低仰角下宽带地空通信研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空平台的不断发展,宽带地空通信的需求迅速增长,建立多种数据传输链路来满足各种不同的航空平台执行不同任务的需求,是一项迫在眉睫的重要任务。作为宽带通信网的节点,飞行器载荷通常需要具有数据采集、交换与分发等多种功能,其中的关键环节是宽带地空链路。
     地空通信系统在地面站天线仰角较低时,由于地物反射的多径效应显得很严重,即多径时延很大,大到几百个符号周期,多普勒效应显著,使信道参数快速时变。这是因为传输距离很大,加之飞行器的运动速度通常比地面车辆要快得多。这些因素使这种多径效应具有快速时变的频率选择性衰落特点,因此这种条件下的抗多径衰落传输是一个具有挑战性的难题。
     为了探索最适合宽带地空通信的抗多径传输方法,本文针对宽带地空通信的特点,建立了低仰角下的地空信道模型;深入分析了目前宽带移动通信中的抗多径技术用于低仰角宽带地空通信的局限性,提出了适合宽带地空通信的传输新体制,将滤波器组频域均衡技术(FB-FDE)作为核心技术应用到宽带地空通信系统中,理论分析和仿真验证表明它具有一定的优越性,并且易于工程实现。同时针对地空通信中应用FB-FDE技术所涉及到的信道估计、多址接入以及窄带干扰抑制等相关问题,开展了一系列的研究工作。论文的主要创新点如下:
     1.对地空信道低仰角下的宽带信道模型的建模方法进行了系统的分析和论述,在综合考虑莱斯因子的大小、信道时变特性、方位时延功率谱分布、多普勒扩展功率谱特性以及天线的相关性等因素的基础上,提出了一种莱斯衰落信道模型;并给出了地空信道的仿真方法和仿真结果,以便对模型进行评价。
     2.在分析OFDM和SC-FDE系统的传输机制和原理的基础上,指出这两种技术应用于地空通信系统中抗多径传输存在一定的局限性,进而提出了一种基于滤波器组频域均衡的传输系统方案,其中在滤波器组原型滤波器的设计和信号重构方法方面有所创新。在研究FB-FDE方法及其实现中,提出了一种同步方法和一种接收分集算法。通过理论分析和仿真实验,对基于本文所提出方法的FB-FDE系统与常规SC-FDE系统进行了性能对比研究,其结果能够验证FB-FDE技术作为宽带地空通信的核心技术的可行性。
     3.本文的分析表明,FB-FDE系统在信道时变适应性方面明显优于SC-FDE或OFDM系统,但是如果FB-FDE系统中采用常规的LMS算法,由于其收敛速度较慢,难以充分发挥FB-FDE的优势以便跟踪地空信道的快速变化。如果代之以采用RLS算法,虽然其收敛速度快,但是其计算复杂度太高( O ( M 2)量级)。本文提出了一种快速RLS信道估计自适应均衡算法用于FB-FDE系统,其中RLS算法的改进,不仅显著加快了收敛速度,而且计算复杂度也大幅度降低,达到与LMS算法同一数量级。分析和仿真表明,这种改进的RLS算法能够保证系统性能,并且可以推广应用于SC-FDE系统。
     4.针对宽带地空通信中一个地面站和多个飞行器或多个地面站和一个飞行器构成通信网络的两种需求,提出了一种基于星型网络拓扑结构的多址接入组网方案;其外向链路为同步传输链路,采用基于FB-FDE的M元多码扩频多址复用方式,具有较好的信道效率和信道动态时变适应能力;其内向链路为异步传输链路,采用正交码分复用技术和FB-FDE相结合的方式,使得系统具有良好的传输特性,同时还提出了一种采用分组编码方法改善正交码分复用系统误码性能的方法。
     5.文中分析了FB-FDE系统和SC-FDE系统结合窄带干扰抑制技术的抗干扰效果,仿真验证表明,前者具有更好的性能。
     本文还在总结所提宽带地空通信方案研究结果的基础上,指出了进一步工程实现的努力方向。
With the development of the aviation terrace, the demands for wideband ground-air communications are rapidly increasing. It is an urgent and important task to build several data transmission links to satisfy the requirement of various missions executed by many kinds of aviation terraces. As a node of a wideband communication network, aircraft payload needs various functions, such as relay,repeat/forward, resource scheduling, data switching and data distribution, etc., where the key technique is the wideband ground-air link.
     When the elevation of the antenna in the ground station is very low, the multipath effect, resulted from the reflection of ground surface features, appears to be serious, multipath time delay is rather large (hundreds of symbol periods), and the Doppler effect is remarkable. This is because that its transmission distance is very large and the moving speed of the aircraft is much greater than that of the vehicle. Therefore, its multi-path fading is characterized as fast varying frequency selective, so that anti-fading transmission in this case is a challenging issue.
     For the sake of exploring the most suitable method for anti-multipath transmitting in a wideband ground-air communication with low elevation, this dissertation proposes a model of ground-air channels to reflect their characteristics. After analyzing the limitations of the existing anti-multipath techniques, which are commonly used in the conventional wideband mobile communications, a novel transmission scheme is proposed, where the Filter Banks for Frequency Domain Equalization (FB-FDE) is employed as the kernel technique for anti-multipath fading. Theoretical analysis and simulation experiments show that the FB-FDE scheme behaves well and less complexity for engineering implementation. Besides, the dissertation researches on several issues involved in the FB-FDE applied to such cases, such as channel estimation, multiple access and narrowband interference (NBI) suppressing, etc. The author’s main contributions are as follows.
