR senseor based on parallel scan SPR imaging technique and bis-PNA probe,a label-free DNA biosensor was built and the preliminary verification tests were conducted.According to the result, the target dsDNA can hybridize with bis-PNA and be directly detected without any label and denaturation.The biosensor technique provides a simple,rapid,and high throughput means for the detection of nucleic acid. However,for application in clinical diagnosis,some conditions of this technique should be further optimized and improved,such as the probe design,hybridization conditions,the stability of detection systems,etc.
引文
[1]张先恩主编.生物传感技术原理与应用[M].吉林科学技术出版社.1991
    [2]许春向主编.生物传感器及其应用[M].科学出版社.1993
    [3]Coulet PR.What is a biosensor[J]? Bioprocess Technol.1991;15:1-6
    [4]Ziegler C,G(o|¨)pel W.Biosensor development[J].Curr Opin Chem Biol.1998,2(5):585-591
    [5]Roe JN.Biosensor development[J]._Pharm Res.1992,9(7):835-844
    [6]Wingard LB Jr.Biosensor trends.Receptors,enzymes,and antibodies[J].Ann N Y Acad Sci.1990;613:44-53
    [7]Chambers JP,Arulanandam BP,Matta LL,et al.Biosensor recognition elements[J].Curr Issues Mol Biol.2008,10(1-2):1-12
    [8]Zhai J,Cui H,Yang R.DNA based biosensors[J].Biotechnol Adv.1997,15(1):43-58
    [9]Tsay YG,Lin CI,Lee J,et al.Optical biosensor assay(OBA)[J].Clin Chem.1991,37(9):1502-1505
    [10]Davies RJ,Pollard-Knight D.An optical biosensor system for molecular interaction studies[J].Am Biotechnol Lab.1993,11(8):52-54
    [11]Gotoh M,Hasegawa Y,Shinohara Y,et al.A new approach to determine the effect of mismatches on kinetic parameters in DNA hybridization using an optical biosensor[J].DNA Res.1995,2(6):285-293
    [12]Watts HJ,Yeung D,Parkes H,et al.Real-time detection and quantification of DNA hybridization by an optical biosensor[J].Anal Chem.1995,67(23):4283-4289
    [13]Zhou X,Liu L,Hu M,et al.Detection of hepatitis B virus by piezoelectric biosensor[J].J Pharm Biomed Anal.2002,27(1-2):341-345
    [14]Tombelli S,Minunni M,Santucci A,et al.A DNA-based piezoelectric biosensor:Strategies for coupling nucleic acids to piezoelectric devices[j].Talanta..2006,68(3):806-812
    [15]Tombelli S,Mascini M,Braccini L,et al.Coupling of a DNA piezoelectric biosensor and polymerase chain reaction to detect apolipoprotein E polymorphisms[J]. Biosens Bioelectron. 2000,15(7-8):363-70
    [16] Wang J, Cai X, Rivas G, et al. DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency virus[J]. Anal Chem. 1996,68(15):2629-2634
    [17] Marrazza G, Chiti G, Mascini M, et al. Detection of human apolipoprotein E genotypes by DNA electrochemical biosensor coupled with PCR[J]. Clin Chem. 2000,46(1):31-37
    [18] Taton TA, Mirkin CA, and Letsinger RL. Scanometric DNA array detection with nanoparticle probes[J]. Science. 2000,289(5485): 1757-1760
    [19] Fritzsche W, Csaki A, Moiler R. Nanoparticle- based optical detection of molecular interactions for DNA-chip technology[J]. Proc SPIE. 2002,4626:17-22
    [20] Liu T, Tang J, Jiang L. The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity [J]. Biochem Biophys Res Com. 2004,313(1):3-7
    [21] Jonsson U, Fagerstam L, Ivarsson B, et al. Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology[J]. Biotechniques. 1991,11:620-627
    [22] Rich RL, Myszka DG. Advances in surface plasmon resonance biosensor analysis[J]. Curr Opin Biotechnol. 2000,11(1):54-61
