异构多机器人系统协同技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机器人技术的发展和能力的不断提高,机器人应用于更广泛的领域,特别是一些枯燥的、危险的、肮脏的或人类无法进入的特殊场合,满足核泄漏检测、火星探险、矿井作业及军事反恐等应用需求。
     多机器人系统在功能、结构和应对复杂、未知、危险环境和任务等方面明显优于单智能机器人,但同时由于其复杂性、动态性、时变性及耦合性的增加也给设计和分析带来一些问题,因此多机器人的相互协调和协作显得至关重要。
     针对异构多机器人系统的协同技术的研究问题,本文的主要工作主要集中在以下五个方面:
     第一,多机器人系统的基础现状与发展趋势研究。对多机器人系统的任务分配、基于网络的多机器人协作、演化发育机器人方法论、机器人基础软件平台进行了阐述,对多机器人系统在军事领域的应用作了调研和分析,特别是对本文涉及的具体内容、研究现状、应用情况、未来发展规划和热点问题做了重点论述。
     第二,时空受限的复杂环境中机器人协同技术研究。提出了动态熟人网络以便维护机器人间的关联关系,机器人间的熟悉度将用于任务的间接代价估计及竞标;采用时间约束的与或任务树对复杂任务进行建模,同时引入相应的任务代价评估方法;为支持该类型任务树及直接/间接任务竞拍,本文采用一种增强的拍卖定锤决标方法。在面向灾害应急的一系列仿真及实物实验中,设定不同参数以评估与比较系统性能。
     第三,机器人协作行为的自主演化技术研究。采用人工演化技术合成物理异构多机器人系统的控制器,使个体间表现出协作行为;研究在没有人类干预的情况下,具有不同能力的机器人演化出适应各自能力的控制策略,使协作行为效率最大化。在仿真实验中,比较了有协作与无协作之间的系统性能,研究了虚拟抓手对演化收敛速度的影响,分析了子种群代表挑选方法及采用共享或独立适应度函数对协作行为合成的影响。
     第四,基于服务的网络机器人系统的普适协作技术研究。首先引入语义地图和服务抽象与定义的基本概念;其次,为自动生成可行的服务构造以便执行具体不同任务,提出了服务的构造与重构算法;再次,提出服务推理与使能过程解决服务不可用问题;为方便服务构造的选择,提出了服务构造的代价评估函数。在实物及仿真环境中采用不同的参数设置,对服务框架进行了测试评估。
     最后,智能微小型地面机器人群体协同系统研究。以特种作业任务为背景,大规模的智能机器人组成的、通过无线组网技术连接的、具有一定作业功能的地面机器人群体协同系统通过协调和协作完成单机器人无法满足或难以完成的全天候大范围作业任务。提出了作业任务的目标导向的估价机制及快速代价评估方法,引入了一种能够对传感器的先验可信度进行实时修正的复杂环境下的多传感器目标识别方法,提供了机器人的无线组网、避障控制、编队控制等支撑技术的实现,实物演示验证了系统的协同作业能力。
With the developing of the technologies, the ability of robot is significantly improved. The robots therefore become more and more common in many fields, doing dirty, dull or dangerous works, ranging from mapping and exploration to robot soccer.
     Researches generally agree that multi-robot systems (MRS) with inherently distributed character may behave more robustly and effectively and accomplish coordinated tasks that are not possible for single robot systems. However, suitable strategies are required to organize and control these systems to alleviate the inherent complex, dynamic, volatile, and coupling influences. This dissertation makes a number of contributions in response to the need for effective coordination approaches in heterogeneous multi-robot teams.
     1) We address the need for a survey of the relevant literature by providing an introduction to the multi-robot coordination, a review and analysis of the state of the art in the field, and a discussion of remaining research challenges. The main focus of the survey include multi-robot systems, task allocation, network robot systems, evolutionary development robotics, development environments and middleware for robots, and their military applications.
     2) We proposed the constraint based approach (CoBA) for the cooperation among a team of heterogeneous robots in the complex environment with temporal constraints and network constraints. First we put forward a dynamic acquaintance network to facilitate the maintenance of inter-robot relationship. Hence the degree of acquaintanceship can be used in the indirect bid of task. Second, in order to model the complex tasks, we introduce the AND/OR task tree with temporal constraints and corresponding evaluation method. Additionally, an auction clearing routine, which supports the AND/OR task tree with temporal constraints and direct/indirect task auction is proposed to enable effective multi-robot task allocation in spite of various constraints. The solution was validated in both simulation and physical environments by a series of experiments in disaster response domains.