     1. The dissertation discusses the methodology about modeling the channel of wideband ground-air communications with low elevation, and proposes a Rice fading channel model by synthetically considering several factors, such as Rice factor, the time-variation of the channel parameters, the power spectrum distribution of azimuth and time delay, the Doppler spreading spectrum property as well as the correlation between multiple antennas. Moreover, the channel model simulating method and some simulation results are given for its evaluation.
     2. After analyzing the transmission mechanism and principle of OFDM and SC-FDE systems, the dissertation indicates the limitations of the two techniques applied to anti-multipath fading in the wideband ground-air communication. A scheme of transmission systems based on FB-FDE is proposed, where the prototype filter design as well as the signal reproducing is novel. In researching on FB-FDE and its implementation, a synchronization method and a diversity reception algorithm are proposed. Through theoretical analysis and simulation experiments, the performance of the proposed FB-FDE system and the conventional SC-FDE system are compared, which can validate the feasibility of the FB-FDE to be applied to the wideband ground-air communication as a kernel technique.
     3. After theoretical analyzing, the dissertation indicates that the FB-BDE system over-performs the conventional SC-FDE or OFDM systems in the ability adaptive to rapid variation of the channel. However, the FB-FDE system can not exert its superiority if it is combined with Least Mean Squares (LMS) adaptive algorithm because of LMS’s slow convergence. If Recursive Least Squares (RLS) algorithm instead of LMS is employed to the FB-FDE system, its computational complexity is too high( O ( M 2)grade) although it has faster convergence. In the dissertation, a modified RLS algorithm is proposed and applied to FB-FDE system, where the RLS not only has much faster convergence performance than LMS, but also has very low implementation complexity to be similar as LMS. Analysis and simulations show that the modified RLS algorithm can guarantee the performance of the system; moreover, it can also be applied to SC-FDE system.
     4. A multiple access and networking scheme based on star-shape topology is proposed, which can satisfy two kinds of requirements for ground-air communications in networking, where the one is composed of multiple ground stations with one aircraft-loaded hub station, the other is composed of multiple aircraft-loaded terminals with one hub ground station. In the proposed system, the forward link is an synchronous transmission link, using FB-FDE based M-ary multi-codes spreading multi-access mode, and it has good performance in channel efficiency and dynamic adaptive ability for channel variation; while the reverse link is a asynchronous transmission link based on Orthogonal Code Division Multiplexing(OCDM) combined with FB-FDE, and a novel block coding method for improving transmission performance of the OCDM is also proposed.
     5. Through analyzing the performance of suppressing narrowband interference of two systems, i.e. FB-FDE and SC-FDE systems when they are combined with a similar NBI suppressing method, the dissertation indicates that the former has stronger NBI suppressing ability than the latter.
     Finally, the dissertation summarizes the research results and indicates some issues which worth further endeavor in engineering realization.
引文
[1-1]张军, CNS/ATM数据链关键技术研究.北京:北京航空航天大学博士学位论文. 2001.
    [1-2] P.G.Fahlstrom,无人机系统导论.北京:电子工业出版社.2003.
    [1-3]王勇志,值得重视的美军“公共数据链”.电子信息学术会议论文集.2002.
    [1-4]花江,地空数据传输中的自组织时分多址协议及仿真[J].电讯技术.2004,44(1).pp.106-112.
    [1-5] E.Hass, Aeronautical channel modeling. IEEE Trans. Veh. Techno.,Mar. 2002, 51, pp.254-264.
    [1-6]孙义明,杨丽萍,信息化战争中的战术数据链..北京:北京邮电大学出版社.2005. pp.1-94.
    [1-7]翟吉刚,苏泽友,杨炯,美军数据链发展及策略研究.. 2006军事电子信息学术会议. 2006. pp.1089-1092.
    [1-8] K.Brayer, Global grid for large C2/ISR aircraft with joint STARS example. Military Comm. Conference, MILCOM 2001. 2001, 1. pp.519-525.
    [1-9]罗巧云,数据链在武器平台上的应用.数据链技术文集.中国电子科技集团公司第20研究所. 2002. pp.297.
    [1-10]杨静,地空数据链协议的研究与仿真.电子科技大学硕士论文. 2007.
    [1-11]孙义明,杨丽萍,信息化战争中的战术数据链.北京:北京邮电人学出版社.2005.
    [1-12]陈颖,邓洁,许林,美军战术通用数据链的发展.电讯技术. 2007,47(1). pp.1-3.
    [1-13] H.R.Donaldson and E.W.Setser, COTS-based common data link ground terminal.SPIE. 2001,2829. pp.196-206.
    [1-14] K.Brittian, Tactical Common Data Link: The foundation for next generation programmable wideband UAV communication systems.
    [1-15] B.Roturier, B.Chateau et al., Experimental and theoretical field strength evaluation on VHF channel for aeronautical mobiles. AMCP Doc.AMCP/WG-D/7-WP/58, Madrid, Spain. Apr. 1997.
    [1-16] Man-Feng Fei, Chang-chun Zhang and Ke-chu Yi. Modeling wideband ground-air channels with low elevation. IEICE Technical Report SANE. 2007. pp.177-180.