    [23] Nelson BP, Grimsrud TE, Liles MR, et al. Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays[J]. Anal Chem. 2001,73(1): 1-7
    [1] Groll AH, Shah PM, Mentzel C, et al. Trends in the postmortem epidemiology of invasive fungal infections at a university hospital[J]. J Infect. 1996,33:23-32
    [2] Krcmery V. Emerging fungal infections in cancer patients[J]. J Hosp Infect. 1996,33:109-117
    [3] Giamarellou H, Antoniadou A. Epidemiology, diagnosis, and therapy of fungal infections in surgery. Infect Control Hosp Epidemiol[J]. 1996,17:558-564
    [4] Hagen EA, Stern H, Porter D, et al. High rate of invasive fungal infections following nonmyeloablative allogeneic transplantation[J]. Clin Infect Dis. 2003,36:9-15
    [5] Haynes KA, Westerneng TJ, Fell JW, et al. Rapid detection and identification of pathogenic fungi by polymerase chain reaction amplification of large subunit ribosomal DNA[J]. J Med Vet Mycol. 1995,33:319-325
    [6] Hidalgo JA, Alangaden GJ, Eliott D, et al. Fungal endophthalmitis diagnosis by detection of Candida albicans DNA in intraocular fluid by use of a species-specific polymerase chain reaction assay[J]. J Infect Dis. 2000,181:1198-1201
    [7] Kanbe T, Arishima T, Horii T, et al. Improvements of PCR-based identification targeting the DNA topoisomerase II gene to determine major species of the opportunistic fungi Candida and Aspergillus fumigatus[J]. Microbiol Immunol. 2003,47(9):631-638
    [8] Hsu MC, Chen KW, Lo HJ, et al. Species identification of medically important fungi by use of real-time LightCycler PCR[J]. J Med Microbiol. 2003,52(Pt 12):1071-1076
    [9] Luo G, Mitchell TG. Rapid Identification of Pathogenic Fungi Directly from Cultures by Using Multiplex PCR[J]. J Clin Microbiol. 2002,40(8):2860-2865
    [10] Esteve-Zarzoso, B, Belloch C, Uruburu F, et al. Identification of yeast by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers[J]. Int J Syst Bacteriol. 1999,49(pt l):329-337
    [11] Sandhu GS, Kline BC, Stockman L, et al. Molecular Probes for Diagnosis of Fungal Infections[J]. J Clin Microbiol. 1995,33(11): 2913-2919
    [12] Einsele H, Hebart H, Roller G, et al. Detection and identification of fungal pathogens in blood by using molecular probes[J]. J Clin Microbiol. 1997,35(6):1353-1360
    [13] Elie CM, Lott TJ, Reiss E, et al. Rapid identification of Candida species with species-specific probes[J]. J Clin Microbiol. 1998,36(11):3260-3265
    [14] Meyer W, Lieckfeldt E, Kuhls K, et al. DNA- and PCR-fingerprinting in fungi[J]. EXS. 1993,67:311-320
    [15] Holmberd K, Feroze F. Evaluation of an optimized system for random amplified polymorphic DNA (RAPD)-analysis for genotypic mapping of Candida albicans strains[J]. J Clin Lab Anal. 1996,10(2):59-69
    [16] Loffler J, Hebart H, Sepe S, et al. Detection of PCR-amplified fungal DNA by using aPCR-ELISA system[J]. Med Mycol. 1998,36(5):275-279
    [17] Chen SC, Halliday CL, Meyer W. A review of nucleic acid-based diagnosis tests for systemic mycoses with an emphasis on polymerase chain reaction-based assays[J]. Med Mycol. 2002,40(4):333-357
    [18] Kathreena M, Kurian, Christine J, et al. DNA chip technology[J]. J Pathol. 1999,187:267-271
    [19] Whitcombe D, Newton C R, Little S. Advances in approaches to DNA based diagnostics[J]. Curr Opin Biotechnol. 1998,9(6):602-608