     3) Evolutionary Robotics (ER) is a methodology that uses evolutionary computation to develop controllers for autonomous robots. The existing works focus on single robot system or physically homogenous multi-robot teams while physical heterogeneousness is more common in the real world. Hence, it is instructive to examine whether the cooperative behaviors can be synthesized using artificial evolution for a team of physically heterogeneous robots. Moreover, an important contribution of this dissertation is to answer the question:whether robots with distinct capabilities can synthesize their control strategies to accommodate their own capabilities without any human interventions? This dissertation offers an empirical analysis of the collaboration mechanisms and presents some basic advice about how to choose appropriate evolution methods. Simulated experiments, using a team of E-puck robots, show that evolution can discover effective controllers for robots with distinct capabilities.
     4) Network robot system (NRS) is a new concept that integrates physical autonomous robots, environmental sensors and human-robot interactions through network-based cooperation. We aim to provide a ubiquitous and cooperative service framework for NRS. We first present foundational concepts of semantic map and service definition for the framework. Then, in order to generate feasible service configurations to fulfill tasks, we propose service configuration and reconfiguration algorithms, which dynamically search the appropriate service configurations for different tasks. Additionally, we put forward a service reasoning and enabling process to tackle the service unavailable problems. A cost evaluation function for service configuration is also proposed to facilitate the selection of suitable configurations. We tested and evaluated the framework in both simulation system and physical environment.
     5) A multiple UGV system is constructed under the application of special tasks. This system implements unmanned mobility, reconnaissance and surveillance, tactical communications, formation control, path planning and obstacle avoidance, and mission planning and monitoring. Specially, an objective oriented task evaluation method is proposed for quick response to different types of tasks, and a method with real-time correction of the credibility of the prior information is suggested for multi-sensor target recognition. The cooperative ability of the system was validated in physical environment by a series of experiments.
引文
[1]宋健.智能控制:超越世界的目标——国际自动控制联合会第14次代表大会报告[J].中国工程科学,1999,1(1):1-5.
    [2]GATES B. A robot in every home[J]. Scientific American,2007,296(1):58-65.
    [3]DIAS M B, KOENIG S, LAGOUDAKIS M G, ZLOT R, KALRA N, JONES A E G. Tutorial on Auction-Based Agent Coordination[C]//The Twenty-First National Conference on Artificial Intelligence (AAAI), 2006.
    [4]谭民,王硕,曹志强.多机器人系统[M].北京:清华大学出版社,2005.
    [5]VELOSO M M, NARDI D. Special issue on multirobot systems[J]. Proceedings of the IEEE,2006, 94(7):1253-1256.
    [6]MURPHY R R. Introduction to AI robotics[M]. Cambridge:The MIT Press,2000.
    [7]PARKER L. Distributed intelligence:Overview of the field and its application in multi-robot systems[J]. Journal of Physical Agents,2008,2(1):5-14.
    [8]BENI G. From Swarm Intelligence to Swarm Robotics[M]//Swarm Robotics. Springer Berlin/ Heidelberg,2005:1-9.
    [9]PARKER L E. ALLIANCE:an architecture for fault tolerant multirobot cooperation[J]. IEEE Transactions on Robotics and Automation,1998,14(2):220-240.
    [10]SIMMONS R, SMITH T, DIAS M B, GOLDBERG D, HERSHBERGER D, STENTZ A T, ZLOT R M. A Layered Architecture for Coordination of Mobile Robots [C]//Multi-Robot Systems:From Swarms to Intelligent Automata, Proceedings from the 2002 NRL Workshop on Multi-Robot Systems,2002.
    [11]CHAIMOWICZ L, CAMPOS M F M, KUMAR V. Dynamic role assignment for cooperative robots[C]//IEEE International Conference on Robotics and Automation (ICRA). Washington, DC, IEEE,2002: 293-298.
    [12]DIAS M B, ZLOT R, KALRA N, STENTZ A. Market-based multirobot coordination:a survey and analysis[J]. Proceedings of the IEEE, special issue on Multi-Robot Systems,2006,94(7):1257-1270.
    [13]AKYILDIZ I F, KASIMOGLU I H. Wireless sensor and actor networks:research challenges[J]. Ad Hoc Networks,2004,2(4):351-367.
    [14]BATALIN M A, SUKHATME G S. The design and analysis of an efficient local algorithm for coverage and exploration based on sensor network deployment[J]. IEEE Transactions on Robotics,2007,23(4):661-675.
