抗干扰抗截获差分跳频技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
短波通信是实现超视距通信的重要手段之一,由于短波信道可用带宽窄且存在严重的时变和多径衰落问题,长期以来实现高速可靠的短波数据传输一直是军事通信领域关注的热点之一。差分跳频技术的提出为提高短波通信速率提供了一条全新的思路。目前在差分跳频抗干扰抗截获技术方面的研究仍存在明显不足。在抗干扰技术方面,由于差分跳频是一种宽带异步跳频体制,需要在整个跳频频率集内进行频点能量检测,因此部分频带干扰会显著削弱差分跳频系统性能,已有的信号检测和译码算法有各自的性能局限性。在抗截获性能方面,已有研究表明,差分跳频并非一种低截获概率通信方式,任何第三方通过侦听差分跳频信号都可获得频率转移矩阵,而通过发射具有相同频率转移矩阵的差分跳频干扰信号可严重破坏差分跳频通信系统性能。因此研究差分跳频的抗截获技术是有必要的。另外,差分跳频具有高速数据传输能力,这使基于差分跳频的短波猝发通信成为可能,但差分跳频及猝发通信的特点决定了必须考虑其抗干扰设计问题。
     基于上述考虑,本文围绕差分跳频抗干扰抗截获技术展开研究,论文主要研究内容及结论包括:
     (1)提出了一种新的基于噪声归一化合并技术的差分跳频抗部分频带干扰接收机模型,推导了无衰落信道、瑞利衰落信道及Nakagami-m衰落信道下系统的误符号性能,并研究了非理想噪声功率估计对系统性能的影响。研究结果表明在非最坏部分频带干扰下,除信道衰落较弱且干扰能量较为分散的特殊情况外,噪声归一化差分跳频接收机性能总是优于线性合并和乘积合并差分跳频接收机,且干扰越集中性能优势越明显;在最坏部分频带干扰下,在所考察的各种衰落条件下均有噪声归化差分跳频接收机的抗部分频带干扰性能优于线性合并和乘积合并差分跳频接收机,与信道衰落程度及干扰带宽因子取值无关;在噪声估计不存在严重偏差时(估计误差因子满足0.1<λ<3),噪声归一化合并差分跳频接收机在最坏部分频带干扰下的性能优于乘积合并和线性合并差分跳频接收机,且当噪声估计值略低于理想估计值时(0.2<λ<0.6),系统误符号率低于理想噪声估计条件下的误符号率。
     (2)研究了差分跳频系统的抗截获设计原则及各项抗截获性能指标的检测方法,分类研究了应用不同G函数的差分跳频系统的抗截获性能,证明了普通差分跳频系统不可能具有良好的二维连续性,进而给出了两种改善差分跳频系统抗截获性能的新方法:基于时变G函数(Time Varying G-Function, TVG)的抗截获设计方法和将常规跳频与差分跳频结合在一起的FH/DFH抗截获方法。对于TVG方法,给出了其优化准则并证明了依据该准则的TVG差分跳频系统具有长观测周期意义上的优良二维连续性。对于FH/DFH抗截获方法,在给出系统模型的基础上理论分析了其一维均匀和二维连续性。理论和仿真结果表明,采用这两种方法能够在不增加差分跳频译码复杂度的情况下有效改善差分跳频系统的抗截获性能,相对于TVG方法,FH/DFH方法在二维连续性和随机性方面都有更好的性能,但其系统复杂度略高。
     (3)为了缩短发射机信号辐射时间,猝发通信中一般不能如常规差分跳频系统一样进行自适应频率集优化,而为了提高通信隐蔽性又必须保留差分跳频的宽带跳频特性,这就使跳频带宽内会以较大概率存在干扰信号。为了克服此问题,提出了一种适用于单站发射,多站守听的特定场景下隐蔽通信的抗干扰分集猝发差分跳频通信方法,利用空间分集技术实现干扰抑制。分别推导了无干扰和有干扰存在时系统的误符号性能,得到了多重求和形式的误符号率表达式,该结果便于采用数值方法求解。研究结果表明,在给定的跳频频率集中有一半的频点上存在与跳频信号瞬时功率相当的干扰信号时,采用分集阶数不低于4的分集猝发差分跳频系统仍可保证系统误符号率接近10-4。该技术是实现短波猝发通信的一种新思路。
Shortwave communication is one of the important ways to achieve over the horizon communication. As the shortwave channel is often corrupted by some poor properties such as multi-path fading and serious time-varying and the available bandwidth is relatively small, to achieve high data transmission speed has long been a hot concern in military communications. Differential frequency hopping (DFH) technology offers a new way of improving the rate of short-wave communication. Researches on anti-jamming and anti-interception technologies for DFH system are still inadequate. DFH is a wideband asynchronously receiving frequency hopping scheme and power detection is performed over all the frequencies of the hopping frequency set, therefore partial-band jamming may reduce the performance of DFH system severely. Signal detection and decoding algorithms proposed nowadays have their individual limitations. In terms of anti-interception, it is shown by related researches that DFH is not a communication scheme with low probability of interception (LPI). Any third party interception receivers can obtain the frequency transition matrix through the intercepted frequency sequence and jamming signal generated with the same frequency transition matrix may seriously damage the performance of DFH system. Studies on methods of improving the anti-interception performance of DFH system are necessary therefore. In addition, high data transmission speed capability of DFH system makes it a potential for shortwave burst communication, but anti-jamming design must be considered seriously for the special characteristics and requirements of DFH and burst communication.
     This paper focuses on studies on anti-jamming and anti-interception technologies used for DFH system. The main research contents and conclusions are listed as follows.
