MIMO MRC系统性能分析与阵列栅瓣抑制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信的迅猛发展,新一代无线通信系统中人们对高速率和高质量的服务需求更高。但是有限的频谱资源日益紧张,以及无线传输环境中的衰落和多径失真不容忽视。通过在发射端和接收端配置多根天线,多输入多输出(MIMO)系统能够充分开发空间资源,在无需增加带宽和发射功率的情况下,成倍地提升通信系统的容量和可靠性。本论文主要研究发射端采用最大比发射和接收端采用最大比合并技术的MIMO系统,即MIMO MRC系统的性能和阵列栅瓣的抑制技术。
     本文首先研究了共信道干扰下MIMO MRC系统的性能。建立了共信道干扰下存在信道估计误差的MIMO MRC系统模型。在此基础上,分别推导出具有相等功率和互不相等功率的共信道干扰下系统输出信干噪比的累积分布函数和误符号率的闭合表达式。利用这些表达式,很容易分析共信道干扰和信道估计误差对系统性能的影响,而无需冗长的计算机仿真和复杂的数值积分。结果表明相对于存在共信道干扰的情况,无共信道干扰时系统的误符号率性能更敏感于信道估计误差。
     其次,针对相关MIMO MRC系统,利用矩阵理论和多元统计理论,推导出相关复Wishart矩阵最大特征值的概率密度函数和累积分布函数,分别得出发射端和接收端存在相关时MIMO MRC系统的容量性能(包括中断容量和平均容量)的闭合表达式,进而详细分析了空间相关对系统性能的影响。
     再次,研究了空间相关对联合空间分集和调度策略的多用户MIMO系统下行链路性能的影响。推导出接收天线之间存在相关时多用户MIMO STBC系统和MIMO MRC系统的中断容量、平均容量表达式,并由此进行性能分析。计算机仿真验证了理论分析的有效性。
     最后,通过分析栅瓣产生的机理探讨了窄带和宽带阵列天线的栅瓣抑制方法。对于窄带接收信号,利用三个相交的大间距均匀线阵,通过设置它们之间的角度和主瓣指向相同使各自的栅瓣位置错开,然后把三个方向图相乘从而抑制大间距阵列栅瓣,因而适用于宽频带工作;对于(超)宽带接收信号,利用Bessel函数设计与频率有关的加权系数,产生整个信号带宽内恒定的方向图,从而抑制了高频部分的栅瓣。
With the rapid development of wireless communication, one has the requirement of higher data rates and link quality. However, frequency spectral resource has become increasingly precious. Meanwhile fading and multipath distortion of wireless transmission cannot be ignored. Multiple-input multiple-output (MIMO) systems employing multiple antennas at both transmitter and receiver are capable of exploiting spatial resource and can provide significant improvements in capacity and link performance without requiring extra power or bandwidth. This thesis presents the research on performance of MIMO systems with maximum ratio transmission at the transmitter and maximum ratio combining (MRC) at the receiver, simply called MIMO MRC, and grating-lobe suppression technique of antenna array.
     Firstly, performance of MIMO MRC systems is investigated in the presence of co-channel interferences (CCI). MIMO MRC system model is established when CCI and channel estimation error are considered together. Based on the model, closed-form expressions for cumulative distribution function (CDF) of the output signal-to-interference plus noise ratio and symbol error rate (SER) of MIMO MRC systems with equal-power and unequal-power CCI are derived respectively. By using these expressions, the impact of CCI and channel estimation error on system performance can be easily obtained without any numerical integrations or statistical simulations. Results show that in the presence of CCI, the SER performance is less sensitive to estimation error.
     Next, by using the matrix theory and multivariate statistical analysis, probability density function and CDF for the largest eigenvalue of the correlated complex Wishart matrix are provided. Exact expressions for capacity performance, including outage capacity and average capacity, of MIMO MRC systems with correlation at the transmitter and receiver are derived respectively. And the impact of spatial correlation is investigated.
     Then, the impact of spatial correlation on the combination of spatial diversity and multiuser diversity is investigated. Exact expressions for outage capacity and average capacity of multiuser diversity system combined with MIMO space-time block coding (STBC) and MIMO MRC respectively are derived in receive-correlated channels. Based on them, system capacity is analyzed. The analytical results are validated by the simulated results.
