漏声表面波—双体肽核酸生物传感器的构建及检测HPV的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     构建新型漏声表面波(LSAW)-双体肽核酸生物传感器检测系统,实现快速检测DNA双链病毒,并通过检测HPV验证传感器的优越性。
     方法:
     1.利用精细微加工方法制备双端对谐振型LSAW生物传感器,自行研发自激式振荡电路、新型温控系统以及BSMS 1.0数据采集分析软件,将它们与网络分析仪、GPIB控制卡及计算机联用以构建LSAW生物传感器检测系统。
     2.用巯基末端修饰共价结合法将人乳头瘤病毒的特异性探针固定在LSAW生物传感器的金膜表面,并与互补的靶序列进行杂交反应。根据相位变化和靶序列浓度之间的对应关系确定传感器的检测灵敏度及检测范围。
     3.根据小波奇性检测原理及连续十分钟内相位变化差值(△P)分别对传感器的反应起点和终点进行判断,并拟定判断标准。
     4.通过系列实验,探讨传感器检测HPV基因组DNA的灵敏度、特异性、精密性及传感器的再生性等动态响应规律及性能参数,并对HPV感染引起的宫颈癌患者的生殖道分泌物进行了临床标本检测,同时与荧光定量PCR法进行方法学比较。
     5.以“RecA蛋白-互补单链DNA”探针为生物信号放大系统提高传感器的检测灵敏度,在反应过程中加入ATPγS提供能量,分别探索优化RecA蛋白及ATPγS的最佳反应浓度。
     结果:
     1.双端对谐振型LSAW生物传感器的反射栅阵列增加了输入输出叉指换能器之间信号传播的行程,提高了杂交反应引起的相位变化值,缩短了杂交反应平衡时间。
     2.自行研制的双通道振荡电路,在液相中起振非常容易,其相位稳定度达到实用要求。温度控制系统的引入提供了杂交反应的最佳温度环境。
     3.利用小波变换和小波奇性检测原理对传感器采集到的相位信号进行6级频域分析,由于函数的奇异点可以从小波变换的模极大值检测出来,而小波变换的模极大值都是出现在信号有突变的地方,因此准确地判断了杂交反应的起始点。
     4.将检测到的实验数据进行平均拟合,设定连续十分钟内相位变化差值(△P)≤0.2deg检测系统就会自动鸣笛报警,从而准确地确定了杂交反应的终点。
     5.随着HPV靶序列浓度从1pg/L到1mg/L变化时,杂交反应所引起的相位变化值先上升后趋于饱和,以100μg/L为饱和点;在1pg/L到100μg/L的HPV靶序列浓度范围内,相位变化与靶序列浓度的线性回归方程为△P=0.3010 IgC+2.1753,相关系数R2=0.9932。
     6.与普通DNA探针相比,bis-PNA探针对碱基错配的识别能力较强,即bis-PNA探针与靶序列DNA结合具有高度的特异性,且杂交时间更短。
     7.传感器再生使用第5次时核酸杂交引起的相位变化值相当于第一次的89.60%,变异系数为4.24%;再生使用第10次时相位变化值相当于第一次的71.56%,变异系数为10.14%。
     8. HPV DNA浓度分别为10.00、100.00、100.00μg/L时,天内和天间精密性实验的CV值分别为5.99%和7.14%,6.34%和7.09%,6.76%和8.44%。上述三种不同浓度HPV DNA的天内和天间精密性实验的平均CV值分别为6.36%和7.56%,均小于10%。
     9. 36例荧光定量PCR检测HPV的阳性标本,其中35例经LSAW传感器检测为HPV 18阳性,阳性率为97.22%。临床标本中HPV DNA含量的变化范围是每毫升1.40×10~2拷贝至9.11×10~7拷贝(即1.21 pg/L至0.78μg/L),对应的相位变化范围是(1.1~4.5)deg,反应平衡时间为(38~75)min。在14例阴性对照标本中,两种方法的检测结果均为阴性。通过定量PCR检测结果换算得出传感器检测临床标本HPV的最低拷贝数为每毫升1.40×102拷贝,即1.21pg/L。经McNemanr统计分析传感器和PCR两种检测方法没有显著性差异。Kappa检验说明两种方法检测结果一致性很好。
     10.当RecA蛋白浓度为45μg/ml,ATPγS浓度为2.5 mmol/L时,与其他浓度组相比,引起的相位变化值最大(P<0.01)为(11.74±1.03)deg。而且相位变化值与平衡时间的比值也远远高于其他浓度组,和bis-PNA探针与靶序列DNA直接进行杂交反应相比,传感器的响应相位、信噪比和检测灵敏度均有显著提高。
     结论:
     1.双端对谐振型LSAW生物传感器更适合液相中生物分子杂交反应的检测,反射栅阵列有效提高了传感器的信噪比和检测灵敏度。
     2.自主构建的LSAW传感器检测系统在振荡电路、温控系统、数据采集分析等方面均达到试验要求。
     3.利用小波变换和奇性检测原理,以MATLAB仿真为基础,获得了相位信号的小波变换模极大值图谱,检测出相位信号的突变点,从而准确地确定了反应起点。
     4.自行编写的终点判断软件根据连续十分钟内相位变化差值(△P),即△P=△Pn-△P(n-9)≤0.2deg可以实时准确判断反应终点。
     5. LSAW传感器检测限灵敏度可达到1pg/L级,与体波传感器相比检测灵敏度有了很大提高,能够实现更加微量病原微生物的快速检测。
     6. bis-PNA探针能够精确区分完全互补及单碱基错配的核酸序列,对互补DNA的错配容忍程度比相应的DNA/DNA更低,bis-PNA作为杂交探针可极大提高LSAW生物传感器检测系统的特异性。
     7.采用piranha液、1M HCL和1M NaOH等三种溶液连续洗脱,可以将LSAW传感器反应区域固定的所有物质洗脱掉。传感器的叉指换能器由硅橡胶密封,以保护叉指换能器电极,在清洗的过程对传感器的损伤很小。因而传感器具有较好的再生性能,可进一步降低临床检测应用中的成本。
     8.三种不同HPV DNA浓度的天间精密性实验的平均CV值为7.56%,略高于天内精密性实验的平均CV值6.36%,但二者均小于10%。因此,LSAW传感器具有良好的稳定性,从而保证了检测结果的可靠性和重复性。
     9. LSAW双体肽核酸生物传感器实现了对临床标本中HPV基因组DNA的直接检测。与定量PCR法相比,两种方法检测的灵敏度和特异性无显著性差异,但传感器法所用时间更短,且无需进行探针的标记。
     10.“RecA蛋白-互补单链DNA”探针复合体与bis-PNA/dsDNA复合物相结合可以有效提高传感器的检测灵敏度,并明显缩短检测时间
Objectives:
     The aim of this study was to construct a leaky surface acoustic wave (LSAW) bis-PNA biosensor detection system to rapidly detect the target dsDNA, and to examine the superiority of the system by detecting the HPV.