    [15]BATALIN M A. SYMBIOSIS:Cooperative algorithms for Mobile Robots and a Sensor Network[D]. Ph.D. dissertation, Los Angeles:University of Southern California,2005.
    [16]RAHMAN M A, MIAH M S, GUEAIEB W, SADDIK A E. SENORA:A P2P Service-Oriented Framework for Collaborative Multirobot Sensor Networks[J]. IEEE SENSORS JOURNAL,2007,7(5):658-666.
    [17]SANFELIU A, HAGITA N, SAFFIOTTI A. Network robot systems[J]. Robotics and Autonomous Systems,2008,56(10):793-797.
    [18]GERKEY B P, MATARIC M J. A formal analysis and taxonomy of task allocation in multi-robot systems[J]. International Journal of Robotics Research,2004,23(9):939-954.
    [19]DENEUBOURG J L, THERAULAZ G, BECKERS R. Swarm-made architectures[C]//Proceedings of the European Conference on Artificial Life (ECAL). Paris, France,1991:123-133.
    [20]KUBE C R, ZHANG H. Collective robotics:From social insects to robots[J]. Adaptive Behavior,1993, 2(2):189-218.
    [21]原魁,李园,房立新.多移动机器人系统研究发展近况[J].自动化学报,2007,33(8):785-794.
    [22]SMITH R G. The Contract Net Protocol:High-Level Communication and Control in a Distributed Problem Solver[J]. IEEE Transactions on Computers,1980, C-29(12):1104-1113.
    [23]ZLOT R, STENTZ A. Market-based multirobot coordination for complex tasks[J]. International Journal of Robotics Research,2006,25(1):73-101.
    [24]GERKEY B P, MATARIC M J. Sold!:Auction methods for multirobot coordination[J]. IEEE Transactions on Robotics and Automation,2002,18(5):758-768.
    [25]HOWARD A, PARKER L E, SUKHATME G S. Experiments with a Large Heterogeneous Mobile Robot Team:Exploration, Mapping, Deployment and Detection[J]. International Journal of Robotics Research, 2006,25(5-6):431-447.
    [26]DIAS M B, ZINCK M, ZLOT R, STENTZ A. Robust multirobot coordination in dynamic environments[C]//Proc IEEE International Conference on Robotics and Automation,2004:3435-3442.
    [27]DIAS M B. TraderBots:A New Paradigm for Robust and Efficient Multirobot Coordination in Dynamic Environments[D]. Ph.D. dissertation:Carnegie Mellon University,2004.
    [28]KALRA N, FERGUSON D, STENTZ A. Hoplites:A Market-Based Framework for Planned Tight Coordination in Multirobot Teams[C]//Proc IEEE International Conference on Robotics and Automation,2005: 1170-1177.
    [29]KALRA N, FERGUSON D, STENTZ A. Constrained exploration for studies in multirobot coordination[C]//Proc IEEE International Conference on Robotics and Automation (ICRA),2006:4300-4302.
    [30]ZLOT R M. An Auction-Based Approach to Complex Task Allocation for Multirobot Teams[D]. Ph.D. dissertation, Pittsburgh, PA:Carnegie Mellon University,2006.
    [31]薛颂东,曾建潮.群机器人研究综述[J].模式识别与人工智能,2008,21(2):177-185.
    [32]王玫,朱云龙,何小贤.群体智能研究综述[J].计算机工程,2005,31(22):194-196.
    [33]KUBE C R, HONG Z. Collective Robotics:From Social Insects to Robots[J]. Adaptive Behavior,1993, 2(2):189-218.
    [34]MONDADA F, GAMBARDELLA L M, FLOREANO D, NOLFI S, DENEUBORG J L, DORIGO M. The cooperation of swarm-bots:Physical interactions in collective robotics[J]. IEEE Robotics & Automation Magazine,2005,12(2):21-28.
    [35]Swarm-bots [EB/OL]. http://www.swarm-bots.org/
    [36]Pheromone Robotics [EB/OL]. http://www.pherobot. com/
    [37]Collective Robotic Intelligence[EB/OL]. http://webdocs.cs.ualberta.ca/-kube/research.html
    [38]MATARIC M J. Issues and approaches in the design of collective autonomous agents[J]. Robotics and Autonomous Systems,1995,16(2-4):321-331.
    [39]宋威,李文锋,雷斌,孙俊.基于WSN的群体机器人实验平台设计[J].计算机研究与发展,2010,47(z2):345-349.