    [20] Khan J, Bittner ML, Chen Y, et al. DNA microarray technology: the anticipated impact on the study of human disease[J]. Bioehim Biophys Acta. 1999,1423(2):M17-28
    [21] Gabig M, Wegrzyn G. An introduction to DNA chips: principles, technology, applications and analysis[J]. Acta Biochim Pol. 2001,48(3):615-622
    [22] Ehrenreich A. DNA microarray technology for the microbiologist: an overview[J]. Appl Microbiol Biotechnol. 2006,73(2):255-273
    [23] Leinberger DM, Schumacher U, Autenrieth IB, et al. Development of a DNA Microarray for Detection and Identification of Fungal Pathogens Involved in Invasive Mycoses[J]. J Clin Microbiol. 2005,44(9): 4943-4953
    [24] Huang AH, Li JW, Shen ZQ, et al. High-Throughput Identification of Clinical Pathogenic Fungi by Hybridization to an Oligonucleotide Microarray[J]. J Clin Microbiol. 2006,44(9): 3299-3305
    [25] Spiess B, Seifarth W, Hummel M, et al. DNA Microarray-Based Detection and Identification of Fungal Pathogens in Clinical Samples from Neutropenic Patients[J]. J Clin Microbiol. 2007,45(11):3743-3753
    [26] Loffler J, Hebart H, Schumacher U, et al. Comparison of Different Methods for Extraction of DNA of Fungal Pathogens from Cultures and Blood[J]. J Clin Microbiol. 1997,35(12):3311-3312
    [27] Lott TJ, Kuykendall RJ, Reiss E. Nucleotide sequence analysis of the 5.8S rDNA and adjacent ITS2 region of Candida albicans and related species[J]. Yeast. 1993,9(11):1199-1206
    [28] Lott TJ, Burns BM, Zancope-Oliveira R, et al. Sequence analysis of the internal transcribed spacer 2 (ITS2) from yeast species within the genus Candida[J]. Curr Microbiol. 1998,36(2):63-69
    [29] Wu Z, Tsumura Y, Blomquist G, et al. 18S rRNA gene variation among common airborne fungi, and development of specific oligonucleotide probes for the detection of fungal isolate[J]. Appl Environ Microbiol. 2003,69(9):5389-5397
    [30] Yiwei Tang, Gary W, David H. Molecular diagnostics of infectious diseases[J]. Clin Chem. 1997,43(11):2021-2038
    [31] Benson DA, Karsch-Mizrachi I, et al. GenBank[J]. Nucleic Acids Res. 2000;28(1):15-8
    [32] Stoesser G, Baker W, van den Broek A, et al. The EMBL Nucleotide Sequence Database[J]. Nucleic Acids Res. 2002,30(1):21-6
    [33] Tateno Y, Imanishi T, Miyazaki S, et al. DNA Data Bank of Japan (DDBJ) for genome scale research in life science[J]. Nucleic Acids Res. 2002,30(1):27-30
    [34] Lorelei W ,Carolyn R, Dana V, et al. Antimicrobial resistance and bacterial identification utilizing a microelectronic chip array[J]. J Clin Microbiol. 2001,39(3): 1097-1104
    [35] Lipski A, Friedrich U, Altendorf K. Application of rRNA-targeted oligonucleotide probes in biotechnology[J]. Appl Microbiol Biotechnol. 2001,56(1-2):40-57
    [36] Ferrer C, Colom F, Frases S, et al. Detection and identification of fungal pathogens by PCR and by ITS2 and 5.8S ribosomal DNA typing in ocular infections[J]. J Clin Microbiol. 2001,39(8):2873-2879
    [37] Iwen PC, Hinrichs SH, Riuppi ME. Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens[J]. Med Mycol. 2002,40(1):87-109
    [38] Henry T, Iwen PC, Hinrichs SH. Identification of Aspergillus species using internal transcribed spacer regions 1 and 2[J]. J Clin Microbiol. 2000,38(4):1510-1515