    [1-17] Francois Chin, Ying-Chang Liang and Kai Yang, Single-carrier cyclic prefix-assisted CDMA aystem with frequency domain equalization for high data rate transmission. EURASIP Journal on Wireless Communications and Networking. 2004, 1. pp.149-160.
    [1-18] D.Garg and F.Adachi, Packet access using DS-CDMA with frequency-domain equalization. IEEE Journal on Selected Areas in Communications. Jan. 2006, 24(1). pp.161-170.
    [1-19] N.Yee, J.P.Linnarz and G.Fettweis, Multi-carrier CDMA in indoor wireless radio networks, PIMRC’93,Yokohama, Japan. Sept. 1993. pp.109-113.
    [1-20] K.Fazel and L.Papke, On the performance of convolutionally-coded CDMA/OFDM for mobile communication system. PIMRC’93,Yokohama Japan. Sept. 1993. pp.468-472.
    [1-21] S.Weinstein and P.Ebert, Data transmission by frequency-division multiplexing using the discrete Fourier transform. IEEE Trans. on Comm.. Oct.1971,19(5) . pp.628-634.
    [1-22]佟学俭、罗涛, OFDM移动通信技术原理与应用.北京:人民邮电出版社. 2003
    [1-23]尹长川,罗涛,乐光新,《多载波宽带无线通信技术》.北京邮电大学出版社. 2004。
    [1-24] T.Pollet, M.Van Bladel and M.Moeneclaey, BER sensitivity of OFDM systems to carrier frequency offset and wiener phase noise. IEEE Trans. Comm.. Feb./Mar./Apr. 1995, 43(2/3/4). pp.191-193.
    [1-25] S.Haykin, A.H.Sayed and J.R.Zeidler et al., Adaptive tracking of linear time-variant systems by extended RLS algorithms. IEEE Trans. Signal Processing. 1997, 45(5). pp.1118-1128.
    [1-26] IEEE 802.16 Working Group,http://grouper.ieee.org/groups/802/16
    [1-27] A.Czylwik, Comparison between adaptive OFDM and single carrier modulation with frequency domain equalization. in Proceedings of IEEE 47th Vehicular Technology Conference(VTC’97), Phoenix, Ariz, USA. May 1997, 2. pp.865-869.
    [1-28] Y.Han,H. Huh and J.V.Krogmeier, Comparison of error probability for OFDM and SC-FDE. Signals, Systems and Computers 2004. Nov. 2003, 1. pp.497-501.
    [1-29] D.D.Falconer and S.L.Ariyavisitakul, Broadband wireless using single carrier and frequency domain equalization. in Proceedings of the 5th International Symposium on Wireless Personal Multimedia Communications (WPMC’02), Honolulu, Hawaii, USA. Oct. 2002, 1. pp.27-36.
    [1-30] R.V.Cox, J.Hagenauer and N.Seshadri et al., Subband speech coding and matched convolutional channel coding for mobile radio channels. Acoustics, Speech, and Signal Processing, IEEE Trans.. Aug. 1991. pp.1717-1731.
    [1-31] A.Hossen and U.Heute, Two-dimensional subband transforms:theory and applications. Vision, Image and Signal Processing, IEE Proceedings. Oct. 2004. pp.389-399.
    [1-32] P.A.Naylor, O.Tanrikulu and A.G.Constantinides, Subband adaptive filtering for acoustic echo control using allpass polyphase IIR filter banks. IEEE Trans. On Speech and Audio Proc.. Mar. 1998, 6. pp.1920-1928.
    [1-33] M.R.Azimi-Sadjadi, S.Charleston and J. Wilbur et al., A new time delay estimation in subbands for resolving multiple specular reflections. IEEE Trans. on Sig.Proc.. 1998. pp.3398-3403.
    [1-34] M.Vetterli, Perfect transmultiplexers. in Proc. ICASSP’86. 1986, 4. pp.2567-2570.
    [1-35] M.A.Tzannes, M.C.Tzannes and H.Resnikoff, The DWMT: a multicarrier transceiver for ADSL using M-band wavelet transforms. in ANSI Contribution T1E1.4/93-067. Mar. 1993.
    [1-36] M.A.Tzannes, M.C.Tzannes and J.Proakis et al., DMT Systems, DWMT Systems and digital filter banks. in Proc. SUPERCOMM/ICC’94. 1994, 1. pp.311-315.
    [1-37] A.D.Rizos, J.G.Proakis, and T.Q.Nguyen, Comparison of DFT and cosine modulated filter Banks in multicarrier modulation. in Proc.GLOBECOM’94. 1994, 2. pp.687-691.
    [1-38] S.D.Sandberg and M.A.Tzannes, Overlapped discrete multitone modulation for high-speed copper wire communications. IEEE J. Select. Areas Comm.. Dec. 1995, 13. pp.1571-1585.
    [1-39] G.Rosel and N.J.Fliege, Transmultiplexer filter banks with extremely low crosstalk and intersymbol interference. in Proc. ISCAS’95. 1995, 2. pp.1448-1451.
    [1-40] M.Hawryluck, A.Yongacoglu and M.Kavehrad, Efficient equalization of discrete wavelet multitone over twisted pair. in Proc. Int. Zurich Seminar on Broadband Communications’98, Zurich, Switzerland. 1998. pp.185-191.
    [1-41] L.Vandendorpe, L.Cuvelier and F.Deryck et al., Fractionally spaced linear and decision-feedback detectors for transmultiplexers. IEEE Trans. Signal Processing. Apr. 1998, 46. pp.996-1011.