    [40]雷斌.群体机器人系统合作控制问题研究[D].博士学位论文,武汉:武汉理工大学,2009.
    [41]蓝艇,刘士荣.受生物群体智能启发的多机器人系统研究[J].机器人,2007,29(3):299-304.
    [42]JIN Y C, MENG Y. Special Issue on Evolutionary and Developmental Robotics[J]. IEEE Computational Intelligence Magazine,2010,5(3):9-9.
    [43]于化龙,朱长明,刘海波,顾国昌,沈晶.发育机器人研究综述[J].智能系统学报,2007,2(4):34-39.
    [44]WENG J Y, MCCLELLAND J, PENTLAND A, SPORNS O, STOCKMAN I, SUR M, THELEN E. Artificial intelligence-Autonomous mental development by robots and animals[J]. Science,2001,291(5504): 599-600.
    [45]LIPSON H, POLLACK J B. Automatic design and manufacture of robotic lifeforms[J]. Nature,2000, 406(6799):974-978.
    [46]滕弘飞,曾威,梁大伟,孙治国,刘峻,李广强.演化设计方法及其应用[J].机械工程学报,2004,40(1):1-6.
    [47]JIN Y C, MENG Y. Morphogenetic Robotics:An Emerging New Field in Developmental Robotics[J]. IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Reviews,2011,41(2):145-160.
    [48]WAIBEL M. Evolution of cooperation in artificial ants[D]. Ph.D. dissertation, Lausanne, Switzerland: Ecole polytechnique federale de Lausanne (EPFL),2007.
    [49]MCNAMARA J M, BARTA Z, FROMHAGE L, HOUSTON A I. The coevolution of choosiness and cooperation[J]. Nature,2008,451(7175):189-192.
    [50]NELSON A L, BARLOW G J, DOITSIDIS L. Fitness functions in evolutionary robotics:A survey and analysis[J]. Robotics and Autonomous Systems,2009,57(4):345-370.
    [51]WAIBEL M, KELLER L, FLOREANO D. Genetic team composition and level of selection in the evolution of cooperation[J]. IEEE Transactions on Evolutionary Computation,2009,13(3):648-660.
    [52]BALDASSARRE G, NOLFI S, PARISI D. Evolving mobile robots able to display collective behaviors[J]. Artificial Life,2003,9(3):255-267.
    [53]DORIGO M, TRIANNI V, SAHIN E, GROB R, LABELLA T, BALDASSARRE G, NOLFI S, DENEUBOURG J, MONDADA F, FLOREANO D, LM G. Evolving self-organizing behaviors for a swarm-bot[J]. Autonomous Robots,2004,17(2):223-245.
    [54]SKLAR E, SCHUT M, DIWOLD K, PARSONS S. Exploring coordination properties within populations of distributed agents[C]//AAAI Spring Symposium on Distributed Plan and Schedule Management. Menlo Park, CA, USA,2006:121-127.
    [55]POTTER M, MEEDEN L, SCHULTZ A. Heterogeneity in the coevolved behaviors of mobile robots: The emergence of specialists[C]//Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI),2001:1337-1343.
    [56]ISHIBUCHI H, SAKAMOTO R, NAKASHIMA T. Evolution of unplanned coordination in a market selection game[J]. IEEE Transactions on Evolutionary Computation,2001,5(5):524-534.
    [57]UCHIBE E, ASADA M. Incremental coevolution with competitive and cooperative tasks in a multirobot environment[J]. Proceedings of the IEEE,2006,94(7):1412-1424.
    [58]FLOREANO D, MITRI S, MAGNENAT S, KELLER L. Evolutionary conditions for the emergence of communication in robots[J]. Current Biology,2007,17(6):514-519.
    [59]AMPATZIS C, TUCI E, TRIANNI V, DORIGO M. Evolution of signaling in a multi-robot system: Categorization and communication[J]. Adaptive Behavior,2008,16(1):5-26.
    [60]FLOREANO D, MITRI S, PEREZ-URIBE A, KELLER L. Evolution of altruistic robots[C]//WCCI 2008 Plenary/Invited Lectures, LNCS 5050,2008:232-248.
    [61]FLOREANO D, KELLER L. Evolution of Adaptive Behaviour in Robots by Means of Darwinian Selection[J]. PLoS Biology,2010,8(1):e1000292.
    [62]WATSON R, FICICI S, POLLACK J. Embodied evolution:Distributing an evolutionary algorithm in a population of robots[J]. Robotics and Autonomous Systems,2002,39(1):1-18.