     Methods:
     1. Technology of fine processing was firstly used to make the LSAW biosensor with double two-port resonatoras style. Then we developed the dual channels resonance circuit, the BSMS 1.0 software, and temperature controlling system. The detection system of LSAW biosensor was constructed by combining all these components with network analyzer and computer.
     2. HPV probe was immobilized on the gold electrode surface of the LSAW biosensor by thiol method and hybridized with complementary target sequence. The phase shift of hybridization reaction was observed. The sensitivity and the linear range were confirmed by analyzing the correlation between the phase shift and the concentration of the target sequence.
     3. According to the wavelet signal singularity detection and the phase shift during 10min, the reaction starting point and the reaction ending point of the LSAW biosensor were judged, and the criterion was established.
     4. The sensitivity, specificity, precision and reproducibility of LSAW biosensor were investigated. Then, the LSAW biosensor was used to directly detect the extracted genomic DNA from positive clinical samples diagnosed for HPV infection and negative control samples.
     5. To improve the sensitivity of the LSAW biosensor,“RecA protein-complementary single strand DNA probe”complex was used as biological signal amplification system. The optimization on the concentration of RecA protein and ATPγS was explored.
     Results:
     1. The signal reflex distance between import and export interdigital transducer was increased by the reflex bar of double two-port resonatoras of the LSAW biosensor. So the phase shift caused by the hybridized reaction was significantly improved, and the equilibrium time of hybridization was shortened.
     2. The dual channel circuit developed in our team was of strongly vibromotive ability in liquid phase and its stability of phase could also meet the need of our experiment. And the introduction of the temperature controlling system provided the optimal temperature environment for biological reaction.
     3. According to the wavelet transformation and the wavelet signal singularity detection, the phase shift was analysised at six frequency domain grades. The maximum of wavelet transformation was appeared when the signal mutated. Therefore, the reaction starting point of the LSAW biosensor was accurately judged.
     4. The phase shift (△P)≤0.2degin 10min was set to the detection system. At the end of the reaction, the system would blow a whistle automatically. So, the reaction ending point of the LSAW biosensor was accurately judged.
     5. The phase shift firstly enhanced and then tended gently for hybridization with HPV target DNA when concentration of target varied from 1pg/L to 1mg/L, and 100μg/L was the saturation point. The statistic linear regression equation was△P=0.3010 IgC+2.1753 among the range of target concentration from 1pg/L to 100μg/L and the correlating coefficient was 0.9932.
     6. The capability of recognizing mismatched base by bis-PNA probe was higher and the time spent on hybridization was shorter than that of DNA probe.
     7. After five regenerating cycles,the biosensor could retain 89.60% of the original response, and the coefficient of variance (CV) was 4.24%. After ten regenerating cycles the biosensor retained 71.56% of the original response and the CV was 10.14%. Thus, our biosensor was of good reproducibility.
     8. The intraassay and interassay CV for the LSAW biosensor were 5.99% and 7.14% for 10.00μg/L, 6.34% and 7.09% for 100.00μg/L, 6.76% and 8.44% for 1000.00μg/L respectively. The intraassay mean CV was 6.36% and the interassay mean CV was 7.56%. Both the CVs were lower than 10%.
     9. Among 36 clinical cases being diagnosed for HPV infection by PCR, 35 samples were detected correctly by the LSAW biosensor. The positive rate was 97.22%. The DNA concentrations of HPV in the 36 clinical cases varied from 1.40 x 102 to 9.11 x 107copies per milliliter clinical sample (i.e., 1.21pg/L to 0.78μg/L). The HPV 18 was not detected in the 14 controls with either of two methods. The range of phase shift was from 1.1 deg to 4.5 deg and the time consumed was from 38 min to 75 min. Detection limit of the LSAW biosensor was 1.40 x 102 copies per milliliter clinical sample (i.e., 1.21 pg/L), which was calculated by quantitative PCR. No significant difference existed between the two methods according to the McNemar test. There existed significant consistency between the two methods according to the Kappa test.
     10. The phase shift was significantly obvious when the concentration of RecA protein was 45μg/mL and ATPγS was 2.5 mmol/L, compared with other concentrations (P<0.01). The value of phase shift was (11.74±1.03) deg. At the best concentration of RecA protein, the ratio of the phase shift and the time spent on hybridization obviously outclassed the other concentrations. Its phase shift, signal noise ratio and detectability were more superior to the direct hybridization of the bis-PNA probe and the target DNA sequence.
     Conclusions:
     1. The LSAW biosensor with dual resonance style was predominant for the detection of molecular biological experiments in liquid phase. The introduction of reflex bar array efficiently increased the signal noise ratio and hence increased the sensitivity of the sensor.
     2. The improved LSAW sensor detection system was suitable to the experimental requires in every parts including oscillation circuit, temperature controlling system and the software BSMS 1.0.
     3. According to the wavelet transformation and the wavelet signal singularity detection, and the base of MATLAB emulation, the maximum of phase shift was obtained, and the mutational site of phase shift was detected. Therefore, the reaction starting point of the LSAW biosensor was accurately determined.
     4. The software on judging ending points worked according to the difference (△P) of phase shift in 10min. The calculation equation of△P was△P=△Pn-△P(n-9). When△P≤0.2deg, the detection system would blow a whistle automatically. So, the reaction ending point of the LSAW biosensor was accurately judged.
     5. The detectability of the LSAW biosensor was 1.2pg/L. It was greatly more sensitive than bulk acoustic wave biosensor. It could quickly detect pathogenic microorganism in microcontent.
     6. The capability of bis-PNA probe on distinguishing matched and mismatched base was higher than that of DNA/DNA, while the tolerant degree of bis-PNA probe on hybridizing with noncomplementary target DNA sequence was lower than that of DNA/DNA. Therefore, bis-PNA probe could improve the detection specificity of the LSAW biosensor.
     7. Piranha solution,1M HCL and 1M NaOH can be used to wash everything covered on the reaction area. The reaction area of the LSAW biosensor and IDTs is covered by gold on the surface of LiTaO3 crystal. Thus, the LSAW biosensor can not be injured by the cleaning process. The LSAW biosensor has good reproducibility, which can reduce the cost of detection.
     8. The intraassay CV showed very low SD(mean CV=6.36%) and the interassay CV had a slightly higher SD(mean CV=7.56%). However, they were both lower than 10%. Therefore, our study indicated that the stability of the LSAW biosensor system was satisfactory.
     9. HPV genomic DNA from clinical samples could be directly detected with bis-PNA probe. Sensitivity and specificity of the LSAW biosensor showed no significant difference when it compared with quantitative PCR, but less time was consumed and the probe no labeling at the LSAW biosensor.
     10. The sensitivity was effectively improved and the detection time was significantly shortened by applying“RecA protein-complementary single strand DNA probe”complex to the LSAW biosensor.