    [39] Hinrikson HP, Hurst SF, Lott TJ, et al. Assessment of ribosomal large-subunit D1-D2, internal transcribed spacer 1, and internal transcribed spacer 2 regions as targets for molecular identification of medically important Aspergillus species[J]. J Clin Microbiol. 2005,43(5):2092-2103
    [40] Alexandre I, Hamels S, Dufour S, et al. Colorimetric silver detection of DNA microarrays[J]. Anal Biochem. 2001,295(1):1-8
    [41] Csaki A, Kaplannek P, Moller R, et al. The optical detection of individual DNA-conjugated gold nanoparticle labels after metal enhancement[J]. Nanotechnology. 2003,14:1262-1268
    [42] James JS, Sudhakar DM, Paul B, et al. Gold nanoparticle-based detection of genomic DNA targets on microarray using a novel optical detection system[J]. Biosens Bioelectron. 2004,19:875-883
    [43] Wang YF, Pang DW, Zhang ZL, et al. Visual gene diagnosis of HBV and HCV based on nanoparticle probe amplification and silver staining enhancement[J]. J Med Virol. 2003,70(2):205-211
    [44] Wan ZX, Wang YF, Li SS, et al. Development of array-based technology for detection of HAV using gold-DNA probes[J].J Biochem Mol Biol.2005,38(4):399-406
    [45]http://www.nanoprobes.com/Inf2016.html
    [46]http://www.nanoprobes.com/Silver2.html
    [47]Beier M,Hoheisel JD.Versatile derivatisation of solid support media for covalent bonding on DNA-microchips[J].Nucleic Acids Res.1999,27(9):1970-1977
    [48]Zammatteo N,Jeanmart L,Hamels S,et al.Comparison between different strategies of covalent attachment of DNA to glass surfaces to build DNA microarrays[J].Anal Biochem.2000,280(1):143-50
    [49]Chrisey LA,Lee GU,O'Ferrall CE.Covalent attachment of synthetic DNA to self-assembled monolayer films[J].Nucleic Acids Res.1996,24(15):3031-3039
    [50]Fritzsche W.DNA-gold conjugates for the detection of specific molecular interactions[J].Biotechnol.2001,82(1):37-46
    [51]Hacker,G.W.High performance nanogold-silver in situ hybridization[J].Eur J Histochem.1998,42(2):111-120
    [52]Reichert J,Csaki A,Kohler JM.Chip-based optical detection of DNA hybridizationbymeansof nanobeadlabeling[J].AnalChem.2000,72(24):6025-6029
    [53]Wolfgang F,Andrea C Robert Met al.Nanoparticle-based optical detection of molecular interactions for DNA-chip technology[j].Proc.SPIE.2002,4626:17-22
    [54]Joseph C Liao,Mitra Mastali,Vincent Gau,et al.Use of Electrochemical DNA Biosensors for Rapid Molecular Identification of Uropathogens in Clinical Urine Specimens[J].J Clin Microbiol.2006,44(2):561-570
    [1] Ronghui Wang, Maria Minunni, Sara Tombelli, et al. A new approach for the detection of DNA sequences in amplified nucleic acids by a surface plasmon resonance biosensor[J]. Biosensors and Bioelectronics. 2004,20:598-605
    [2] Marek Piliarik, Hana Vaisocherova, Jiri Homola. A new surface plasmon resonance sensor for high-throughput screening applications[J]. Biosensors and Bioelectronics. 2005,20:2104-2110
    [3] Nguyen B, Tanious FA, Wilson WD. Biosensor-surface plasmon resonance: quantitative analysis of small molecule-nucleic acid interactions[J]. Methods. 2007,42(2):150-161
    [4] Eriko Kai, Kazunori Ikebukuro, Sadayori Hoshina, et al. Detection of PCR products of Escherichia coli O157:H7 in human stool samples using surface plasmon resonance(SPR)[J]. FEMS Immunology and Medical Microbiology. 2000,29:283-288