    [63]KUMAR V, RUS D, SUKHATME G S. Networked Robots[M]//Springer Handbook of Robotics. Berlin Heidelberg:Springer-Verlag,2008:943-958.
    [64]曾温特,苏剑波.一种基于分布式智能的网络机器人系统[J].机器人,2009,31(1):1-7.
    [65]曾温特.基于分布式智能的网络机器人系统研究[D].硕士学位论文,上海:上海交通大学,2009.
    [66]SAFFIOTTI A, LIMA P, Two Hot Issues in Cooperative Robotics:Network Robot Systems, and Formal Models and Methods for Cooperation[R]. A white paper, EURON Special Interest Group on Cooperative Robotics,2008.
    [67]SANFELIU A, ANDRADE-CETTO J. Ubiquitous Networking Robotics for Urban Settings[C]// Workshop on Network Robot Systems, Toward Intelligent Robotic Systems Integrated with Environments, Proceedings of 2006 IEEE/RSJ International Conference on Intelligence Robots and Systems (IROS). Beijing, China,2006.
    [68]SHIOMI M, KANDA T, ISHIGURO H, HAGITA N. Interactive humanomid robots for a science museum[J]. IEEE Intelligent Systems,2007,22(2):25-32.
    [69]SAFFIOTTI A, BROXVALL M. PEIS ecologies:Ambient intelligence meets autonomous robotics[C]// Proceedings of the 2005 joint conference on smart objects and ambient intelligence. Grenoble, France,2005: 277-281.
    [70]KIM J-H. Intelligence Technology for Cyber-Physical Robot System[C]//Lecture Notes of the 2010 International Workshop on Nature Inspired Computation and Applications (IWNICA 2010). Hefei, China,2010: 62-192.
    [71]LEE E A. Cyber Physical Systems:Design Challenges[C]//Proceedings of the 2008 11th IEEE Symposium on Object Oriented Real-Time Distributed Computing (ISORC). Orlando,FL,USA, IEEE Computer Society,2008:363-369.
    [72]LEE E A. Cyber-Physical Systems-Are Computing Foundations Adequate?[C]//Position Paper for NSF Workshop On Cyber-Physical Systems:Research Motivation, Techniques and Roadmap Austin, TX,2006.
    [73]WOLF W. The good news and the bad news[J]. IEEE Computer,2007,40(11):104-105.
    [74]HERTZBERG J, SAFFIOTTI A. Using semantic knowledge in robotics[J]. Robotics and Autonomous Systems,2008,56(11):875-877.
    [75]XIE M. Five steps of evolution from non-life to life-like robots[J]. International Journal of Humanoid Robotics,2009,6(2):307-327.
    [76]N CHTER A, HERTZBERG J. Towards semantic maps for mobile robots[J]. Robotics and Autonomous Systems,2008,56(11):915-926.
    [77]GALINDO C, FERN NDEZ-MADRIGAL J, GONZ LEZ J, SAFFIOTTI A. Robot task planning using semantic maps[J]. Robotics and Autonomous Systems,2008,56(11):955-966.
    [78]KUFFNER J. Cloud-Enabled Humanoid Robots[C]//10th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2010), Workshop on Humanoids:What Next? Applications, Challenges and Perspectives. Nashville, TN, USA,2010.
    [79]GUIZZO E. Robots With Their Heads in the Clouds[J]. IEEE Spectrum,2011,48(3):16-18.
    [80]RobotEarth[EB/OL]. http://www.roboearth.org/
    [81]WAIBEL M. RoboEarth:A World Wide Web for Robots[EB/OL]. http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/roboearth-a-world-wide-web-for-robots
    [82]ARUMUGAM R, ENTI V R, BINGBING L, XIAOJUN W, BASKARAN K, KONG F F, KUMAR A S, MENG K D, KIT G W. DAvinCi:A cloud computing framework for service robots[C]//IEEE International Conference on Robotics and Automation (ICRA). Anchorage, Alaska, USA, IEEE,2010:3084-3089.
    [83]KRAMER J, SCHEUTZ M. Development environments for autonomous mobile robots:A survey[J]. Autonomous Robots,2006,22(2):101-132.
    [84]MOHAMED N, AL-JAROODI J, JAWHAR I. Middleware for Robotics:A Survey[C]//Proc of The IEEE Intl Conf on Robotics, Automation, and Mechatronics (RAM). Chendu, China,2008:736-742.