引文
1. Nakamoto K, Kidd JR, Jenison RD, et al. Genotyping and haplotyping of CYP2C19 functional alleles on thin-film biosensor chips [J]. Pharmacogenet Genomics. 2007, 17(2):103-114.
    2. O'connell DJ, Molinar AJ, Tavares AL, et al. Transfection of cells attached to selected cell based biosensor surfaces [J]. Life Sci. 2007, 80(15):1395-1402.
    3. Bai SL, Zhong X, Ma L, et al. A simple and reliable assay for detecting specific nucleotide sequences in plants using optical thin-film biosensor chips [J]. Plant J. 2007 , 49(2):354-366.
    4. Kumari A, Pasini P, Deo SK, et al. Biosensing systems for the detection of bacterial quorum signaling molecules [J]. Anal Chem. 2006, 78(22):7603-09.
    5. Liu N, Gao Z, Zhou H, et al. Detection of SEB gene by bilayer lipid membranes nucleic acid biosensor supported by modified patch-clamp pipette electrode. Biosens Bioelectron [J]. 2007, 22(9-10):2371-2376.
    6. Park TJ, Lee SY, Lee SJ, et al. Protein nanopatterns and biosensors using gold binding polypeptide as a fusion partner [J]. Anal Chem. 2006, 78(20):7197-7205.
    7. Pejcic B, De Marco R, Parkinson G. The role of biosensors in the detection of emerging infectious diseases [J]. Analyst. 2006, 131(10):1079-1090.
    8. Galluzzi L, Karp M. Intracellular redox equilibrium and growth phase affect the performance of luciferase-based biosensors [J]. J Biotechnol. 2007, 127(2):188-198.
    9. Prow T, Grebe R, Merges C, et al. Nanoparticle tethered antioxidant response element as a biosensor for oxygen induced toxicity in retinal endothelial cells [J]. Mol Vis. 2006, 26; 12:616-625.
    10. Rizk SS, Cuneo MJ, Hellinga HW. Identification of cognate ligands for the Escherichia coli phnD protein product and engineering of a reagentless fluorescent biosensor for phosphonates [J]. Protein Sci. 2006 , 15(7):1745-1751.
    11. Fujimoto H, Wakabayashi M, Yamashiro H, et al. Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilum. Rhodovulum sulfidophilum as an arsenite biosensor [J]. Appl Microbiol Biotechnol. 2006, 73(2):332-338.
    12. Tecon R, Wells M, van der Meer JR. A new green fluorescent protein-based bacterialbiosensor for analysing phenanthrene fluxes [J]. Environ Microbiol.2006, 8(4):697-708.
    13. Kerman K, Vestergaard M, Nagatani N, et al. Electrochemical genosensor based on peptide nucleic acid-mediated PCR and asymmetric PCR techniques: Electrostatic interactions with a metal cation [J]. Anal Chem. 2006, 78(7):2182-2189.
    14. Lai RY, Lagally ET, Lee SH, et al. Rapid, sequence-specific detection of unpurified PCR amplicons via a reusable, electrochemical sensor [J]. Proc Natl Acad Sci U S A. 2006, 103(11):4017-4021.
    15. Soper SA, Brown K, Ellington A, et al. Point-of-care biosensor systems for cancer diagnostics/prognostics [J]. Biosens Bioelectron. 2006, 21(10):1932-1942.
    16. Knopfel T, Diez-Garcia J, Akemann W. Optical probing of neuronal circuit dynamics: genetically encoded versus classical fluorescent sensors [J]. Trends Neurosci. 2006, 29(3):160-166.
    17. Dell'Atti D, Tombelli S, Minunni M, et al. Detection of clinically relevant point mutations by a novel piezoelectric biosensor [J]. Biosens Bioelectron. 2006, 21(10):1876-1879.
    18. Sorensen SJ, Burmolle M, Hansen LH. Making bio-sense of toxicity: new developments in whole-cell biosensors [J]. Curr Opin Biotechnol. 2006, 17(1):11-16.
    19. Theisen LA, Martin SJ, Hillman AR. A model for the quartz crystal microbalance frequency response to wetting characteristics of corrugated surfaces [J]. Anal.Chem. 2004, 76 (3): 796-804.
    20. Su X, Robelek R, Wu Y, et al. Detection of point mutation and insertion mutations in DNA using a quartz crystal microbalance and MutS, a mismatch binding protein [J]. Anal.Chem. 2004, 76 (2): 489-494.
    21. Liu T, Tang J, Jiang L. The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity [J]. Biochem.Biophys.Res.Commun. 2004, 313 (1): 3-7.
    22. Gheorghe M, Guiseppi-Elie A. Electrical frequency dependent characterization of DNA hybridization [J]. Biosens.Bioelectron. 2003, 19 (2): 95-102.
    23. Duman M, Saber R, Piskin E. A new approach for immobilization of oligonucleotides onto piezoelectric quartz crystal for preparation of a nucleic acid sensor for following hybridization [J]. Biosens.Bioelectron. 2003, 18 (11): 1355-1363.
    24. Chen M, Liu M, Yu L, et al. Construction of a novel peptide nucleic acid piezoelectric gene sensor microarray detection system [J]. J Nanosci Nanotechnol. 2005. 5(8): 1266-1272.
    25. Zhang B, Zhang X, Yan H H, et a1. A novel multi-array immunoassay device for tumor markers based on insert-plug model of piezoelectric immunosensor [J]. Biosens Bioelectron, 2007, 23 (1): 19-25.
    26. Yao C, Zhu T, Tang J, et al. Hybridization assay of hepatitis B virus by QCM peptide nucleic acid biosensor [J]. Biosens Bioelectron, 2008, 23 (6): 879-885.
    27.夏涵,黄君富,姚春艳,等.基于HRP-DAB信号放大系统的压电石英晶体DNA传感器微阵列检测表皮葡萄球菌的研究[J].中华医院感染学杂志,2008,18(3):342-344.
    28. NakamuraH, KarubeI. Current research activity in biosensors. [J]. Anal BioanalChem. 2003, 377(3):446-468.
    29. Mannelli I, Minunni M, Tombelli S, et al. Quartz crystal microbalance (QCM) affinity biosensor for genetically modi-fied organisms (GMOs) detection [J]. Biosens Bioelectron, 2003, 18(2-3):129-140.
    30. Panyutin IG, Panyutin IV, Demidov VV, et a1. Targeting linear duplex DNA with mixed-base peptide nucleic acid oligomers facilitated by bisPNA openers [J]. Anal Biochem, 2007, 362(1): 145-147.
    31. Dell'Atti D, Zavaglia M, Tombelli S, et a1. Development of combined DNA-based piezoelectric biosensors for the simultaneous detection and genotyping of high risk Human Papilloma Virus strains [J]. Clin Chim Acta, 2007, 383(1-2):140-146.