    [5] Cherny DY, Belotserkovskii BP, Frank-Kamenetskii MD, et al. DNA unwinding upon strand-displacement binding of a thymine-substituted polyamide to double-stranded DNA[J]. Proc Natl Acad Sci USA. 1993,90(5): 1667-1670
    [6] Buchardt O, Egholm M, Berg RH, et al. Peptide nucleic acids and their potential applications in biotechnology[J]. Trends Biotechnol. 1993,11(9):384-386
    [7] Hyrup B, Nielsen PE. Peptide nucleic acids (PNA): synthesis, properties and potential applications[J]. Bioorg Med Chem. 1996,4(1):5-23
    [8] Egholm M, Buchardt O, Christensen L, et al. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules[J]. Nature. 1993,365(6446):566-568
    [9] Wittung P, Nielsen PE, Buchardt O, et al. DNA-like double helix formed by peptide nucleic acid[J]. Nature. 1994,368(6471):561-563
    [10] Homola J, Yee SS, and Gauglitz G. Surface plasmon resonance sensors: review[J]. SensAcutatorsB. 1999,54:3-15
    [11]国家发明专利:一种并行扫描光谱SPR成像方法。申请号:CN200510036232.3公开号:CN1740778
    [12]Nielsen PE,Egh olm M,Berg RH,et al.Sequence-selective recongnition of DNA by strand displacement with a thymine-substituted polyamide[J].Science.1991,254:1497-1500
    [13]Jensen KK,Orum H,Nielsen PE,et al.Kinetics for hybridization of peptide nucleic acids(PNA) with DNA and RNA studied with the BIAcore technique[J].Biochemistry.1997,36(16):5072-5077
    [14]Wang J,Nielsen PE,Jiang M,et al.Mismatch-sensitive hybridization detection by peptide nucleic acids immobilized on a quartz crystal microbalance[J].Anal Chem.1997,69(24):5200-5202
    [15]Nielsen PE.Peptide nucleic acid:a versatile tool in genetic diagnostics and molecular biology[J].Curr Opin Biotechnol.2001,12(1):16-20
    [16]Nielsen PE,Egholm M,Buchardt O.Evidence for(PNA)2/DNA triplex structure upon binding of PNA to dsDNA by strand displacement[J].J Mol Recognit.1994,7(3):165-170
    [17]Demidov VV,Yavnilovich MV,Belotserkovskii BP,et al.Kinetics and mechanism of polyamide("peptide") nucleic acid binding to duplex DNA[J].Proc Natl Acad Sci USA.1995,92(7):2637-2641
    [18]Lohse J,Dahl O,Nielsen PE.Double duplex invasion by peptide nucleic acid:a general principle for sequence-specific targeting of double-stranded DNA[J].Proc Natl Acad Sci USA.1999,96(21):11804-11808
    [19]Kim JH,Kim KH,Mollegaard NE,et al.Helical periodicity of(PNA)2.(DNA)triplexes in strand displacement complexes[J].Nucleic Acids Res.1999,27(14):2842-2847
    [20]Nielsen PE.Targeting double stranded DNA with peptide nucleic acid(PNA)[J].Curr Med Chem.2001,8(5):545-550
    [21]Heiko Kuhnl,Vadim V.Demidovl,Kinetic sequence discrimination of cationic bis-PNAs upon targeting of double-stranded DNA[J].Nucleic Acids Research. 1998,26(2):582-587
    [22] Hansen GI, Bentin T, Larsen HJ, et al. Structural isomers of bis-PNA bound to target duplex DNA[J]. J Mol Biol. 2001,307(1):67-74
    [23] Chen M, Liu M, Yu L, et al. Construction of a novel peptide nucleic acid piezoelectric gene sensor microarray detection system[J]. J Nanosci Nanotech. 2005,5(8): 1266-1272
    [24] Egholm M, Christensen L, Dueholm KL. Et al. Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA[J]. Nucleic Acids Res. 1995,23(2):217-222
    [25] Kuhn H, Demidov W, Nielsen PE, et al. An Experimental Study of Mechanism and Specificity of Peptide Nucleic Acid (PNA) Binding to Duplex DNA[J]. J Mol Biol. 1999,286:1337-1345