    [85]GERKEY B, VAUGHAN R, HOWARD A. The Player/Stage project:tools for multi-robot and distributed sensor systems[C]//Proc the International Conference on Advanced Robotics (ICAR). Coimbra, Portugal,2003:317-323.
    [86]ARIA Robotics SDK[EB/OL]. http://www.mobilerobots.com/ResearchRobots/PioneerSDK/ARIA.aspx
    [87]The Microsoft Robotics Developer Studio[EB/OL]. http://www.microsoft.com/robotics/
    [88]MAKARENKO A, BROOKS A, KAUPP T. Orca:Components for robotics[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Workshop on Robotic Standardization. Beijing, China,2006:163-168.
    [89]CARPIN S, LEWIS M, WANG J, BALAKIRSKY S, SCRAPPER C. USARSim:a robot simulator for research and education[C]//IEEE International Conference on Robotics and Automation (ICRA). Roma, Italy, IEEE,2007:1400-1405.
    [90]SINGH S P N, THAYER S M, ARMS:AUTONOMOUS ROBOTS FOR MILITARY SYSTEMS-A Survey of Collaborative Robotics Core Technologies and Their Military Applications[R]. Pittsburgh:The Robotics Institute, Carnegie Mellon University,2001.
    [91]ECHEVARRIA A J. Future Warfare:Tomorrow's Combat Soldier[J]. Armchair General Magazine,2004, 1(1):18-21.
    [92]刘克俭.美国未来作战系统(增订版)[M].北京:解放军出版社,2009.
    [93]KROTKOV E. The Defense Advanced Research Projects Agency (DARPA) Tactical Mobile Robotics Program[J]. The International Journal of Robotics Research,1999,18(7):769-776.
    [94]机器人智能网.机器人将参与日本地震的搜救工作[EB/OL].http://www.robotain.com/news/keji/201103/161133.html
    [95]GUIZZO E. Japan Earthquake:Robots Help Search For Survivors[EB/OL]. httt://spectrum.ieee.org/automaton/robotics/industrial-robots/japan-earthquake-robots-help-search-for-survivors
    [96]ARAI T, PAGELLO E, PARKER L E. Editorial:advances in multirobot systems[J]. IEEE Transactions on Robotics and Automation,2002,18(5):665-661.
    [97]PARKER L E. Multiple mobile robot systems[M]//Springer Handbook of Robotics. Berlin Heidelberg: Springer-Verlag,2008:921-941.
    [98]FARINELLI A, IOCCHI L, NARDI D. Multirobot systems:a classification focused on coordination[J]. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics,2004,34(5):2015-2028.
    [99]GUSTAFSON S, GUSTAFSON D A. Issues in the scaling of multi-robot systems for general problem solving[J]. Autonomous Robots,2006,20(2):125-136.
    [100]BOTELHO S C, ALAMI R. M+:a scheme for multi-robot cooperation through negotiated task allocation and achievement[C]//Proc IEEE International Conference on Robotics and Automation,1999: 1234-1239.
    [101]MACKENZIE D C. Collaborative tasking of tightly constrained multi-robot missions[C]// Multi-Robot Systems:From Swarms to Intelligent Automata (Proceedings of 2nd International Workshop on Multi-Robot Systems). Washington D.C.,2003:39-50.
    [102]GOLDBERG D, CICIRELLO V, DIAS M B, SIMMONS R, SMITH S, STENTZ A. Market-based multi-robot planning in a distributed layered architecture[C]//Multi-Robot Systems:From Swarms to Intelligent Automata, Proceedings of 2nd International Workshop on Multi-Robot Systems. Washington D.C.,2003:27-38.
    [103]ZIPARO V A, IOCCHI L, NARDI D, PALAMARA P F, COSTELHA H. Petri net plans:a formal model for representation and execution of multi-robot plans[C]//Proceedings of the 7th international joint conference on autonomous agents and multiagent systems (AAMAS). Estoril, Portugal,2008:79-86.
    [104]KOTB Y T, BEAUCHEMIN S S, BARRON J L. Petri Net-Based Cooperation In Multi-Agent Systems[C]//Proceedings of the Fourth Canadian Conference on Computer and Robot Vision, IEEE Computer Society,2007:123-130.
    [105]SHENG W, YANG Q. Peer-to-peer multi-robot coordination algorithms:petri net based analysis and design[C]//Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2005: 1407-1412.
    [106]JONES E, DIAS M B, STENTZ A T. Tiered auctions for multi-agent coordination in domains with precedence constraints[C]//Proceedings of the 26th Army Science Conference,2008.