     Finally, the grating-lobe suppression methods for narrow-band and wideband arrays are discussed based on the analysis of the mechanism of producing the grating lobes. For narrow-band signals, three uniform linear arrays, whose grating lobes are not overlapped by setting the angles between the arrays and the same pointing of main-lobes, are used and then multiplication of three patterns is operated to reduce the grating lobes of large-spaced array, which makes the array operate in broad band. For wideband or ultra-wideband signals, array pattern in the whole frequecy band is identical by designing the frequency-dependent weighting coefficients based on the Bessel function, and therefore grating lobes in high frequency parts are suppressed.
引文
[1]吴伟陵,牛凯.移动通信原理[M].北京:电子工业出版社. 2005.
    [2]邬国扬,张厥盛.移动通信——原理·系统·应用[M].北京:电子工业出版社. 1995.
    [3]金荣洪,耿军平,范瑜.无线通信中的智能天线[M].北京:北京邮电大学出版社. 2006.
    [4] Foschini G J, Gans M J. On limits of wireless communications in a fading environment when using multiple antennas [J], Wireless Personal Commun., 1998, 6(3): 311-335.
    [5] Telatar I E. Capacity of multi-antenna Gaussian channels [J], Europ. Trans. on Telecomm., 1999, 10(6): 585-595.
    [6] Alamouti S M. A simple transmit diversity technique for wireless communications [J], IEEE J. Selected Areas Commun. 1998, 16(8): 1451-1458.
    [7] Tarokh V, Seshadri N, Calderbank A R. Space-time codes for high data rate wireless communication: Performance criterion and code construction [J], IEEE Trans. Inform. Theory, 1998, 44(2): 744-765.
    [8] Tarokh V, Naguib A, Seshadri N, Calderbank A R. Space-time codes for high data rate wireless communication: Performance criterion in the presence of channel estimation errors, mobility and multiple paths [J], IEEE Trans. Commun., 1999, 47(2): 199-207.
    [9] Golden G D, Foschini G J, Valenzuela R A. Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture [J], Electronics Letters, 1999, 35(1): 14-16.
    [10] Paulraj A J, Gore D A, et al. An overview of MIMO communications----a key to gigabit wireless [J], Proceedings of IEEE, 2004, 92(2): 198-218.
    [11] IEEE 802.16 Broadband Wireless Access Working Group. IEEE 802.16m system requirements, IEEE 802.16m-07/002r4, 2007.
    [12] Lo T K Y. Maximum ratio transmission [J], IEEE Trans. Commun., 1999, 47(10): 1458–1461.
    [13] Andersen J B. Antenna arrays in mobile communications: gain, diversity, and channel capacity [J], IEEE Antennas Propagation Magazine, 2000, 42(2): 12–16.
    [14] Dighe P A, Mallik R K, Jamuar S S. Analysis of transmit-receive diversity inRayleigh fading [J], IEEE Trans. Commun., 2003, 51(4): 694-703.
    [15]耿国桐. MIMO系统中最大比发射和天线选择技术研究[博士学位论文].北京:北京邮电大学,2005.
    [16] Nee R, Prasad R. OFDM for wireless multimedia communications [M], Artech House, 2000.
    [17]王文博,郑侃.宽带无线通信OFDM技术[M].北京:人民邮电出版社. 2003.
    [18]佟学俭,罗涛. OFDM移动通信技术原理与应用[M].北京:人民邮电出版社. 2003.
    [19] Stüber G L, Barry J R, Mclaughlin S W, etc. Broadband MIMO-OFDM wireless communications [J], Proceedings of IEEE, 2004, 92(2): 271-294.
    [20] Bolcskei H, Gesbert D, Paulraj A J. On the capacity of wireless systems employing OFDM based on spatial multiplexing [J], IEEE Trans. Commun., 2002, 48(3): 502-513.
    [21] Alexiou A, Haardt M. Smart antenna technologies for future wireless systems: trends and challenges [J], IEEE Communications Magazine, 2004, 42(9): 90-97.
    [22] Gozali R, Buehrer R M, Woerner B D. The impact of multiuser diversity on space-time block coding [J], IEEE Communications Letters, 2003, 7(5): 213-215.
    [23]张贤达,保铮.通信信号处理[M].北京:国防工业出版社. 2000.
    [24] Stutzman W L. Thiele G A. Antenna Theory and Design [M]. NY: John Wiley & Sons, 1981.
    [25]龚耀寰.自适应滤波——时域自适应滤波和智能天线[M].第2版.北京:电子工业出版社,2003.