     (1) A novel anti partial band jamming (PBJ) DFH receiver based on noise normalization combining (NNC) is proposed. Symbol error rate (SER) of NNC-DFH receiver is derived with multiple fading conditions considered including non-fading, Rayleigh fading and the more general Nakagami-m fading. The inevitable non-ideal noise power estimation and its influence on system performance are also considered. It is shown that when jammed by non-worstcase jamming, NNC-DFH receiver is superior to linear combining (LC) receiver and product combining (PC) receiver except for the special condition when channel fading is weak and the jamming power is dispersed and the superiority increases with the concentration of the jamming power. When suffering worstcase jamming, NNC-DFH receiver is always superior to LC and PC DFH receiver over the studied fading conditions for any jamming bandwidth ratio. It is shown that when noise power estimation error is not great (0.1<λ<3,λis the estimation error factor), NNC-DFH receiver is superior to LC and PC DFH receiver when corrupted by worstcase PBJ. System with noise power a little lower estimated (0.2<λ< 0.6) outperforms that with ideal noise power estimation.
     (2) Anti-interception design criterions and the evaluation methods of vary anti-interception performance indexes are studied first. G-functions proposed by literates are classified and anti-interception performances of DFH systems applying different G-function are studied. After proving that normal DFH system can not achieve good two-dimensional continuity performance, two methods of improving anti-interception performance of DFH system are proposed including time varying G-Function (TVG) method and FH/DFH method which combines traditional frequency hopping with DFH. For TVG, an optimization criterion is provided and it is proved that DFH system using TVG method has good two-dimensional continuity performance in long observing period sense. For FH/DFH, after description of system model, one-dimensional uniformity and two-dimensional continuity performance is analyzed theoretically. Theoretical and simulation results validate the effectiveness of these two proposed methods in improving the anti-interception performance of DFH system. Comparing with TVG method, FH/DFH method is superior in two-dimensional continuity and randomness performance with the cost of inceread complexity of implementation.
     (3) To reduce the signal radiation time as much as possible, adaptive frequency set optimization are not applied in burst communication although which is often used in normal DFH system. On the other hand, wideband property should be reserved to enhance the communication concealment, but which will make many interferer signals unavoidable. An anti-jamming method based on multi antenna diversity is used in burst DFH communication system, which is suitable for the special application scene where there are single transmitter and multiple receivers. SERs of this system (jammed or not) are deduced in multi-dimensional addition style, which is easy to be evaluated. It is shown by these analyses that even when half of the frequencies are jammed with jamming power equal to the instantaneous signal power, a 10-4 SER can be obtained with the proposed system with diversity order not less than 4. This is a new approach of designing of shortwave burst communication system.