    32. Chiu CS, Gwo S. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates [J]. Anal Chem. 2008. 80(9): 3318-3326.
    33. Lange K, Rapp BE, Rapp M. Surface acoustic wave biosensors: a review [J]. Anal Bioanal Chem. 2008. 391(5): 1509-1519.
    34. Bisoffi M, Hjelle B, Brown DC, et al. Detection of viral bioagents using a shear horizontal surface acoustic wave biosensor [J]. Biosens Bioelectron. 2008. 23(9): 1397-403.
    35. Gronewold TM. Surface acoustic wave sensors in the bioanalytical field: recent trends and challenges [J]. Anal Chim Acta. 2007. 603(2): 119-28.
    36. Tombelli S, Minunni M, Mascini M. Piezoelectric biosensors: strategies for coupling nucleic acids to piezoelectric devices [J]. Methods. 2005. 37(1): 48-56.
    37. Berkenpas E, Millard P, Pereira dCM. Detection of Escherichia coli O157:H7 with langasite pure shear horizontal surface acoustic wave sensors [J]. Biosens Bioelectron. 2006. 21(12): 2255-62.
    38. Moll N, Pascal E, Dinh DH, et al. A Love wave immunosensor for whole E. coli bacteria detection using an innovative two-step immobilisation approach [J]. Biosens Bioelectron. 2007. 22(9-10): 2145-50.
    39.刘积学,马晋毅,江洪敏,等.声表面波多参数传感器发展及应用[J].压电与声光,2008,30(5):521-527.
    40. Makkonen T, Plessky VP, Steichen W, et al. Longitudinal leaky SAW resonators and filters on YZ-LiNbO3 [J]. IEEE Trans Ultrason Ferroelectr Freq Control.2006, 53(2):393-401.
    41. Chung CJ, Kao KS, Cheng CC, et al. Proton-exchanged 36 degrees Y-X LiTaO3 waveguides for surface acoustic wave [J]. IEEE Trans Ultrason Ferroelectr Freq Control. 2006, 53(2):502-505.
    42. Pastureaud T, Lardat R, Chamaly S, et al. Prediction of the thermal sensitivity of surface acoustic waves excited under a periodic grating of electrodes [J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2005, 52(8):1378-1383.
    43. Kadota M, Yoneda T, Fujimoto K, et al. Resonator filters using shear horizontal- type leaky surface acoustic wave consisting of heavy-metal electrode and quartz substrate [J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2004, 51(2):202-210.
    1. Yunxia Wang, Ming Chen, Liqun Zhang, et a1. Rapid detection of human papilloma virus using a novel leaky surface acoustic wave peptide nucleic acid biosensor [J]. Biosens Bioelectron, 2008, doi:1016/j.bios.2009.04.034.
    2.王云霞,府伟灵,陈鸣,等.漏声表面波生物传感器液相检测系统的构建及检测HPV的实验研究[J].中华医院感染学杂志,2006,16(11):1210-1212.
    3.陈鸣,张烨,王云霞,等.探针浓度对LSAW-bisPNA传感器检测系统的影响[J].中华医院感染学杂志,2008,18(3):349-352.
    4.王云霞,陈鸣,姚春艳,等.漏声表面波生物传感器不同检测方法的实验研究[J].中华医院感染学杂志,2008,18(3):342-344.
    5.王云霞,府伟灵,陈鸣,等.新型漏声表面波生物传感器液相检测条件的实验研究[J].第三军医大学学报,2006,28(9):316-319.
    6.陈鸣,陈伟,府伟灵,等.缓冲液离子浓度对新型PNA2LSAW基因传感器杂交效应的影响[J].重庆医学,2008,37(17):1939-1940.
    7.吴建斌,吴建平.改进奇异点检测算法在探地雷达信号检测的应用[J].微计算机信息,2006,22(12-1):276-278.
    8.冯健,张化光.基于小波消噪和盲源分离的信号奇异点检测方法[J].控制与决策,2007,22(9): 1035-1038.
    9. Feng J ian , Zhang Hua guang , Lun Shu xian , et al.Method of fault detection based on ANFIS nonlinearobserver using continuous wavelet t ransform[J]. J ofNortheastern University , 2003 , 24 (6): 5192522.
    10.刘伯鸿.基于小波奇异性的故障诊断[J].现代电子技术,2006,24:92-93.
    11.赵猛,府伟灵,陈鸣,等.凝血反应压电频率动态响应规律的研究[J].中华医院感染学杂志,2006,16(11):1229-1232.
    12.赵猛,府伟灵,陈鸣,等.压电凝血反应频率指数衰减规律及最大曲率终点法的研究[J].第三军医大学学报,2006,28(4):311-314.
    13.张丽琼,祁伟.基于小波变换的人体脉象信号奇异点检测[J].数据采集与处理,2008,23(2):158-162.
    14.张引红,吴胜举.鼾音信号奇异点检测的小波变换分析方法[J].计算机工程与应用,2008,44(5):232-234.
    15.胡昌华.基于MATTAB 6.X的系统分析与设计-小波分析[M].西安:西安电子科技大学出版社, 2004: 225-237.
    16. Sendur L, Selesnick I W. Bivariate shrinkage functions for waveletbased denoising exploiting interscale dependency [J]. IEEE Trans Signal Processing.2002, 50( 11) : 2744-2756.
    17.王平,靳雁艳,杨洁明,等.基于小波变换的信号奇异点检测[J].计算机工程与应用,2005,3:56-58.
    18.袁海英,陈光.小波分析在信号奇异性检测中的应用[J].电讯技术,2006,3:24-27.
    19.孙成祥,晁勤.小波变换在信号奇异性检测中的应用[J].科技广场,2006,11:11-13.
    1. Rama CH, Roteli-Martins CM, Derchain SF, Oliveira EZ, Aldrighi JM, Mariani NC. Serological detection of anti HPV 16/18 and its association with pap smear in adolescents and young women [J]. Rev Assoc Med Bras. 2006. 52(1): 43-7.
    2. Baleriola C, Millar D, Melki J, et al. Comparison of a novel HPV test with the Hybrid Capture II (hcII) and a reference PCR method shows high specificity and positive predictive value for 13 high-risk human papillomavirus infections [J]. J Clin Virol. 2008. 42(1): 22-6.
    3. Myers E, Huh WK, Wright JD, Smith JS. The current and future role of screening in the era of HPV vaccination [J]. Gynecol Oncol. 2008. 109(2 Suppl): S31-9.
    4. Lee SH, Vigliotti VS, Pappu S. Molecular tests for human papillomavirus (HPV), Chlamydia trachomatis and Neisseria gonorrhoeae in liquid-based cytology specimen [J]. BMC Womens Health. 2009. 9: 8.
    5. Dell'Atti D, Zavaglia M, Tombelli S, et al. Development of combined DNA-based piezoelectric biosensors for the simultaneous detection and genotyping of high risk Human Papilloma Virus strains [J]. Clin Chim Acta. 2007. 383(1-2): 140-6.