    [1-42] N.Neurohr and M.Schilpp, Comparison of transmultiplexers for multicarrier modulation. in Proc. ICSP’98. 1998, 1. pp.35-38.
    [1-43] A.Viholainen, T.Saramaki and M. Renfors, Nearly perfect reconstruction cosine-modulated filter bank sesign for VDSL modems. in Proc.ICECS’99. 1999, 1. pp.373-376.
    [1-44] A.Viholainen, J.Alhava and J.Helenius et al., Equalization in filter bank-based multicarriersystems. in Proc. ICECS’99. 1999, 3. pp.1467-1470.
    [1-45] S.Govardhanagiri, T.Karp and P.Heller et al., Performance analysis of multicarrier modulation systems using cosine modulated filter banks. in Proc. ICASSP’99. 1999, 3. pp.1405-1408.
    [1-46] B. Farhang-Boroujeny and W. H. Chin, Time domain equalizer design for DWMT multicarrier transceivers. Electron. Lett., Aug. 2000, 36(18), pp.1590-1592.
    [1-47] S. D. Sandberg and M. A. Tzannes, Overlapped discrete multitone modulation for high-speed copper wire communications. IEEE J. Select. Areas Comm.. Dec. 1995, 13. pp.1571-1585.
    [1-48] B. Farhang-Boroujeny, Multicarrier modulation with blind detection capability using cosine modulated filter banks Communications. IEEE Trans.. Dec. 2003. pp.2057-2070.
    [1-49] J.Alhava and M. Renfors, Adaptive sine-modulated/cosine-modulated filter bank equalizer for transmultiplexers. in Proc. European Conference on Circuit Theory and Design (ECCTD '01), Espoo, Finland. August 2001.pp.337-341
    [1-50] J.J.Shynk, D.P.Witmer and M.J.Ready et al., Adaptive equalization using multirate filtering techniques. Signals. Systems and Computers, Conference Record of the Twenty-Fifth Asilomar Conference, IEEE. Nov. 1991, 2. pp.756-762.
    [1-51] M.V.Clark, Adaptive frequency-domain equalization and diversity combining for broadband wireless communications. IEEE Journal on Selected Areas in Communications. 1998, 16(8). pp.1385-1395.
    [1-52] D.S.Waldhauser, L.G.Baltar and J.A.Nossek. Comparison of filter bank based multicarrier systems with OFDM. Circuits and Systems, APCCAS 2006. Dec. 2006. pp.976-979.
    [2-1] S.U.Hwu and Y.C.Loh, Space station GPS multipath analysis and validation. Vehicular Technology Conference, IEEE 49th. 1999, 1. pp.757-761.
    [2-2] G.C.Hess, Land-mobile satellite excess path loss measurements. IEEE Trans.Veh. Technol.. May 1980, VT-29. pp.290-297.
    [2-3] E.Lutz, W.Papke, and E. Plochinger, Land mobile satellite communications-channel model, modulation and error control. in Proc.7th Int. Conf. On Digital Satellite Comm., Munich, Germany. 1986. pp.537-543.
    [2-4] E. Hass, Aeronautical Channel Modeling. IEEE Trans. Veh. Techno.. Mar, 2002, 51. pp. 254-264.
    [2-5] J.G.Proakis著,张力军,张宗橙,郑宝玉译《数字通信(第4版)》电子工业出版社2003
    [2-6] H.W.Nyland, Characteristics of small-area signal fading on mobile circuits in the 150MHz band. IEEE Trans. on Veh. Technol.. Oct. 1968, VT-17(1). pp.24-30.
    [2-7] W.C.Jake,Microwave mobile communications. New York:Wiley. 1974.
    [2-8] B.Roturier, B.Chateau et al., Experimental and theoretical field strength evaluation on VHF channel for aeronautical mobiles. AMCP Doc. AMCP/WG-D/7, Madrid, Spain, Apr. 1997.
    [2-9] N.Balaban and J.Salz, Dual diversity combining and equalization in digital cellular mobile radio. IEEE Trans. on Veh. Technol.. May 1991, 40(2). pp.342-354.
    [2-10] T.A.Lamahewa, R.A.Kennedy and T.D.Abhayapala et al., MIMO channel correlation in general scattering environments. 7th Australian Communications Theory Workshop, 2006. Feb. 2006. pp.93-98.
    [2-11] P.R.King and S.Stavrou, Low elevation wideband land mobile satellite MIMO channel characteristics. IEEE Trans. ON Wireless Communications,Jul. 2007, 6(7), pp.2712-2720.
    [2-12] A.Neul et al., Propagation measurements for the aeronautical satellite channel. in Proc. IEEE Veh. Technol. Conf. . 1987. pp.90-97.
    [2-13] S.M.Elnoubi, A simplified stochastic model for the aeronautical mobile radio channel. in Proc. IEEE Veh. Technol. Conf. . 1992. pp.960-963.
    [2-14] G.Dyer and T.G.Gilbert, Channel sounding measurements in the VHF A/G radio communications channel. AMCP/WGD/8-WP/19, Oberpfaffenhofen, Germany. Dec. 1997.
    [2-15] T.Haustein and U.Kruger, Smart geometrical antenna design exploiting the LOS componentto enhance a MIMO System based on Rayleigh-fading in Indoor scenarios. The 14th IEEE 2003 international symposium on personal indoor and mobile radio communications proceedings. 2003.