引文
[1]Danielson T, Ramos J. The operational use of an automated high frequency radio system incorporating automatic link establishment and single-tone serial modem technology for U.S. Navy ship-shore communications. in:Proc. of Military Communications Conference,1993. Boston, MA, USA:IEEE,1993.83-90.
    [2]Baker M, Robinson N P. Advanced HF digital networks. in:Proc. of IEEE Military Communications Conference,1991. Nissen, C. A.:IEEE,1991.929-933.
    [3]Birch S W, Davies N C. An advanced HF communications simulator. in:Proc. of Seventh International Conference on HF Radio Systems and Techniques. Nottingham, UK:1997.397-402.
    [4]Escrig B, Roviras D, Castanie F. HF channel parameters estimation. in:Proc. of First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications. Nottingham, UK:IEEE,1997.321-324.
    [5]Guidotti G, Marchesani R. High speed serial data modem with modified Viterbi decoders. in:Proc. of Sixth International Conference on HF Radio Systems and Techniques. York, UK:1994.159-163.
    [6]Cook S C, Gill M C, Giles T C. A high-speed HF parallel-tone modem. in:Proc. of Sixth International Conference on HF Radio Systems and Techniques. York, UK:1994.175-181.
    [7]Herrick D L, Lee P K, Ledlow L. L. J. Correlated Frequency Hopping:An Improved Approach to HF Spread Spectrum Communications. in:Proc. of Tactical Communication Conference 1996(TCC'96). Fort Wayne, USA:IEEE,1996.319-324.
    [8]姚富强.短波差分跳频有关系统及技术问题分析.电讯技术,2004,44(6):114-118.
    [9]Herrick D L, Lee P K. CHESS:A New Reliable High Speed HF Radio. in:Proc. of IEEE Military Communications Conference 1996(MILCOM'96). Mclean, Virginia, USA:IEEE,1996.684-690.
    [10]Ma Y, Liu K. A design of differential frequency hopping pattern. in:Proc. of International Conferences on Info-tech and Info-net,2001. Beijing, China:IEEE,2001.820-823.
    [11]梁富林,罗伟雄,张石磊.基于可逆整型哈希函数的差分跳频G函数算法.北京理工大学学报,2004,24(3):254-256,279.
    [12]姚富强,刘忠英.短波高速跳频CHESS电台G函数算法研究.电子学报,2001,29(5):664-667.
    [13]陈勇,赵杭生.差分跳频G函数算法的研究.通信学报,2006,27(10):100-105.
    [14]龚俐.差分跳频系统G函数研究及其性能分析:[硕士学位论文].成都:电子科技大学,2007.
    [15]易大进,杨千里.差分跳频码性能检验研究.海军工程大学学报,2006,18(3):84-88.
    [16]All Zibaee Nejad M R A, Designing a Multiple Access Differential Frequency Hopping System with Variable Frequency Transition Function, in WAMICON 2006:IEEE,2006.1-2.
    [17]Zhi C, Shaoqian L, Binhong D. A frequency transition function construction method of differential frequency hopping system. in:Proc. of IEEE 60th Vehicular Technology Conference. Clearwater Beach, FL:IEEE,2004.4692-4695.
    [18]潘武,周世东,姚彦.差分跳频通信系统性能分析.电子学报,1999,27(11A):102-104.
    [19]陈智,李少谦,董彬虹. AWGN下差分跳频通信系统的性能分析.信号处理,2006,22(6):891-894.
    [20]陈智.差分跳频通信系统的性能分析:[博士学位论文].成都:电子科技大学,2006.
    [21]陈智,李少谦,董彬虹.瑞利衰落信道下差分跳频通信系统的性能分析.电波科学学报,2007,22(1):126-129.
    [22]Mills D G, Egnor D E, Edelson G S. A performance comparison of differential frequency hopping and fast frequency hopping. in:Proc. of IEEE Military Communications Conference,2004. Monterey, CA:IEEE,2004.445-450.