    6. Chiu CS, Gwo S. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates [J]. Anal Chem. 2008. 80(9): 3318-26.
    7. Lange K, Rapp BE, Rapp M. Surface acoustic wave biosensors: a review [J]. Anal Bioanal Chem. 2008. 391(5): 1509-19.
    8. Baeumner AJ, Pretz J, Fang S. A universal nucleic acid sequence biosensor with nanomolar detection limits [J]. Anal Chem. 2004. 76(4): 888-94.
    9. Mannelli I, Minunni M, Tombelli S, Mascini M. Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection [J]. Biosens Bioelectron. 2003. 18(2-3): 129-40.
    10. Chen M, Liu M, Yu L, et al. Construction of a novel peptide nucleic acid piezoelectric gene sensor microarray detection system [J]. J Nanosci Nanotechnol. 2005. 5(8): 1266-72.
    11. Yao C, Zhu T, Tang J, et al. Hybridization assay of hepatitis B virus by QCM peptidenucleic acid biosensor [J]. Biosens Bioelectron. 2008. 23(6): 879-85.
    12. Baker ES, Hong JW, Gaylord BS, Bazan GC, Bowers MT. PNA/dsDNA complexes: site specific binding and dsDNA biosensor applications [J]. J Am Chem Soc. 2006. 128(26): 8484-92.
    13. Zourob M, Elwary S, Fan X, Mohr S, Goddard NJ. Label-free detection with the resonant mirror biosensor [J]. Methods Mol Biol. 2009. 503: 89-138.
    14. Nakamura H, Karube I. Current research activity in biosensors [J]. Anal Bioanal Chem. 2003. 377(3): 446-68.
    15. Richman SA, Kranz DM, Stone JD. Biosensor detection systems: engineering stable, high-affinity bioreceptors by yeast surface display [J]. Methods Mol Biol. 2009. 504: 323-50.
    16. Ding X, Liu F, Yu X. Surface plasmon resonance biosensor for biomolecular interaction analysis based on spatial modulation phase detection [J]. Methods Mol Biol. 2009. 503: 21-35.
    17. Wakatsuki N, Kudo S, Chiba M. Temperature self-compensated lithium tantalate piezoelectric gyroscope for higher sensitivity and stability [J]. Ultrasonics. 2000. 38(1-8): 46-50.
    18. Herrmann F, Weihnacht M, Buttgenbach S. Properties of sensors based on shear-horizontal surface acoustic waves in LiTaO3/SiO2 and quartz/SiO2 structures [J]. IEEE Trans Ultrason Ferroelectr Freq Control. 2001. 48(1): 268-73.
    19. Curtis TM, Tabb J, Romeo L, Schwager SJ, Widder MW, der Schalie WH v. Improved cell sensitivity and longevity in a rapid impedance-based toxicity sensor [J]. J Appl Toxicol. 2009.
    20. Bagal-Kestwal D, Karve MS, Kakade B, Pillai VK. Invertase inhibition based electrochemical sensor for the detection of heavy metal ions in aqueous system: Application of ultra-microelectrode to enhance sucrose biosensor's sensitivity [J]. Biosens Bioelectron. 2008. 24(4): 657-64.
    21. Herminjard S, Sirigu L, Herzig HP, et al. Surface Plasmon Resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range [J]. Opt Express. 2009. 17(1): 293-303.
    22. Karkare S, Bhatnagar D. Promising nucleic acid analogs and mimics: characteristicfeatures and applications of PNA, LNA, and morpholino [J]. Appl Microbiol Biotechnol. 2006. 71(5): 575-86.
    23. Kerman K, Saito M, Tamiya E. Electroactive chitosan nanoparticles for the detection of single-nucleotide polymorphisms using peptide nucleic acids [J]. Anal Bioanal Chem. 2008. 391(8): 2759-67.
    24. Sugiyama T, Kuroda R, Kittaka A. Topological stabilization of PNA-DNA invasion complex [J]. Nucleic Acids Symp Ser (Oxf). 2004. (48): 39-40.
    25. Lundin KE, Hasan M, Moreno PM, et al. Increased stability and specificity through combined hybridization of peptide nucleic acid (PNA) and locked nucleic acid (LNA) to supercoiled plasmids for PNA-anchored "Bioplex" formation [J]. Biomol Eng. 2005. 22(5-6): 185-92.
    26. Panyutin IG, Panyutin IV, Demidov VV. Targeting linear duplex DNA with mixed-base peptide nucleic acid oligomers facilitated by bisPNA openers [J]. Anal Biochem. 2007. 362(1): 145-7.
    27. Lonkar P, Kim KH, Kuan JY, et al. Targeted correction of a thalassemia-associated (beta)-globin mutation induced by pseudo-complementary peptide nucleic acids [J]. Nucleic Acids Res. 2009.
    28. Sen A, Nielsen PE. Unique properties of purine/pyrimidine asymmetric PNA.DNA duplexes: differential stabilization of PNA.DNA duplexes by purines in the PNA strand [J]. Biophys J. 2006. 90(4): 1329-37.
    29. Kim KH, Nielsen PE, Glazer PM. Site-directed gene mutation at mixed sequence targets by psoralen-conjugated pseudo-complementary peptide nucleic acids [J]. Nucleic Acids Res. 2007. 35(22): 7604-13.
    30. Miyajima Y, Ishizuka T, Komiyama M. Mismatch recognition in PNA double-duplex invasion [J]. Nucleic Acids Symp Ser (Oxf). 2008. (52): 125-6.
    31. Komiyama M, Aiba Y, Yamamoto Y, Sumaoka J. Artificial restriction DNA cutter for site-selective scission of double-stranded DNA with tunable scission site and specificity [J]. Nat Protoc. 2008. 3(4): 655-62.
    32. Bender M, Holben WE, Sorensen SJ, Jacobsen CS. Use of a PNA probe to block DNA-mediated PCR product formation in prokaryotic RT-PCR [J]. Biotechniques. 2007. 42(5): 609-10, 612-4.
    33. Liu ZC, Shin DS, Shokouhimehr M, et al. Light-directed synthesis of peptide nucleic acids (PNAs) chips [J]. Biosens Bioelectron. 2007. 22(12): 2891-7.
    34. Tovar-Salazar A, Dhawan J, Lovejoy A, Liu QA, Gifford AN. Preparation of radioiodinated peptide nucleic acids with high specific activity [J]. Anal Biochem. 2007. 360(1): 92-8.
    35. Fei YN, Zhang FX. Peptide Nucleic Acids (PNA)--the explorer of gene mystery [J]. Yi Chuan. 2006. 28(5): 623-30.
    36. Laschi S, Palchetti I, Marrazza G, Mascini M. Enzyme-amplified electrochemical hybridization assay based on PNA, LNA and DNA probe-modified micro-magnetic beads [J]. Bioelectrochemistry. 2009.