    [2-16] W.C.Y.Lee, Effects on correlation between two mobile radio base station antennas, IEEE Trans.. 1973,COM-21(11). pp.1214-1224.
    [2-17] J.J.Blanz, P.W.Baier and P.Jung, A flexibly configurable statistical chancel model for mobile radio systems with directional diversity. Proceedings of 2nd ITG-kachtagung Mobile Kommuuikation, Neu-Ulm, Germany.Sept. 1995. pp.93-100.
    [2-18] J.C.Liberti and T.S.Rappaport, A geometrically based model for line-of-sight multipath radio channels. Proceedings of 46th IEEE conference on Vehicular technology, VTC'96, Atlanta, USA. Aroril/Mav. 1996. pp. 844-848.
    [2-19] P.C.F.Eggers, Angular dispersive mobile radio environments sensed by highly directive base station antennas. Proceedings of 6th international symposium on Personal, indoor and mobile radio communications, PIMRC '95, Toronto, Canada. Sept. 1995. pp.522-526.
    [2-20] P.G.E.Eggers, Angular-temporal domain analogies of the short-term mobile radio propagation channel at the base station. Proceedings of 7th international symposium on Personal, indoor and mobile radio communications, PIIVIRC'96, Taipei, ROC. Oct. 1996. pp.742-746.
    [2-21] J.Fuhl, A.F.Molisch and E.Bonek, Unified channel model for mobile radio systems with smart antennas. Inst. fur Nachrichten tech. Hoch frequ., Tech. Univ. Wien, Austria, Radar, Sonar and Navigation, IEE Proceedings. Feb. 1998. pp.32-41
    [2-22] Channel Models for Fixed Wireless Applications, IEEE 802.16 Broadband Wireless Access Working Group. 2001-07-17.
    [2-23] M.V.Clark, Adaptive frequency-domain equalization and diversity combining for broadband wireless communications, IEEE Journal on Selected Areas in Communications. 1998, 16(8). pp.1385-1395.
    [2-24] W.B.Davenport and W.L.Root, An Introduction to the Theory of Random Signals and Noise. 1st ed. New York: McGraw-Hill. 1958.
    [2-25] W.G.Jeon, K.H.Chang and Y.S.Cho, An equalization technique for Orthogonal Frequency-Division Multiplexing systems in time-varying multipath channels. IEEE Trans. on Comm... Jan. 1999, 47(1). pp.27-32.
    [2-26] D.G. Michelson, V. Erceg and L.J. Greenstein, Modeling diversity reception over narrowband fixed wireless channels. in MTT-S Symp. on Tech. for Wireless Application. 1999. pp.95-100.
    [3-1] D.D.Falconer and S.L.Ariyavisitakul, Broadband wireless using single carrier and frequency domain equalization. in Proceedings of the 5th Int. Symp. on Wireless Personal Multimedia Communications (WPMC’02) ,Hawaii, USA. Oct. 2002, 1. pp.27-36.
    [3-2]佟学俭,罗涛,《OFDM移动通信技术原理与应用》,北京:人民邮电出版社. 2003.
    [3-3]尹长川,罗涛,乐光新,《多载波宽带无线通信技术》,北京邮电大学出版社. 2004.
    [3-4]周鹏,无线OFDM系统中的信道估计算法研究,南京理工大学硕士论文. 2004. pp.20-27.
    [3-5] M.Spech and D.Daecke, H.Meyr, Minimum overhead burst synchronization for OFDM based broad transmission. Proc.Gloabcmm'98. 1998. pp.3227-3232.
    [3-6] T.Pollet, M.V.Bladel and M.Moeneclaey, BER sensitivity of OFDM systems to carrier frequency offset and wiener phase noise. IEEE Trans.On Comm.. Feb.-Apr. 1995, 43(2~4). pp.191-193.
    [3-7]石光明,《子带滤波器组的设计方法和应用》,西安电子科技大学博士论文, 2001
    [3-8] W.W.Jones and K.R.Jones, Narrowband interference suppression using filter-bank analysis-synthesis techniques. Military Communications Conference, MILCOM '92, Conference Record. Communications-Fusing Command, Control and Intelligence., IEEE. Oct. 1992, 3. pp.898-902.
    [3-9] P.P.Vaidynathan, Theory and design of M-channel maximally decimated quadrature mirror filters with arbitrary M having the perfect-reconstruction property. IEEE Trans. on ASSP. 1987, 35(4). pp.476-492.
    [3-10] R.D.Koilpillai and P.P.Vaidyanathan, Cosine-modulated FIR filter banks satisfying perfect reconstruction. IEEE Trans. on Signal Processing. 1992. pp.770-783.
    [3-11] S.C.Chan and K.L.Ho, Fast algorithm for computing discrete cosine transform. IEEE Trans. on CS-II, Analogy and digital signal processing. Mar. 1992, 39. pp.185-190.
    [3-12] T.Q.Nguyen and P.N.Heller, Biorthogonal cosine-modulated filter bank. Proc. ICASSP-96. 1996, 3. pp.1471-1474.
    [3-13] S.C. Chars and C.W. Kok, Perfect reconstruction modulated filter banks without cosine constrain. IEEE ICASP-93-III. 1993. pp.189-192.
    [3-14] P.N.Heller and T.Q.Nguyen, A general formulation of modulated filter banks, IEEE Trans. on Signal Processing, Apr. 1999, 47. pp.986-1002.