    [1]Liu T,Tang J,Jiang L.The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity[J].Biochem Biophys Res Com.2004,313(1):3-7
    [2]Fritzsche W,Csaki A,Moiler R.Nanoparticle- based optical detection of molecular interactions for DNA-chip technology[J].Proc SPIE.2002,4626:17-22
    [3]Alivisatos AP,Johnsson KP,Peng X,et al.Organization of 'nanocrystal molecules'using DNA[J].Nature.1996,382(6592):609-611
    [4]Mirkin CA,Letsinger RL,Mucic RC,et al.A DNA-based method for rationally assembling nanoparticles into macroscopic materials[J].Nature.1996,382(6592):607-609
    [5]Elghanian R,Storhoff JJ,Mucic RC,et al.Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles[J].Science.1997,277:1078-1081
    [6]Storhoff JJ,Elghanian R,Mucic RC,et al.One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes[J].J Am Chem Soc.1998,120:1959-1964
    [7]Kohler JM,Csaki A,Reichert J,et al.Selective labeling of oligonucleotide monolayers by metallic nanobeads for fast optical readout of DNA-chips[J].Sens Actuators B Chem.2001,76:166-172
    [8]Taton TA,Mirkin CA,and Letsinger RL.Scanometric DNA array detection with nanoparticle probes[J].Science.2000,289(5485):1757-1760
    [9]Boyer D,Tamarat P,Maali A,et al.Photothermal imaging of nanometer-sized metal particles among scatterers[J].Science.2002,297:1160-1163
    [10] Yguerabide J, and Yguerabide EE. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications[J]. Anal. Biochem. 1998,262:137-156
    [11] Stimpson DI, Hoijer JV, Hsieh WT, et al. Real-time detection of DNA hybridization and melting on oligonucleotide arrays by using optical wave guides[J]. Proc Natl Acad Sci USA. 1995,92:6379-6383
    [12] Taton TA, Lu G, and Mirkin CA. Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes[J]. J Am Chem Soc. 2001,123(21):5164-5165
    [13] Storhoff JJ, Maria SS, Bao P, et al. Gold nanoparticle-based detection of genomic DNA targets on microarrays using a novel optical detection system[J]. Biosens Bioelectron. 2004,19(8):875-883
    [14] Cao YC, Jin R, and Mirkin CA. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection[J]. Science. 2002,297(5586): 1536-1540
    [15] Jonsson U, Fagerstam L, Ivarsson B, et al. Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology[J]. Biotechniques. 1991,11:620-627
    [16] Nelson BP, Grimsrud TE, Liles MR, et al. Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays[J]. Anal Chem. 2001,73(1):1-7
    [17] He L, Musick MD, Nicewarner SR, et al. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization[J]. J Am Chem Soc. 2000,122(38):9071-9077
    [18] Hutter E, Pileni MP. Detection of DNA hybridization by gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy[J]. J Phys Chem B. 2003,107(27):6497-6499
    [19] Yamaguchi S, Shimomura T, Tatsuma T, et al. Adsorption, Immobilization, and Hybridization of DNA Studied by the Use of Quartz-Crystal Oscillators[J]. Anal Chem. 1993,65:1925-1927
    [20] Caruso F, Rodda E, Furlong DF, et al. Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development[J]. Anal Chem. 1997,69:2043-2049
    [21] Zhou XC, O'Shea SJ, and Li SFY. Amplified microgravimetric gene sensor using Au nanoparticle modified oligonucleotides[J]. Chem Commun. 2000,11:953-954
    [22] Patolsky F, Ranjit KT, Lichtenstein A.et al. Dendritic amplification of DNA analysis by oligonucleotide-functionalized Au-nanoparticles[J]. Chem Commun. 2000,12:1025-1026