    [23]陈智,李少谦,董彬虹.瑞利衰落信道下差分跳频通信系统抗部分频带噪声干扰的性能分析.高技术通讯,2006,16(8):778-783.
    [24]朱毅超,甘良才,熊俊俏,等.短波差分跳频系统抗部分频带干扰性能分析.电波科学学报,2006,21(6):885-890,909.
    [25]Zhi C, Shaoqian L, Binhong D. Performance of Differential Frequency Hopping System under Multitone Jamming. in:Proc. of Asia-Pacific Conference on Communications,2006. Busan, China: 2006.1-5.
    [26]Zhi C, Shaoqian L, Binhong D. Multitone Jamming Rejection of Differential Frequency Hopping System with Product-Combining Receiver Over Rayleigh-fading Channel. in:Proc. of 2006 International Conference on Communications, Circuits and Systems Proceedings.2006.893-897.
    [27]Zhi C, Shaoqian L, Binhong D. Partial Band Jamming Rejection of Differential Frequency Hopping System with Product-Combining Receiver Over Rayleigh-fading Channel. in:Proc. of IEEE International Conference on Communications.2006.5612-5616.
    [28]Zhu Y C, Gan L C, Lin J, et al. Performance of Differential Frequency Hopping Systems in a Fading Channel with Partial-Band Noise Jamming. in:Proc. of IEEE Wireless Communications, Networking and Mobile Computing Conference 2006(WiCOM'06). Wuhan, China:IEEE,2006. 1-4.
    [29]董彬虹,李少谦,陈智,等.差分跳频信号最佳接收机设计.电子科技大学学报,2003,32(5):530-534.
    [30]刘忠英,张毅,姚富强.基于STFT与G函数相结合的短波DFH跳检测方法.电子学报,2003,31(1):13-16.
    [31]Guangyi Z, Kaihua L, Zhu W. DSP-based signal processing for differential frequency hopping communications system. in:Proc. of Canadian Conference on Electrical and Computer Engineering, 2003. Montreal Canada:IEEE,2003.1573-1576.
    [32]Rui Z, Kaihua L. Symbol-by-symbol MAP detection of differential frequency hopping signals for PLC applications. in:Proc. of International Symposium on Power Line Communications and Its Applications,2005. Vancouver, Canada:2005.105-108.
    [33]Sui D, Ge L-d. A New Frequency Estimation Approach to DFH Signal with Periodogram and ARMA. in:Proc. of Fifth International Conference on Information, Communications and Signal Processing. Bangkok, Thailand:2005.739-742.
    [34]Xu X, Sui D, Hu H. A frequency estimation method of DFH signal based on periodogram and TLS. in:Proc. of 2005 International Conference on Communications, Circuits and Systems. Bangkok Thailand:2005.760-764.
    [35]Egnor D, Edelson G, Cazzanti L, et al. Multichannel combination investigations for differential frequency hopping transmissions in shallow water. The Journal of the Acoustical Society of America,2009,125(4):2581-2581.
    [36]Zhang G-p, Liu Y-y, Liang G-l, et al. Research on the demodulation of the underwater acoustic differential frequency-hopping signals based on adaptive notch filter. in:Proc. of Information and Automation (ICIA),2010 IEEE International Conference on Harbin 2010:1204-1207
    [37]Nejad A Z, Aref M R. On the Intelligent Eavesdropping of Differential Frequency Hopping. in: Proc. of IEEE Annual Wireless and Microwave Technology Conference,2006. Clearwater Beach, FL:IEEE,2006.1-5.
    [38]汲万峰,夏惠诚,朱永松.短波差分跳频系统抗干扰性能分析.现代防御技术,2006,34(6):79-82.
    [39]李天昀,胡宗云,葛临东.相关跳频通信系统安全性分析.电子科技大学学报,2006,35(3):305-308.
    [40]林永照,姚金满.短波跳频通信抗干扰性能分析.军事通信技术,1999,20(2):32-35.
    [41]田岩,苟彦新,孟庆微.对CHESS信号侦察干扰方案的探讨.中国电子科学研究院学报,2006,1(5):477480,485.