    [3-15] P.Siohann and C. Roche, Cosine-modulated filter banks based on extended gaussian function, IEEE Trans. Signal Processing. 2000, 48(11). pp.3052-3061.
    [3-16] M.G.Bellanger and J.L.Dauguet, TDM-FDM transmultiplexer: digital polyphase and FFT. IEEE Trans. Communication. Sept. 1974, 22. pp.1199-1204.
    [3-17] T.Karp and N.J.Fliege, Modified DFT filter banks with perfect reconstruction. IEEE Trans. on CS-II: analog and digital signal processing, Nov. 1999, 46. pp.1404-1414.
    [3-18]易克初,田斌,付强,《语音信号处理》国防工业出版社,2000
    [3-19] Z.Cvetkovic and M.Vetterli, Oversampled filter banks. IEEE Trans. Signal Processing. May,1998, 46(5). pp.1245-1255.
    [3-20] H.Bolcskei and F.lawatsch, Oversampled cosine modulated filter banks with perfect reconstruction. IEEE Trans on Circuits and Systems II. 1998, 45(8). pp.1057-1071.
    [3-21] Helmut and Franz, Oversampled filter banks:optional noise shaping, design freedom, and noise analysis. ICASSP'97. 1997. pp.2453-2456.
    [3-22] A.Viholainen, J.Alhava and M.Renfors, Efficient implementation of complex modulated filter banks using cosine and sine modulated filter banks. EURASIP Journal on Applied Signal Processing. 2006. 2006(3). pp.1-10.
    [3-23] A.Viholainen, J.Alhava and M.Renfors, Efficient implementation of 2x oversampled exponentially modulated filter banks. IEEE Trans. on Circuits and Systems II. 2006, 53. pp.1138-1142.
    [3-24] A.Viholainen, T.H. Stitz and J.Alhava et al., Complex modulated critically sampled filter banks based on cosine and sine modulation. in Proceedings of IEEE International Symposium on Circuits and Systems, Vol. 1, Scottsdale, Ariz, USA,May 2002, pp.833-836.
    [3-25] B.Farhang-Boroujeny, Multicarrier modulation with blind detection capability using cosine modulated filter banks. Communications, IEEE Trans.. Dec. 2003. pp.2057-2070.
    [3-26] J.Ahlava and M.Renfors, Adaptive sine-modulated/cosine-modulated filter bank equalizer for transmultiplexers. in Proc. Eur. Conf. Circuit Theory and Design, Finland, Aug. 2001, Paper ECCTD2001.pp.337-341
    [3-27] D.S.Waldhauser, L.G.Baltar and J.A.Nossek, Comparison of filter bank based multicarrier systems with OFDM. Circuits and Systems ,APCCAS 2006. 2006. pp.976-979.
    [3-28] J.J.Shynk, D.P.Witmer and M.J.Ready et al., Adaptive equalization using multirate filtering techniques. Signals, Systems and Computers, Conference Record of the Twenty-Fifth Asilomar Conference, IEEE. Nov. 1991, 2. pp.756-762.
    [3-29] J.G.Proakis著,张力军,张宗橙,郑宝玉译,《数字通信(第4版)》电子工业出版社2003
    [3-30] Yang Yuan and Tero Ihalainen, Filter bank based frequency domain equalizer in single carrier modulation. Institute of Communication Engineering, Tampere University of Technology. Dresden. Jun. 2005. pp.19-23.
    [3-31] W.G.Jeon, K.H.Chang and Y.S.Cho, An equalization technique for orthogonal frequency-division multiplexing systems in time-varying multipath channels. IEEE Trans. on Comm., Jan. 1999 ,47(1). pp.27-32.
    [3-32] S.Reinhardt and R.Weigel, Pilot aided timing synchronization for SC-FDE and OFDM:a comparison. International Symposium on Communications and Information Technologies 2004 ( ISCIT 2004 ) Sapporo, Japan. Oct. 2004. pp.26- 29.
    [3-33]陈晨,单载波频域均衡(SC-FDE)系统研究和实现,浙江大学硕士论文, 2006
    [3-34] T.Schmidl and D.Cox, Robust frequency and timing synchronization for OFDM. in IEEE Trans. on Comm.. Dec. 1997, 45(12). pp.1613-1621.
    [3-35] K.Wang, M.Faulkner and J.Singh, Timing synchronization for 802.11a WLAN under multipath channels., ATNAC 2003 , Melbourne, Australia. 2003.
    [3-36] H.Minn, M.Zeng and V.K.Bhargava, On timing offset estimation for OFDM systems. in IEEE Communication Letters. Jul. 2000, 4(7). pp.242-244.
    [3-37] K.Shi and E.Serpedin, Coarse frame and carrier synchronization for OFDM systems: a new metric and performance evaluation. in IEEE Trans. on Wireless Comm.. Jul. 2004,3(4). pp.1271-1284.
    [3-38] Byungjoon Park, Hyunsoo Cheon, Changeon Kang etl.,A simple preamble for OFDM timing offset estimation, Vehicular Technology Conference. Proceedings. IEEE. 2002, 2. pp.729-732.
    [3-39] M.V.Clark, Adaptive frequency-domain equalization and diversity combining for broadband wireless communications. IEEE Journal on Selected Areas in Communications. 1998, 16(8), pp.1385-1395.