    [26] Love D J, Heath R W, Strohmer T. Grassmannian beamforming for multiple-input multiple-output wireless systems [J], IEEE Trans. Inform. Theory, 2003, 49(10): 2735-2747.
    [27] Yoo T, Goldsmith A. On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming [J], IEEE J. Selected Areas Commun., 2006, 24(3): 528-541.
    [28] Cai X, Giannakis G B. Differential space-time modulation with eigen- beamforming for correlated MIMO fading channels [J], IEEE Trans. Signal Processing, 2006, 54(4): 1279-1288.
    [29] Ravindran N, Jindal N, Huang H C. Beamforming with finite rate feedback forLOS MIMO downlink channels [C], IEEE Global Telecommunications coference, 2007, pp. 4200-4204.
    [30] Zhu P, Tang L, Wang Y, You X. Index assignment for quantized beamforming MIMO systems [J], IEEE Trans. Wireless Commun., 2008, 7(8): 2917-2922.
    [31]汪茂光.阵列天线分析与综合[M].成都:电子科技大学出版社, 1989.
    [32]翟孟云,严育林.阵列天线理论导引[M].北京:国防工业出版社, 1980.
    [33] Cottony H V. Wide-frequency-band radar array antenna system with suppressed grating lobes [J], IEEE Trans. Antennas and Propagation, 1970, AP-18(6): 774-779.
    [34]何碧辉,毛卫宁.一种简单的宽带基阵设计和处理方法[J],声学技术, 2002, 21(3): 137-140.
    [35] Cotterill P A. Array designs and processing strategies that reduce the number of sensors and processing loads required by large aperture hull mounted sonar system [C], Proc. Undersea Defence Technology, Nexus House, UK, June 1997, pp. 24-26.
    [36] MacPhine R H, Yoon T H. Grating lobe suppression with a thinned multiplicative receiving array [C], in Proc. of APMC 2005, Suzhou, China, 2005.
    [37] Bray M G, Werner D H, Boeringer D W and Machuga D W. Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning [J], IEEE Trans. Antennas and Propagation, 2002, 50(12): 1732-1742.
    [38] Yin S, Kim J H, Wu F, Ruffin R and Luo C. Ultra-fast speed, low grating lobe optical beam steering using unequally spaced phased array technique [J], Optics Communications, 2007, 270(1): 41-46.
    [39] Spence T G and Werner D H. Design of Broadband planar arrays based on the optimization of aperiodic tilings [J], IEEE Trans. Antennas and Propagation, 2008, 56(1): 76-86.
    [1] Foschini G J, Gans M J. On limits of wireless communications in a fading environment when using multiple antennas [J], Wireless Personal Commun., 1998, 6(3): 311-335.
    [2] Telatar I E. Capacity of multi-antenna Gaussian channels [J], Europ. Trans. on Telecomm., 1999, 10(6): 585-595.
    [3] Paulraj A J, Gore D A, et al. An overview of MIMO communications——a key to gigabit wireless [J], Proceedings of IEEE, 2004, 92(2): 198-218.
    [4] Alamouti S M. A simple transmit diversity technique for wireless communications [J], IEEE J. Selected Areas Commun. 1998, 16(8): 1451-1458.
    [5] Tarokh V, Seshadri N, Calderbank A R. Space-time codes for high data rate wireless communication: Performance criterion and code construction [J], IEEE Trans. Inform. Theory, 1998, 44(2): 744-765.
    [6] Tarokh V, Naguib A, Seshadri N, Calderbank A R. Space-time codes for high data rate wireless communication: Performance criterion in the presence of channel estimation errors, mobility and multiple paths [J], IEEE Trans. Commun., 1999, 47(2): 199-207.
    [7]耿国桐. MIMO系统中最大比发射和天线选择技术研究[博士学位论文].北京:北京邮电大学,2005.
    [8] Dighe P A, Mallik R K, Jamuar S S. Analysis of transmit-receive diversity in Rayleigh fading [J], IEEE Trans. Commun., 2003, 51(4): 694-703.
    [9] Foschini G J. Layered space-time architecture for wireless communication in fading environment when using multiple antennas [J], Bell Labs Technical Journal, 1996, 1(2):41-59.
    [10] Golden G D, Foschini G J, Valenzuela R A. Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture [J], Electronics Letters, 1999, 35(1): 14-16.
    [11]张贤达,保铮.通信信号处理[M].北京:国防工业出版社. 2000.
    [12] Stüber G L.裴昌幸,聂敏,岳安军译.移动通信原理(第二版)[M].北京:电子工业出版社. 2004.