    [42]周运伟,赵荣黎,李承恕.差分跳频信号的存在性检测.铁道学报,2002,24(3):40-44.
    [43]朱永松,张海勇,汲万峰.跳频通信抗干扰性能分析.现代防御技术,2005,33(5):3741.
    [44]Jianqing M, Yiping Z, Shiyong Z. Frequency-hopping based secure schemes in sensornets. in:Proc. of The Fifth International Conference on Computer and Information Technology,2005. Shanghai, China:2005.459-463.
    [45]Egnor D, Cazzanti L, Hsieh J, et al. Underwater acoustic single-and multi-user differential frequency hopping communications. in:Proc. of IEEE Oceans Conference. Quebec City, Canada: IEEE,2008.1-6.
    [46]Chen Z, Li S, Dong B. Synchronous Multi-user Performance Analysis of Differential Frequency Hopping System Over Rayleigh-fading Channels. in:Proc. of 6th International Confenrence on ITS Telecommunication Proceedings. Washington, D.C., United States:2006.590-595.
    [47]Chen Z, Li S, Dong B, Asynchronous multiuser performance analysis of differential frequency hopping system, in IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications.2006, Helsinki, Finland:IEEE.1-6.
    [48]Mills D G, Edelson G S, Egnor D E. A multiple access differential frequency hopping system. in: Proc. of Military communications conference(MILCOM'03). Boston, USA.:IEEE,2003. 1184-1189.
    [49]赵丽屏,姚富强,李永贵.差分跳频组网及其特性分析.电子学报,2006,34(10):1888-1891.
    [50]周运伟,赵荣黎,李承恕.异步差分跳频扩谱多址系统的性能分析.铁道学报,2001,23(5):54-59.
    [51]Lei Y, Chunping H, Jufeng D, et al. Combined Signal Detection Method in Differential Frequency Hopping System. Transactions of Tianjin University,2007,13(3):215-219.
    [52]裴小东,何遵文,匡镜明Turbo-DFH迭代译码算法.电子科技大学学报,2007,36(1):57-59.
    [53]董彬虹,李少谦,陈智.基于TCM的差分跳频G函数设计方法.电子科技大学学报,2006,35(4):653-656.
    [54]粱富林,罗伟雄.差分跳频系统串行级联编码器的设计与改进译码.北京理工大学学报,2004,24(5):427-430.
    [55]李少谦,董彬虹,陈智.差分跳频通信原理与应用.成都:电子科技大学出版社,2007.
    [56]王龙庆.跳频通信中的同步技术研究.电子科技大学学报,2006.
    [57]曾洋,王永斌,屈晓旭.差分跳频技术应用于短波窄带猝发通信的研究.通信技术,2009,42(2):54-57.
    [58]Chen Z, Li S q, Dong B h. Performance Analysis of Differential Frequency Hopping System under Partial Band Noise Jamming. in:Proc. of The 8th IEEE International Conference on Signal Processing(ICSP 2006). Guilin, China:IEEE,2006.1-5.
    [59]Chen Z, Li S, Dong B. Performance Analysis of Differential Frequency Hopping System with Partial Band Noise Jamming Over Rayleigh-Fading Channels. in:Proc. of IEEE 64th Vehicular Technology Conference. Montreal, Que.:IEEE,2006.1-5.
    [60]陈智,李少谦,董彬虹.瑞利衰落信道下差分跳频通信系统抗多音干扰的性能分析.信号处理,2007,23(3):325-329.
    [61]陈智,李少谦,董彬虹.差分跳频通信系统抗部分频带噪声干扰的性能分析.电子与信息学报,2007,29(6):1324-1327.
    [62]朱毅超,甘良才,郭见兵,等.卷积码差分跳频系统抗部分频带干扰的性能.通信学报,2009,30(12):85-92.
    [63]陈智,李少谦,董彬虹.乘积合并接收的差分跳频通信系统在瑞利衰落信道上抗部分频带干扰的性能分析.电子与信息学报,2007,29(5):1163-1167.