    [23] Weizmann Y, Patolsky F, and Willner I. Amplified detection of DNA and analysis of single-base mismatches by the catalyzed deposition of gold on Au-nanoparticles[J]. Analyst. 2001,126(9): 1502-1504
    [24] Betts TA, Tripple CA. Selectivity of chemical sensors based on microcantilevers coated with thin polymer films[J]. Analytic Chimica Acta. 2000,422:89-99
    [25] Lutwyche MI, Despont M, Drechsler U, et al. Highly parallel data storage system based on scanning probe arrays[J]. Appl Phys Lett. 2000,77:3299-3301
    [26] Hansen KM, Ji HF, Wu G, et al. Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches[J]. Anal Chem. 2001,73(7):1567-1571
    [27] McKendry R, Zhang J, Arntz Y, et al. Multiple label-free biodetection and quantitative DNA binding assays on a nanomechanical cantilever array [J]. Proc Natl Acad Sci USA. 2002,99(15) :9783-9788
    [28] Su M, Li SU, and Dravid VP. Microcantilever resonance-based DNA detection with nanoparticle probes[J]. Appl Phys Lett. 2003,82(20):3562-3564
    [29] Vincent Gau, Shu-Ching Ma, Hua Wang, et al. Electrochemical molecular analysis without nucleic acid amplification[J]. Methods. 2005,37(1):73-83
    [30] Masayoshi Takahashi, Jun Okada, Keiko Ito, et al. Construction of an electrochemical DNA chip for simultaneous genotyping of single nucleotide polymorphisms[J]. Analyst. 2005,130(3):687-693
    [31] JC Liao, Mitra Mastali, Vincent Gau, et al. Use of electrochemical DNA biosensors for rapid molecular identification of uropathogens in clinical urine specimens. Journal of Clinical Microbiology[J]. 2006,44(2):561-570
    [32] Niemeyer CM. Nanotechnology: Tools for the biomolecular engineer[J]. Science. 2002,297(5578):62-63
    [33] Koropchak JA, Sadain S, Yang X, et al. Nanoparticle detection technology for chemical analysis[J]. Anal Chem. 1999,71(11):386A-394A.
    [34] Jain KK. Nanodiagnostics: application of nanotechnology in molecular diagnostics[J]. Expert Rev Mol Diagn. 2003,3(2):153-161
    [35] Cai H, Xu C, He P, et al. Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA[J]. J Electroanal Chem. 2001,510(1):78-85
    [36] Wang J, Xu D, Kawde AN, et al. Metal nanoparticle based electrochemical stripping potentiometric detection of DNA hybridization[J]. Anal Chem. 2001,73(22):5576-5581
    [37] Cai H, Zhu N, Jiang Y, et al. Cu@Au alloy nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization[J]. Biosens Bioelectron.2003,18(11):1311-1319
    [38] Cai H, Xu Y, Zhu N, et al. An electrochemical DNA hybridization detection assay based on a silver nanoparticle label[J]. Analyst. 2002,127(6):803-808
    [39] Ozsoz M, Erdem A, Kerman K, et al. Electrochemical genosensor based on colloidal gold nanoparticles for the detection of Factor V Leiden mutation using disposable pencil graphite electrodes[J]. Anal Chem. 2003,75(9): 2181-2187
    [40] Xue M, Li J, Lu Z, et al. Array-based electrical detector of integrated dNA identification system for genetic chip applications[R]. presented at ESSDERC(32nd European solid-state device research conference ). 2002
    [41] Park SJ, Taton TA, Mirkin CA. Array-based electrical detection of DNA with nanoparticle probes[J]. Science. 2002,295(5559):1503-1506

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700