    [13] Kahn L. Radio squarer. Proc. IRE, 1954, 42: 1074.
    [14]孙胜贤.多用户记忆MIMO系统容量与联合收发波束形成研究[博士学位论文].成都:电子科技大学,2004.
    [15] Anderson J B. Antenna arrays in mobile communication: gain, diversity, and channel capacity [J], IEEE Antenna Propagation Magazine, 2000, 42(2): 12-16.
    [16] Anderson J B. Array gain and capacity for known random channels with multiple element arrays at both ends [J], IEEE J. Selected Areas Commun., 2000, 18(11): 2172-2178.
    [17] Lo T K Y. Maximum ratio transmission [J], IEEE Trans. Commun., 1999, 47(10): 1458–1461.
    [1] Foschini G J, Gans M J. On limits of wireless communications in a fading environment when using multiple antennas [J], Wireless Personal Commun., 1998, 6(3): 311-335.
    [2] Tarokh V, Seshadri N, Calderbank A R. Space-time codes for high data rate wireless communication: Performance criterion and code construction [J], IEEE Trans. Inform. Theory, 1998, 44(2): 744-765.
    [3] Tarokh V, Naguib A, Seshadri N, Calderbank A R. Space-time codes for high data rate wireless communication: Performance criterion in the presence of channel estimation errors, mobility and multiple paths [J], IEEE Trans. Commun., 1999, 47(2): 199-207.
    [4] Foschini G J, Chizhik D, Gans M J, et al. Analysis and performance of some basic space-time architectures [J], IEEE J. Selected Areas Commun., 2003, 21(3): 303-320.
    [5] Lo T K Y. Maximum ratio transmission [J], IEEE Trans. Commun., 1999, 47(10): 1458–1461.
    [6] Dighe P A, Mallik R K, Jamuar S S. Analysis of transmit-receive diversity in Rayleigh fading [J], IEEE Trans. Commun., 2003, 51(4): 694-703.
    [7] James A T. Distributions of matrix variates and latent roots derived from normal samples [J], Ann. Math. Statist., 1964, 35(2): 475-501.
    [8] Tellambura C, Mueller A J, Bhargava V K. Analysis of M-ary phase-shift keying with diversity reception for land-mobile satellite channels [J], IEEE Trans. Veh. Technol., 1997, 46(4): 910-922.
    [9] Horn R A, Johnson C R. Matrix Analysis [M], Cambridge, U. K.: Cambridge Univ. Press. 1985.
    [10] Rao B D, Yan M. Performance of maximal ratio transmission with two receive antennas [J], 2003, 51(6): 894-895.
    [11] Kang M, Alouini M S. A comparative study on the performance of MIMO MRC systems with and without cochannel interference [J], IEEE Trans. Commun., 2004, 52(8): 1417-1425.
    [12] Yang L, Qin J. Outage performance of MIMO MRC systems with unequal-power co-channel interference [J], IEEE Commun. Lett., 2006, 10(4): 245-247.
    [13] Chen Y, Tellambura C. Performance analysis of maximal ratio transmission withimperfect channel estimation [J], IEEE Commun. Lett., 2005, 9(4): 322-324.
    [14] Maaref A, A?ssa S. Closed-form expressions for the outage and ergodic Shannon capacity of MIMO MRC systems [J], IEEE Trans. Commun., 2005, 53(7): 1092–1095.
    [15] Gradshteyn I S, Ryzhik I M. Table of Integrals, Series, and Products [M], 6th ed. San Diego, CA: Academic, 2000.
    [16] Alamouti S M. A simple transmit diversity technique for wireless communications [J], IEEE J. Selected Areas Commun. 1998, 16(8): 1451-1458.
    [17] Kang M, Yang Lin, Alouini M S. Capacity of MIMO channels in the presence of co-channel interference [J], Wireless Communications and Mobile Computing, 2007, 7(1): 113-125.
    [18] Tokgoz Y, Rao B D. The effect of imperfect channel estimation on the performance of maximum ratio combining in the presence of cochannel interference [J], IEEE Trans. Veh. Technol., 2006, 55(5): 1527-1534.
    [19] Willink T J. Improving power allocation to MIMO eigenbeams under imperfect channel estimation [J], IEEE Commun. Lett., 2005, 9(7): 622-624.
    [20] Proakis J G. Digital Communications [M], 4th edn. New York: McGraw-Hill, 2001.