    37. Conneely G, Aherne M, Lu H, Guilbault GG. Development of an immunosensor for the detection of testosterone in bovine urine [J]. Anal Chim Acta. 2007. 583(1): 153-60.
    38. Mytych DT, La S, Barger T, Ferbas J, Swanson SJ. The development and validation of a sensitive, dual-flow cell, SPR-based biosensor immunoassay for the detection, semi-quantitation, and characterization of antibodies to darbepoetin alfa and epoetin alfa in human serum [J]. J Pharm Biomed Anal. 2009. 49(2): 415-26.
    39. Shen G, Tan S, Nie H, Shen G, Yu R. Electrochemical and piezoelectric quartz crystal detection of antisperm antibody based on protected Au nanoparticles with a mixed monolayer for eliminating nonspecific binding [J]. J Immunol Methods. 2006. 313(1-2): 11-9.
    40. Zhang B, Zhang X, Yan HH, Xu SJ, Tang DH, Fu WL. A novel multi-array immunoassay device for tumor markers based on insert-plug model of piezoelectric immunosensor [J]. Biosens Bioelectron. 2007. 23(1): 19-25.
    1. Towery RB,Faucett NC,Zhang P,et al. Genomic DNA by bridizes with the same rate constant on the QCM biosensor as in homogenous solution [J]. Biosens Bioelection. 2001,16(1-2):1-8.
    2. Lin L,Zhao H,Li J,et al.Study on colloidal Au-enhanced DNA sensing by quartz crystal microbalance [J]. Biochem Biophys Res Cemmun. 2000,274(3):817-20.
    3.刘明华,府伟灵,薛强等.靶DNA长度对压电传感器基因杂交效应的影响[J].第三军医大学学报,2002,24(1):12-14.
    4.刘明华,府伟灵,张雪等.离子强度对压电传感器基因杂交动力学的影响[J].第三军医大学学报,2002,24(1):15-16.
    5.刘明华,府伟灵,陈鸣等.不同温度对压电传感器基因杂交效应的影响[J].重庆医学,2001,30(6):484-485.
    6. Boon EM,Ceres DM,Drummond TG,et al. Mutation detection by electrocatalysis at DNA-modified electrodes [J]. Nat Biotechnol.2000,18(10): 1096-1100.
    7. Niikura K,Mastsuno H,Oka hata Y. Direct monitoring of DNA pllymerase chain reaction on a quartz crystal microbalances [J]. J Am Chem Soc,1998,120:8537-8540.
    8. Lange K,Rapp B E,Rapp M,et a1. Surface acoustic wave biosensors: a review [J]. Anal Bioanal Chem,2008,391(5): 15098-1519.
    9. Chiu C S,Gwo S. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates [J]. Anal Chem,2008,80(9): 3318-3326.
    10.陈鸣,府伟灵,等.基因传感器表面两种探针固定法的比较[J].第三军医大学学报,2002,24(1):17-19.
    11. Panyutin I G,Panyutin I V,Demidov V V,et a1. Targeting linear duplex DNA with mixed-base peptide nucleic acid oligomers facilitated by bisPNA openers[J]. Anal Biochem,2007,362(1): 145-147.
    12.杨楷,李志刚,景玉鹏,等.声表面波气体传感器的研究进展[J].电子元件与材料,2008,27(9): 26-30.
    13. Teles FRR,Fonseca LP. Trends in DNA biosensors [J]. Talanta,2008,77(2):606-623.
    14.陈鸣,府伟灵,吴蓉,等.肽核酸压电基因传感器新型生物信号放大系统的研究[J].中华检验医学杂志,2001,28(11):1193-1196.
    15. Zhang B,Zhang X,Yan H H,et a1. A novel multi-array immunoassay device for tumor markers based on insert-plug model of piezoelectric immunosensor[J]. Biosens Bioelectron,2007,23 (1): 19-25.
    16. Yao C, Zhu T, Tang J,et al. Hybridization assay of hepatitis B virus by QCM peptide nucleic acid biosensor [J]. Biosens Bioelectron,2008,23 (6): 879-885.
    17.夏涵,黄君富,姚春艳,等.基于HRP-DAB信号放大系统的压电石英晶体DNA传感器微阵列检测表皮葡萄球菌的研究[J].中华医院感染学杂志,2008,18(3):342-344.
    18. Chiu C S, Gwo S. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates [J]. Anal Chem, 2008, 80(9): 3318-3326.
    19. Lange K, Rapp B E, Rapp M, et a1. Surface acoustic wave biosensors: a review [J]. Anal Bioanal Chem, 2008, 391(5): 15098-1519.
    20.刘积学,马晋毅,江洪敏,肖燕,等.声表面波多参数传感器发展及应用[J].中华医院感染学杂志,2008,30(5):521-524.
    21. Chung CJ,Kao KS,Cheng CC,et al. Proton-exchanged 36 degrees Y-X LiTaO3 waveguides for surface acoustic wave [J]. IEEE Trans Ultrason Ferroelectr Freq Control,2006,53(2): 502-5.
    22. Fernandez M J, Fontecha J L, Sayago I,et al. Discrimination of volatile compounds through an electronic nose based on ZnO SAW sensors [J]. Sensors and Actuators B,2007,127(1) : 277-283.
    23.王云霞,府伟灵,陈鸣,等.新型漏声表面波生物传感器液相检测条件的实验研究[J].第三军医大学学报,2006,28(9):316-319.
    24. RAPP M,REIBEL J. Influence of phase position on the chemical response of oscillator driven polymer coated SAW resonators [J]. IEEE UFFC,1998: 621-629.
    25.付曙霞,杨震夏.声表面波气体传感器器件的设计[J].舰船科学技术,2006,28(2):72-75.
    26. Pividori MI,Merkoci A,Alegret S. Dot-blot amperometric genosensor for detecting a novel determinant of beta-lactamase resistance in Staphylococcus aureus [J]. Analyst. 2001,126(9): 1551-1557.
    27. Jenison R,La H,Haeberli A,et al. Silicon-based biosensors for rapid detection of protein or nucleic acid targets. Clin Chem. 200147(10): 1894-1900.
    28. Forster AH,Krihak M,Swanson PD,et al. A laminated,flex structure for electronic transport and hybridization of DNA [J]. Biosens Bioelectron. 2001,16(3): 187-194.
    29. Vontel S,Ramakrishnan A,Sadana A. An evaluation of hybridization kinetics in biosensors using a single-fractal analysis [J]. Biotechnol Appl Biochem. 2000,31 (Pt 2):161-170.
    30. Gambari R,Feriotto G,Rutigliano C,et al. Biospecific interaction analysis (BIA) of low-molecular weight DNA-binding drugs [J]. J Pharmacol Exp Ther. 2000294(1): 370-377.
    31. Bontidean I,Lloyd JR,Hobman JL,et al. Bacterial metal-resistance proteins and their use in biosensors for the detection of bioavailable heavy metals [J]. J Inorg Biochem. 2000,79(1-4): 225-229.