    [107]JONES E, DIAS M B, STENTZ A T. Time-extended Multi-robot Coordination for Domains with Intra-path constraints[C]//Robotics:Science and Systems (RSS),2009.
    [108]JONES E, DIAS M, STENTZ A. Time-extended multi-robot coordination for domains with intra-path constraints[J]. Autonomous Robots,2011,30(1):41-56.
    [109]LEMAIRE T, ALAMI R, LACROIX S, LAAS C, TOULOUSE F. A distributed tasks allocation scheme in multi-UAV context[C]//Proceedings of IEEE International Conference on Robotics and Automation (ICRA) 2004:3622-3627.
    [110]KOES M, NOURBAKHSH I, SYCARA K. Heterogeneous multirobot coordination with spatial and temporal constraints[C]//Proc the Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference (AAAI),2005:1292-1297.
    [111]KOES M, NOURBAKHSH I, SYCARA K. Constraint optimization coordination architecture for search and rescue robotics[C]//Proc IEEE International Conference on Robotics and Automation (ICRA),2006: 3977-3982.
    [112]FUA C, GE S S. COBOS:Cooperative backoff adaptive scheme for multirobot task allocation[J]. IEEE Transactions on Robotics,2005,21(6):] 168-1178.
    [113]KOES M, SYCARA K, NOURBAKHSH I. The best laid plans of robots and men[C]//Proc AAAI Spring Symposium on Distributed Plan and Schedule Management. Menlo Park, CA, USA,2006:49-56.
    [114]THOMAS B, EDMUND D. Limiting disruption in multiagent replanning[C]//Proceedings of the second international joint conference on Autonomous agents and multiagent systems. Melbourne, Australia, ACM, 2003:49-56.
    [115]KALRA N, FERGUSON D, STENTZ A. A Generalized Framework for Solving Tightly-coupled Multirobot Planning Problems[C]//International Conference on Robotics and Automation (ICRA),2007.
    [116]MONG-YING A H, SRIVASTAVA P, KUMAR V, TAYLOR C J. Composable communication constraint-based control[C]//Mobile Robots XVII, Proceedings of SPIE Vol 5609. Philadelphia, PA,2004: 192-200.
    [117]DAHL T S, MATARIC M, SUKHATME G S. Multi-robot task allocation through vacancy chain scheduling[J]. Robotics and Autonomous Systems,2009,57(6-7):674-687.
    [118]PARKER L E, TANG F. Building multirobot coalitions through automated task solution synthesis[J]. Proceedings of the IEEE, special issue on multltirobot systems,2006,94(7):1289-1305.
    [119]VIG L, ADAMS J A. Multi-robot coalition formation[J]. IEEE Transactions on Robotics,2006,22(4): 637-649.
    [120]CARPIN S, PAGELLO E. An experimental study of distributed robot coordination[J]. Robotics and Autonomous Systems,2009,57(2):129-133.
    [121]LIAN F L, MURRAY R. Cooperative task planning of multi-robot systems with temporal constraints[C]//Proceedings of IEEE International Conference on Robotics and Automation (ICRA), IEEE,2003: 2504-2509.
    [122]YANG F, LIU S-R, LIU F. Cooperative transport strategy for formation control of multiple mobile robots[J]. Journal of Zhejiang University-SCIENCE C (Computers & Electronics),2010,11(12):931-938.
    [123]GERKEY B, THRUN S, GORDON G. Visibility-based pursuit-evasion with limited field of view[J]. The International Journal of Robotics Research,2006,25(4):299.
    [124]BALCH T. Hierarchic Social Entropy:An Information Theoretic Measure of Robot Group DiversityfJ]. Autonomous Robots,2000,8(3):209-238.
    [125]NOLFI S, FLOREANO D. Evolutionary robotics[M]. Cambridge, Massachusetts:The MIT Press, 2000.
    [126]WALKER J, GARRETT S, WILSON M. Evolving controllers for real robots:A survey of the literature[J]. Adaptive Behavior,2003,11(3):179.
    [127]HARVEY I, PAOLO E, WOOD R, QUINN M, TUCI E. Evolutionary robotics:A new scientific tool for studying cognition[J]. Artificial Life,2005,11(1-2):79-98.
    [128]CAPI G. Multiobjective Evolution of Neural Controllers and Task Complexity [J]. IEEE Transactions on Robotics,2007,23(6):1225-1234.