    [21] McKay M R, Grant A J, Collings I B. Performance analysis of MIMO MRC in double-correlated Rayleigh environments [J], IEEE Trans. Commun., 2007, 55(3):497–507.
    [1] Maaref A, A?ssa S, Closed-form expressions for the outage and ergodic Shannon capacity of MIMO MRC systems [J], IEEE Trans. Commun., 2005, 53(7): 1092–1095.
    [2] Zhou Q, Dai H Y. Asymptotic analysis in MIMO MRT/MRC systems [J], EURASIP Journal on Wireless Communications and Networking, 2006, art. No. 45831.
    [3] Shiu D, Foschini G J, Gans M J and Kahn J M. Fading correlation and its effect on the capacity of multielement antenna systems [J], IEEE Trans. Commun., 2000, 48(3): 502-513.
    [4] Chuah C, Tse D, Kahn J and Valenzuela R. Capacity scaling in MIMO wireless systems under correlated fading [J], IEEE Trans. Inf. Theory, 2002, 48(3): 637-650.
    [5] McKay M R, Grant A J, Collings I B. Performance analysis of MIMO MRC in double-correlated Rayleigh environments [J], IEEE Trans. Commun., 2007, 55(3):497–507.
    [6] Kang M, Alouini M S. Impact of correlation on the capacity of MIMO Channels [C], in Proc. IEEE Int. Conf. Commun. (ICC), pp. 2623-2627, Anchorage, AK, May 2003.
    [7] Zanella A, Chiani M and Win M Z. Performance of MIMO MRC in correlated Rayleigh fading environments [C], in Proc. IEEE Veh. Tech. Conf. (VTC), pp. 1633-1637, Stockholm, Sweden, June 2005.
    [8] Ratnarajah T, Vaillancourt R. Quadratic forms on complex random matrices and multiple-antenna systems [J], IEEE Trans. Inf. Theory, 2005, 51(8): 2976-2984.
    [9] Khatri C G. On certain distribution problems based on positive definite quadratic functions in normal vectors [J], Ann. Math. Statist., 1966, 37(2): 468-470.
    [10] Kang M, Alouini M S. Capacity of correlated MIMO Rayleigh channels [J], IEEE Trans. Wireless Commun., 2006, 5(1): 143-155.
    [11] Chiani M, Win M Z and Zanella A. On the capacity of spatially correlated MIMO Rayleigh-fading channels [J], IEEE Trans. Inf. Theory, 2003, 49(10): 2363-2371.
    [12] Golberg M A. The derivative of a determinant [J], American Math. Monthly, 1972, 79(10): 1124-1126.
    [13] Kang M, Alouini M S. A comparative study on the performance of MIMO MRCsystems with and without cochannel interference [J], IEEE Trans. Commun., 2004, 52(8): 1417-1425.
    [14] Gradshteyn I S, Ryzhik I M. Table of Integrals, Series, and Products [M], 6th ed. San Diego, CA: Academic, 2000.
    [15] Alouini M S, Goldsmith A J. Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combing techniques [J], IEEE Trans. Veh. Technol., 1999, 48(4): 1165-1181.
    [16]《数学手册》编写组.数学手册[M],高等教育出版社,1979.
    [1] Foschini G J, Gans M J. On limits of wireless communications in a fading environment when using multiple antennas [J], Wireless Personal Commun., 1998, 6(3): 311-335.
    [2] Fattah H, Leung C. An overview of scheduling algorithms in wireless multimedia networks [J]. IEEE Wireless Communications, 2002, 9(5): 76-83.
    [3]曾二林,朱世华,廖学文.基于自适应空分复用的分组多用户分集方案[J].电波科学学报, 2007, 22(3): 424-429.
    [4] Ajib W, Haccoun D. An overview of scheduling algorithms in MIMO based fourth generation wireless systems [J]. IEEE Network, 2005, 19(5): 43-48.
    [5] Gozali R, Buehrer R M, Woerner B D. The impact of multiuser diversity on space-time block coding [J]. IEEE Communications Letters, 2003, 7(5): 213-215.
    [6] Mun C, Lee M W, et al. Exact capacity analysis of multiuser diversity combined with transmit diversity [J]. IEE Electronics letters, 2004, 40(22): 1423-1424.
    [7] Zhou Q, Dai H. Asymptotic analysis on the interaction between spatial diversity and multiuser diversity in wireless networks [J]. IEEE Trans. Signal Process., 2007, 55(8): 4271-4283.