    [3-40] T.S.Rappaport, Wireless Communications: Principles and Practice, Prentice Hall, 1996.
    [3-41] T.Itagaki and F.Adachi, Joint frequency domain equalization and antenna diversity combining for orthogonal multicode DS-CDMA signal transmissions in a frequency selective fading channel. IEICE Trans. Comm.. Jul. 2004, E87-B(7). pp.1954-1963.
    [3-42] D.Garg and F.Adachi, Packet access using DS-CDMA with frequency-domain equalization. IEEE Journal on Selected Areas in Communications. Jan. 2006, 24(1). pp.161-170.
    [4-1] G.A.Clark,S.K.Mitra and S.R.Parker, Block implementation of adaptive digital filter. IEEE Trans. Circuits System, CAS-28. pp.584-592.
    [4-2] J.J.Shynk, Frequency-domain and multirate adaptive filtering. IEEE Signal Processing Magazine. 1992, 1. pp14-37.
    [4-3] T.Walzman and M.Schwartz, Automatic equalization using the discrete frequency domain. IEEE Trans. Information Theory, IT-19. pp.59-68.
    [4-4] J.G.Proakis著,张力军,张宗橙,郑宝玉译,《数字通信(第4版)》电子工业出版社2003
    [4-5]谷源涛, LMS算法收敛性能研究及应用,清华大学博士论文, 2003.
    [4-6] M.V.Clark, Adaptive frequency-domain equalization and diversity combining for broadband wireless communications. IEEE Journal on Selected Areas in Communications. 1998, 16(8). pp.1385-1395.
    [4-7] Paulo S.R. Diniz著.刘郁林,景晓军,谭刚兵等译,《自适应滤波算法与实现》.北京:电子工业出版社.2004.
    [4-8] J.J.Shynk, D.P.Witmer and M.J.Ready et al., Adaptive equalization using multirate filtering techniques. Signals, Systems and Computers, Conference Record of the Twenty-Fifth Asilomar Conference, IEEE. Nov. 1991, 2. pp.756-762.
    [4-9] P.C.W.Sommen, P.J.Van Gerwen and H.J.Kotmans et al., Convergence analysis of a frequency-domain adaptive filter with exponential power averaging and generalized window function. IEEE Trans. Circuits System. Jul. 1987, CAS-34. pp.788-798.
    [4-10] K.A.Lee and W.S.Gan, Improving convergence of the NLMS algorithm using constrained subband updates. IEEE Signal Proc. Letters. Sep. 2004, 11(9). pp.736-739.
    [4-11]K.A. Lee and W.S.Gan, On the subband orthogonality of cosine-modulated filter banks. IEEE Trans. On Circuits and Systems. Aug. 2006, 53(8). pp.677-681.
    [4-12]易克初,田斌,付强,《语音信号处理》.国防工业出版社. 2000.
    [4-13]Ching-Hsiang Tseng and Cheng-Bin Lin, A frequency-domain approximate RLS algorithm for blind equalization of mobile communication channels, Personal, Indoor and Mobile Radio Communications, Seventh IEEE International Symposium. Oct. 1996, 3. pp.873-877.
    [5-1] N.Yee, J.P.Linnarz and G.Fettweis, Multi-carrier CDMA in indoor wireless radio networks. PIMRC’93,Yokohama,Japan. Sept. 1993. pp.109-113.
    [5-2] K.Fazel and L.Papke, On the performance of convolutionally-coded CDMA/OFDM for mobile communication system.,PIMRC’93,Yokohama Japan, Sept. 1993, pp.468-472.
    [5-3] V.DaSilva and E.S.Sousa, Performance of orthogonal CDMA codes for quasisynchronous communication systems, ICUPC’93,Ottawa,Canada, Sept. 1993, pp.995-999.
    [5-4] L.Vandendorp, Multitone direct dequence CDMA dystem in an indoor wireless environment. Proc. of IEEE First Symposium of Communications and Vehicular Technology in the Benelux,Delft,The Netherlands. Oct. 1993. pp.411-418.
    [5-5] J.G.Proakis著,张军力、张宗橙、郑宝玉译,《数字通信》(第4版),电子工业出版社, 2003
    [5-6]A.Czylwik, Comparison between adaptive OFDM and single carrier modulation with frequency domain equalization, in IEEE 47th Vehicular Technology Conference, Phoenix, Ariz, USA. May 1997,2. pp.865-869.
    [5-7] D.Falconer, S.L.Ariyavisitakul and A. Benyamin-Seeyar et al., Frequency domain equalization for single-carrier broadband wireless systems. IEEE Communications Magazine. 2002, 40(4). pp.58-66.
    [5-8] G.Kadel, Diversity and equalization in frequency domain― a robust and flexible receiver technology for broadband mobile communication systems, in IEEE 47th Vehicular Technology Conference, Phoenix, Ariz, USA. May 1997, 2. pp.894-898.
    [5-9] M.V.Clark, Adaptive frequency-domain equalization and diversity combining for broadband wireless communications. IEEE Journal on Selected Areas in Communications. 1998, 16(8). pp.1385-1395.
    [5-10] S.Barbarossa and F.Cerquetti, Simple space-time coded SSCDMA systems capable of perfect MUI/ISI elimination. IEEE Communications Letters. 2001, 5(12). pp.471-473.
    [5-11] H.Sari, G.Karam and I.Jeanclaud, Frequency-domain equalization of mobile radio and terrestrial broadcast channels. in Proceedings IEEE Global Telecommunications Conference, San Francisco, Calif, USA. Nov.-Dec. 1994, 1. pp.1-5.