    32. Belotserkovskii B P,Zarling D A. Peptide nucleic acid (PNA) facilitates multistranded hybrid formation between linear double-stranded DNA targets and RecA protein-coated comp lementary single-stranded DNA probe [J]. Biochemistry, 2002 , 41(11): 3686-3692.
    1. Koskinen JO, Meltola NJ, Soini E, Soini AE. A lab-on-a-chip compatible bioaffinity assay method for human alpha-fetoprotein. Lab Chip [J]. 2005. 5(12): 1408-11.
    2. Nakamura H, Karube I. Current research activity in biosensors [J]. Anal Bioanal Chem. 2003. 377(3): 446-68.
    3. Richman SA, Kranz DM, Stone JD. Biosensor detection systems: engineering stable, high-affinity bioreceptors by yeast surface display [J]. Methods Mol Biol. 2009. 504: 323-50.
    4. Akyilmaz E, Dinckaya E. Development of a catalase based biosensor for alcohol determination in beer samples [J]. Talanta. 2003. 61(2): 113-8.
    5. Kurlyandskaya GV, Fal MV.Surface modified amorphous ribbon based magnetoimpedance biosensor [J]. Biosens Bioelectron. 2007. 22(9-10): 2341-5.
    6. Pu KY, Liu B. Optimizing the cationic conjugated polymer-sensitized fluorescent signal of dye labeled oligonucleotide for biosensor applications [J]. Biosens Bioelectron. 2009. 24(5): 1067-73.
    7. Sanchez-Paniagua LM, Tamimi F, Lopez-Cabarcos E, Lopez-Ruiz B. Highly sensitive amperometric biosensor based on a biocompatible calcium phosphate cement [J]. Biosens Bioelectron. 2009. 24(8): 2574-9.
    8. Luong JH, Male KB, Glennon JD. Biosensor technology: technology push versus market pull [J]. Biotechnol Adv. 2008. 26(5): 492-500.
    9. Palchetti I, Laschi S, Mascini M. Electrochemical biosensor technology: application to pesticide detection [J]. Methods Mol Biol. 2009. 504: 115-26.
    10. Hara MR, Cascio MB, Sawa A. GAPDH as a sensor of NO stress [J]. Biochim Biophys Acta. 2006. 1762(5): 502-9.
    11. Ricci F, Palleschi G. Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes [J]. Biosens Bioelectron. 2005. 21(3): 389-407.
    12. Kemp PJ. Detecting acute changes in oxygen: will the real sensor please stand up [J]. Exp Physiol. 2006. 91(5): 829-34.
    13. Bange A, Halsall HB, Heineman WR. Microfluidic immunosensor systems [J]. Biosens Bioelectron. 2005. 20(12): 2488-503.
    14. Tang L, Zeng GM, Huang GH, Niu CG. Study progress on determination of environmental trace toxicants by immunosensor [J]. Huan Jing Ke Xue. 2004. 25(4): 170-6.
    15. Ly SY, Cho NS. Diagnosis of human hepatitis B virus in non-treated blood by the bovine IgG DNA-linked carbon nanotube biosensor [J]. J Clin Virol. 2009. 44(1): 43-7.
    16. Li XM, Zhan ZM, Ju HQ, Zhang SS. Label-free electrochemical detection of short sequences related to the hepatitis B virus using 4,4'-diaminoazobenzene based on multiwalled carbon nanotube-modified GCE [J]. Oligonucleotides. 2008. 18(4): 321-7.
    17. Chen M, Liu M, Yu L, et al. Construction of a novel peptide nucleic acid piezoelectric gene sensor microarray detection system [J]. J Nanosci Nanotechnol. 2005. 5(8): 1266-72.
    18. Ainslie KM, Desai TA. Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing [J]. Lab Chip. 2008. 8(11): 1864-78.
    19. Zhang S, Wright G, Yang Y. Materials and techniques for electrochemical biosensor design and construction [J]. Biosens Bioelectron. 2000. 15(5-6): 273-82.
    20. Mang A, Pill J, Gretz N, et al. Biocompatibility of an electrochemical sensor for continuous glucose monitoring in subcutaneous tissue [J]. Diabetes Technol Ther. 2005. 7(1): 163-73.
    21. Chen YY, Jin G. Protein microarray biosensor based on imaging ellipsometry and its biomedical applications [J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2006. 28(4): 596-9.
    22. Qi C, Feng J, Wang ZH, Meng YH, Yan XY, Jin G. Application of optical proteinchip in detecting phage M13KO7 [J]. Sheng Wu Gong Cheng Xue Bao. 2006. 22(5): 856-60.
    23. Wang ZH, Meng YH, Ying PQ, Qi C, Jin G. A label-free protein microfluidic array for parallel immunoassays [J]. Electrophoresis. 2006. 27(20): 4078-85.
    24. Fromherz P. Three levels of neuroelectronic interfacing: silicon chips with ion channels, nerve cells, and brain tissue [J]. Ann N Y Acad Sci. 2006. 1093: 143-60.
    25. Voelker M, Fromherz P. Nyquist noise of cell adhesion detected in a neuron-silicon transistor [J]. Phys Rev Lett. 2006. 96(22): 228102.
    26. Braun D, Fromherz P. Imaging neuronal seal resistance on silicon chip using fluorescent voltage-sensitive dye [J]. Biophys J. 2004. 87(2): 1351-9.
    27. Fromherz P. Electrical interfacing of nerve cells and semiconductor chips [J]. Chemphyschem. 2002. 3(3): 276-84.
    28. Star A, Tu E, Niemann J, Gabriel JC, Joiner CS, Valcke C. Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors [J]. Proc Natl Acad Sci U S A. 2006. 103(4): 921-6.
    29. Mao X, Yang L, Su XL, Li Y. A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7 [J]. Biosens Bioelectron. 2006. 21(7): 1178-85.
    30. So HM, Park DW, Jeon EK, et al. Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors [J]. Small. 2008. 4(2): 197-201.
    31. Maehashi K, Katsura T, Kerman K, Takamura Y, Matsumoto K, Tamiya E. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors [J]. Anal Chem. 2007. 79(2): 782-7.
    32. Piliarik M, Parova L, Homola J. High-throughput SPR sensor for food safety [J]. Biosens Bioelectron. 2009. 24(5): 1399-404.
    33. Habauzit D, Chopineau J, Roig B. SPR-based biosensors: a tool for biodetection of hormonal compounds [J]. Anal Bioanal Chem. 2007. 387(4): 1215-23.
    34. Chegel V, Whitcombe MJ, Turner NW, Piletsky SA. Deposition of functionalized polymer layers in surface plasmon resonance immunosensors by in-situ polymerization in the evanescent wave field [J]. Biosens Bioelectron. 2009. 24(5): 1270-5.
    35. Neumann T, Junker HD, Schmidt K, Sekul R. SPR-based fragment screening: advantages and applications [J]. Curr Top Med Chem. 2007. 7(16): 1630-42.