    [129]LUKE S, HOHN C, FARRIS J, JACKSON G, HENDLER J. Co-evolving soccer softbot team coordination with genetic programming[C]//Proceedings of The First International Workshop on RoboCup, IJCAI-97. Nagoya, Japan, Springer-Verlag,1997:398-411.
    [130]NELSON A, GRANT E, HENDERSON T. Evolution of neural controllers for competitive game playing with teams of mobile robots[J]. Robotics and Autonomous Systems,2004,46(3):135-150.
    [131]VADAKKEPAT P, PENG X, QUEK B, LEE T. Evolution of fuzzy behaviors for multi-robotic system[J]. Robotics and Autonomous Systems,2007,55(2):146-161.
    [132]刘际明,靳小龙,张世武,吴建兵.多智能体模型与实验[M].北京:清华大学出版社,2003.
    [133]POTTER M, DE JONG K. A cooperative coevolutionary approach to function optimization[C]//PPSN Ⅲ Proceedings of the International Conference on Evolutionary Computation and the Third Conference on Parallel Problem Solving from Nature. London, UK, Springer-Verlag,1994:249-257.
    [134]POTTER M, JONG K. Cooperative coevolution:An architecture for evolving coadapted subcomponents[J]. Evolutionary Computation,2000,8(1):1-29.
    [135]WIEGAND R, LILES W, DE JONG K. An empirical analysis of collaboration methods in cooperative coevolutionary algorithms[C]//Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), 2001:1235-1242.
    [136]BLUMENTHAL H, PARKER G. Co-evolving team capture strategies for dissimilar robots[C]// Proceedings of AAAI 2004 Fall Symposium on Artificial Multiagent Learning. Washington,2004.
    [137]Teem[EB/OL]. http://teem.epfl.ch/
    [138]WU Z, WU Q, CHENG H, PAN G, ZHAO M, SUN J. ScudWare:a semantic and adaptive middleware platform for smart vehicle space[J]. IEEE Transactions on Intelligent Transportation Systems,2007,8(1): 121-132.
    [139]TANG S, YANG J, WU Z. A context quality management infrastructure for complex ubiquitous environment[J]. Computer Systems Science and Engineering,2009,24(3):197-208.
    [140]ZHANG L, PAN G, WU Z, LI S, WANG C-L. SmartShadow:modeling a user-centric mobile virtual space[C]//IEEE International Conference on Pervasive Computing and Communications (PerCom). Galveston, Texas, IEEE Press,2009:1-4.
    [141]PREECE A, FLETT A, SLEEMAN D, CURRY D, MEANY N, PERRY P. Better knowledge management through knowledge engineering[J]. IEEE Intelligent Systems,2001,16(1):36-43.
    [142]LUNDH R, KARLSSON L, SAFFIOTTI A. Autonomous functional configuration of a network robot system[J]. Robotics and Autonomous Systems,2008,56(10):819-830.
    [143]NAKAMURA Y, MACHINO T, MOTEGI M, IWATA Y, MIYAMOTO T, IWAKI S, MUTO S, SHIMOKURA K. Framework and service allocation for network robot platform and execution of interdependent services[J]. Robotics and Autonomous Systems,2008,56(10):831-843.
    [144]RUSU R, GERKEY B, BEETZ M. Robots in the kitchen:Exploiting ubiquitous sensing and actuation[J]. Robotics and Autonomous Systems,2008,56(10):844-856.
    [145]LIM H, KANG Y, LEE J, KIM J, YOU B J. Software architecture and task definition of a multiple humanoid cooperative control system[J]. International Journal of Humanoid Robotics,2009,6(2):173-203.
    [146]朱伟晋.机器人智能化接口理论与技术[D].硕士学位论文,杭州:浙江大学,2008.
    [147]陶敏.微小型机器人群无线自组网通信技术设计与实现[D].硕士学位论文,杭州:浙江大学,2008.
    [148]ULRICH I, BORENSTEIN J. VFH+:Reliable Obstacle Avoidance for Fast Mobile Robots[C]//IEEE International Conference on Robotics and Automation (ICRA). Leuven, Belgium,1998:1572-1577.
    [149]DESAI J P, OSTROWSKI J P, KUMAR V. Modeling and control of formations of nonholonomic mobile robots[J]. IEEE Transactions on Robotics and Automation,2001,17(6):905-908.
    [150]杨建华,周祥,吴朝晖,陈波,刘亚波.XXX多传感器目标识别方法:中国,ZL200810074607.9[P].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700