    [5-12] Francois Chin, Ying-Chang Liang and Kai Yang, Single-carrier cyclic prefix-assisted CDMA system with frequency domain equalization for high data rate transmission. EURASIP Journal on Wireless Communications and Networking. Jan. 2004. pp.149-160.
    [5-13] C.D.Iskander and P.T.Mathiopoulos, Performance of multicode DS/CDMA with noncoherent M-ary orthogonal modulation in multipath fading channels. IEEE Trans. On Wireless Communications. 2004, 3(1), pp.209-223.
    [5-14] D.Garg and F.Adachi, Packet access using DS-CDMA with frequency-domain equalization. IEEE Journal on Selected Areas in Communications. Jan. 2006, 24(1). pp.161-170.
    [5-15] L.R.Welch, Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inform. Theory. 1974, IT-20(3). pp.397-399.
    [5-16]杜政.多载波通信技术研究,中国科学技术大学博士论文, 2003年.
    [5-17] H.H.Chen, J.F.Yeh and N.Suehiro, A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications. IEEE Communication Magazines. Oct. 2001, 39(10). pp.126-135.
    [5-18] Mario Edgardo Magana and Huaping Liu, A multi-carrier CDMA system design based on orthogonal complementary codes,IEEE 58th Vehicular Technology Conference(VTC2003-Fall). Oct. 2003, 2. pp.1374-1378.
    [5-19] Jing Li and Aiping Huang, Analysis of single carrier offset-stacked OCC-CDMA system with RAKE receiver. Wireless Networks, Communications and Mobile Computing, 2005 International Conference. Jun. 2005. pp.582-587.
    [5-20] C.Khiraliah, P.Coulton and S.Mohsin et al., High data rate enhancement for beyond 3G services using complete complementary codes. Personal, Indoor and Mobile Radio Communications 2004. Sept. 2004, 3. pp.2246-2250.
    [5-21]胡征,樊昌信,沃尔什函数及其在通信中的应用,人民邮电出版社,1980
    [5-22] M.J.E.Golay, Complementary series. IRE Trans. on Information Theory. Apr. 1961, IT-7. pp.82-87.
    [5-23] C.C.Tseng and C.L.Liu, Complementary sets of sequences, IEEE Trans. on Information Theory. Sept. 1972, IT-18(5). pp.644-652.
    [5-24] X.Huang and Y.Li, Scalable complete complementary sets of sequences, IEEE GLOBECOM 2002,Taipei,TaiWan. Nov.,2002, 2. pp.1056-1060.
    [5-25] Xiaojing Huang, Simple implementations of mutually orthogonal complementary sets of sequences. Intelligent Signal Processing and Communication Systems. Dec. 2005. pp.369-372
    [5-26]费满锋,王杰令,易克初,刘祖军,一种新颖的宽带地空通信系统方案,西安电子科技大学学报, 2008, 35(3), pp.403-408.
    [5-27] S.M.Alamouti, A simple transmit diversity technique for wireless communications. IEEE Journal on selected areas in comm.. Oct. 1998, 16(8). pp.1451-1458.
    [5-28] A.S.Madhukumar, Francois Chin and Ying-Chang Liang et al., Single-carrier cyclic prefix-assisted CDMA system with frequency domain equalization for high data rate transmission, EURASIP Journal on Wireless Communications and Networking. Jan. 2004. pp.149-160.
    [5-29] K.L.Baum, T.A.Thomas and F.W.Vook, Cyclic-prefix CDMA: an improved transmission method for broadband DS-CDMA cellular systems. Wireless Communications and Networking Conference, WCNC2002. 2002, 1. pp.183-188.
    [6-1] J.W.Ketchhum et al., Adaptive algorithms for estimating and suppressing narrow-band interference in PN spread-spectrum systems. IEEE Trans. on communication, May 1982, Com-30(5), pp.913-924,.
    [6-2] R.A.Iltis et al., Performance analysis of narrow-band interference rejection techniques in DS spread-spectrum systems. IEEE Trans. on communication. Nov. 1984, Com-32(11). pp.1169-1177.
    [6-3] H.Fathallah et al., A subspace approach to adaptive narrow-band interference suppression in DSSS. IEEE Trans. on communication. Dec. 1997, 45(12). pp.1575-1585.
    [6-4] S.Davidovici et al., Narrow-band interference rejection using real-time Fourier transforms.IEEE Trans.on communication, Nov. 1989, 37(7). pp.713-722.
    [6-5] W.J.William, Narrow-band interference suppression using filter-bank analysis/synthesis techniques. IEEE Military communication conference,MILCOM'92. 1992. pp.898-902.
    [6-6] M.V.Tazebay and A.N.Akansu, Adaptive subband transform in time-frequency excisers for DSSS communication systems. IEEE Trans. on Signal Processing. Nov. 1995, 43(11). pp.2776-2782.
    [6-7]石光明,《子带滤波器组的设计方法和应用》,西安电子科技大学博士论文, 2001.
    [6-8] W.W.Jones and K.R.Jones, Narrowband interference suppression using filter-bank analysis-synthesis techniques. Military Communications Conference, 1992. MILCOM '92, Conference Record. Communications - Fusing Command, Control and Intelligence,IEEE. Oct. 1992, 3. pp.898-902.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700