    36. Yuk JS, Ha KS. Proteomic applications of surface plasmon resonance biosensors: analysis of protein arrays [J]. Exp Mol Med. 2005. 37(1): 1-10.
    37. Kalmykova EN, Dergunova ES, Ermolaeva TN, Gorshkova RP, Komandrova NA. Piezoquartz immunosensors for assessing the interactions between Yersinia enterocolitica lipopolysaccharides and antibodies to them [J]. Prikl Biokhim Mikrobiol. 2008. 44(4): 410-6.
    38. Yao C, Zhu T, Tang J, et al. Hybridization assay of hepatitis B virus by QCM peptide nucleic acid biosensor [J]. Biosens Bioelectron. 2008. 23(6): 879-85.
    39. Chen M, Liu M, Yu L, et al. Construction of a novel peptide nucleic acid piezoelectric gene sensor microarray detection system [J]. J Nanosci Nanotechnol. 2005. 5(8): 1266-72.
    40. Zhang B, Zhang X, Yan HH, Xu SJ, Tang DH, Fu WL. A novel multi-array immunoassay device for tumor markers based on insert-plug model of piezoelectric immunosensor [J]. Biosens Bioelectron. 2007. 23(1): 19-25.
    41. Guo XS, Chen YQ, Yang XL, Wang LR. Novel shear-horizontal surface acoustic wave based immunosensors using SiO2 waveguiding layers Aand flow injection analysis [J]. Conf Proc IEEE Eng Med Biol Soc. 2005. 2(1): 1921-1924.
    42. Berkenpas E, Millard P, Pereira dCM. Detection of Escherichia coli O157:H7 with langasite pure shear horizontal surface acoustic wave sensors [J]. Biosens Bioelectron. 2006. 21(12): 2255-62.
    43. Kwon Y, Roh Y. Development of SH-SAW sensors for underwater measurement [J]. Ultrasonics. 2004. 42(1-9): 409-11.
    44. Gronewold TM. Surface acoustic wave sensors in the bioanalytical field: recent trends and challenges [J]. Anal Chim Acta. 2007. 603(2): 119-28.
    45. Yu H, Munoz EM, Edens RE, Linhardt RJ. Kinetic studies on the interactions of heparin and complement proteins using surface plasmon resonance [J]. Biochim Biophys Acta. 2005. 1726(2): 168-76.
    46. Chang SC, Rodrigues NP, Zurgil N, et al. Simultaneous intra-and extracellular superoxide monitoring using an integrated optical and electrochemical sensor system [J]. Biochem Biophys Res Commun. 2005. 327(4): 979-84.
    47. Potts RO, Tamada JA, Tierney MJ. Glucose monitoring by reverse iontophoresis [J]. Diabetes Metab Res Rev. 2002. 18 Suppl 1: S49-53.
    48. Greenough KR, Skillen AW, McNeil CJ. Potential glucose sensor for perioperative blood glucose control in diabetes mellitus [J]. Biosens Bioelectron. 1994. 9(1): 23-8.
    49. Kulcu E, Tamada JA, Reach G, Potts RO, Lesho MJ. Physiological differences between interstitial glucose and blood glucose measured in human subjects [J]. Diabetes Care. 2003. 26(8): 2405-9.
    1. GorschluterA,Mak LH,Sundermeier C,et al. Electro-magnetic base technology for estremely sensitive immunosensors and DNA-chips [J]. Biomed Tech (Berl), 2002. 47(1) Pt 1: 213-6.
    2. de Koning, M. C.van der Marel, G.A.Overhand, M.,et, al. Synthetic developments towards PNA-peptide conjugates [J]. Current Opinion in Chemical Biology,2003,7(76): 734-740.
    3. Pividori MI,Merkoci A,Alegret S. Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods [J]. Biosens Bioelectron. 2000,15(5-6): 291-303.
    4. Izvolsky KI, Demidov VV, Nielsen PE, et al. Sequence-specific protection of duplex DNA against restriction and methylation enzymes by pseudocomplementary PNAs [J]. Biochemistry. 2000,39(35):10908-10913.
    5. Oliveira K,Procop GW,Wilson D,et al. Rapid indetification of Staphylococcus aureus directly from blood cultures by fluorescence in situ hybridization with peptide nucleic acid probes [J]. J Clin Microbiol.2002,40(1):247-251.
    6. Sen A,PE Nielsen. Unique properties of purine/pyrimidine asymmetric PNA.DNA duplexes: differential stabilization of PNA.DNA duplexes by purines in the PNA strand. Biophys J, 2006. 90(4): p. 1329-37.
    7. Boei JJ,Vermeulen S,Natarajan AT. Analysis of radiation-induced chromosomal aberrations using telomeric and centromeric PNA probes [J]. Int J Radiat Biol.2000,76(2):163-167.
    8. Svanvik N,Nygren J,Westman G,et al . Free-probe fluorescence of light-up probes [J]. J Am Chem Soc.2001,123(5):803-809.
    9. sacsson J,Cao H,Ohlsson L,et al. Rapid and specific detection of PCR products using light-up probes [J].Mol cell Probes.2000,14(5):321-328.
    10.陈鸣,府伟灵.肽核酸与核酸分子杂交的模式及其在基因诊断领域中的应用.生命的化学[J].2003,23(5)353-355.
    11.何为,马立人,等主编.肽核酸[M].化学工业出版社,北京,2003,270-288.
    12. Dilsat Ozkana, Pinar Karaa, Kagan Kermana, DNA and PNA sensing on mercury and carbon electrodes byusing methylene blue as an electrochemical label [J]. Bioelectrochemistry, 2002,58: 119-126.
    13. Steichen M,Decrem Y,Godfroid E,et al. Electrochemical DNA hybridization detection using peptide nucleic acids and [Ru (NH3)6]3+ on gold electrodes [J]. Biosens Bioelectron, 2007,22 (9-10): 2237-43.
    14. Chen M,Liu M,Yu L,et al. Construction of a Novel Peptide Nucleic Acid Piezoelectric Gene Sensor Microarray Detection System [J]. Nanosci Nanotechnol,2005,8(5):6-10.
    15. Sato Y.; Fujimoto K.; Kawaguchi H.,et al. Detection of a K-ras point mutation employing peptide nucleic acid at the surface of a SPR biosensor [J].Biointerfaces,2003,(27):23-31.
    16. kai E, Ikebukuro K, Hoshina, S. et al. Detection of PCR products of E.coli O157:H7 in human stool samples using surface Plasmon resonance (SPR) [J]. FEMS Immunology and Medical Microbiology. 2000,29: 283-288.
    17. Feriotto G, Corradini R, Sforza S, et al. Peptide nucleic acids and biosensor technology for real-time detection of the cystic fibrosis W1282X mutation by surface plasmon resonance [J].LabInvest, 2001, 81 (10)1415-1427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700