    [8] Larsson E G. On the combination of spatial diversity and multiuser diversity [J]. IEEE Communications Letters, 2004, 8(8): 517-519.
    [9] Chen C J, Wang L C. A unified capacity analysis for wireless systems with joint multiuser scheduling and antenna diversity in Nakagami fading channels [J]. IEEE Trans. Commun., 2006, 54(3):469-478.
    [10]王自力,龚耀寰. MIMO宏小区窄带信道模型的相关性能分析[J].电波科学学报, 2005, 20(1): 37-42.
    [11]唐冬,杨亮,张广驰,秦家银.空间相关对发射分集系统的多用户分集性能的影响[J].电子学报, 2006, 34(4): 761-764.
    [12]汪安春,佘小明,周世东,许希彬,姚彦.多天线无线数据通信系统中多用户分集的研究[J].通信学报, 2004, 25(11): 26-34.
    [13] Cui X W, Zhang Q T. Outage performance for maximal ratio combiner in the presence of unequal-power co-channel interference [J]. IEEE CommunicationsLetters, 2004, 8(5): 289-291.
    [14] Zhang Q T. Maximal-ratio combining over Nakagami fading channels with an arbitrary branch covariance matrix [J]. IEEE Trans. Vehicular Technology, 1999, 48(4): 1141-1150.
    [15] Gradshteyn I S, Ryzhik I M. Table of Integrals, Series, and Products [M]. 6th ed. San Diego, CA: Academic, 2000.
    [1]张贤达,保铮.通信信号处理[M].北京:国防工业出版社. 2000.
    [2] Stutzman W L. Thiele G A. Antenna Theory and Design [M]. NY: John Wiley & Sons, 1981.
    [3] Godara L C. Handbook of antennas in wireless communications [M]. NY: CRC Press, 2002.
    [4]龚耀寰.自适应滤波——时域自适应滤波和智能天线[M].第2版.北京:电子工业出版社,2003.
    [5]汪茂光.阵列天线分析与综合[M].第1版.成都:电子科技大学出版社,1989.
    [6]翟孟云,严育林.阵列天线理论导引[M].第1版.北京:国防工业大学出版社, 1980.
    [7] Do-Hong T, Russer P. Signal processing for wideband smart antenna array applications [J]. IEEE microwave magazine, 2004, 5(1): 57-67.
    [8]陈俊杰.智能天线中的宽带信号处理[硕士学位论文].上海:上海交通大学, 2007.
    [9] Yin S, Kim J H, Wu F, Ruffin R and Luo C. Ultra-fast speed, low grating lobe optical beam steering using unequally spaced phased array technique [J], Optics Communications, 2007, 270(1): 41-46.
    [10] Bray M G, Werner D H, Boeringer D W and Machuga D W. Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning [J], IEEE Trans. Antennas and Propagation, 2002, 50(12): 1732-1742.
    [11] Chen Y K, Yang S W and Nie Z P. Synthesis of uniform amplitude thinned linear phased arrays using the differential evolution algorithm [J], Electromagnetics, 2007, 27: 287-297.
    [12] Spence T G and Werner D H. Design of Broadband planar arrays based on the optimization of aperiodic tilings [J], IEEE Trans. Antennas and Propagation, 2008, 56(1): 76-86.
    [13]何碧辉,毛卫宁.一种简单的宽带基阵设计和处理方法[J],声学技术, 2002, 21(3): 137-140.
    [14]陈子欢,刘刚,蒋宁.一种新的子阵结构及其自适应性能分析[J],电子信息对抗技术, 2006, 21(3): 33-37.
    [15] Cottony H V. Wide-frequency-band radar array antenna system with suppressed grating lobes [J], IEEE Trans. Antennas and Propagation, 1970, AP-18(6): 774-779.
    [16] MacPhie R H, Yoon T H. Grating lobe suppression with a thinned multiplicative receiving array [C], in Proc. of APMC 2005, Suzhou, China, 2005.
    [17] Takechi O, Matsumoto H, Shinohara N and Hashimoto K. Suppression method of grating lobe by pulse power transmission from an array antenna, Electronics and Communications in Japan, Part 1, 2005, 88(2): 1-10.
    [18] Haupt R L. Optimized weighting of uniform subarrays of unequal sizes [J], IEEE Trans. Antennas and Propagation, 2007, 55(4): 1207-1210.
    [19] Haupt R L. Reducing grating lobes due to subarray amplitude tapering [J], IEEE Trans. Antennas and Propagation, 1985, 33(8): 846-850.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700