    [64]Zhang J, Kah C T, Li K H. Rejection of Multitone Jamming for FFH/MFSK Spread-Spectrum Systems over Frequency-Selective Rayleigh-Fading Channels. in:Proc. of IEEE Vehicular Technology Conferenc,2008. Marina Bay, Singapore:IEEE,2008.688-692.
    [65]Ahmed S, Yang L-L, Hanzo L. Mellin-Transform-Based Performance Analysis of FFH M-ary FSK Using Product Combining for Combatting Partial-Band Noise Jamming. IEEE Transactions on Vehicular Technology,2008,57(5):2757-2765.
    [66]Teh K C, Kot A C, Li K H. Error Probabilities of an FFH/BFSK Self-Normalizing Receiver in a Rician Fading Channel with Multitone Jamming. IEEE Transactions on Communications,2000, 48(2):308-315.
    [67]Kurita N, Sasase I, Mori S. Suppression of narrow-band interference in FFH systems by hard-limited combining receiver using transversal filters. in:Proc. of IEEE International Conference on Selected Topics in Wireless Communications,1992. Vancouver, BC, Canada:1992: 445-448.
    [68]Robertson R C, Riley J F, Ha T T. Error probabilities of fast frequency-hopped FSK with ratio-statistic combining in a fading channel with partial-band interference. in:Proc. of San Diego, CA,USA.1992:1231-1235.
    [69]Zheng J-y, Zhu Y-S, Zhu L-p. Symbol Error Probability Analysis of an FFH/MFSK Receiver with Noise-Normalization Combining in a Fading Channel with Partial-Band Jamming. in:Proc. of IEEE Workshop on Signal Processing Systems 2007. Shanghai, China:IEEE,2007.377-382.
    [70]Clark R, Konstantinos T. Performance Analysis of BPSK Signals Transmitted over Slow, Flat, Nakagami Fading Channels with Pulse-Noise Interference and Modified Noise-Normalization of the Soft Receiver Output. in:Proc. of IEEE Military Communications Conference,2007. Orlando, FL, USA:IEEE,2007.1-6.
    [71]Char-Dir C, Ping-Chia H. Effects of fading and partial-band noise jamming on a fast FH/BFSK acquisition receiver with noise-normalization combination. IEEE Transactions on Communications, 1996,44(1):94-104.
    [72]董彬虹,李少谦,史锋旗.一种差分跳频码发生器的构造方法.电子与信息学报,2010,32(4):316-320.
    [73]李天昀,许漫坤,葛临东.相关跳频转移函数的双随机矩阵模型及其应用.电子与信息学报,2007,29(9):2182-2186.
    [74]甘良才,谢玲,朱毅超.一种基于云模型的短波差分跳频频率转移函数.电波科学学报,2006,21(4):571-575.
    [75]甘良才,吴双元.一种基于差分跳频转移函数的短波跳频码.电子与信息学报,2005,27(2):218-220.
    [76]张土根.世界舰船电子战系统手册.北京:科学出版社,2000.
    [77]Scholtz R. The Spread Spectrum Concept. IEEE Transactions on Communications,1977,25(8): 748-755.
    [78]隋丹李,葛临东.高分辨率差分跳频信号频率检测.信息工程大学学报,2004,5(4):89-92.
    [79]隋丹,葛临东.高斯噪声下差分跳频信号的高分辨率频率检测.电讯技术,2005,45(4):79-82.
    [80]Dan S, A New Frequency Estimation Approach to DFH Signal with Periodogram and ARMA, in ICICS 2005. Bangkok, Thailand,2005:739-742.
    [81]张伟.差分跳频自动链路建立及其同步技术研究:[硕十学位论文].成都:电子科技大学,2009.
    [82]Proakis J G. Digital Communications (Fourth Edition). New York, USA:McGraw-Hill,2001.
    [83]Ikki S S, Ahmed M H. Performance of cooperative diversity using equal gain combining (EGC) over Nakagami-m fading channels. IEEE Transactions on Wireless Communications,2009,8(2): 557-562.
    [84]Chen Z, Chi Z-j, Li Y-h, et al. Error performance of maximal-ratio combining with transmit antenna selection in flat Nakagami-m fading channels. IEEE Transactions on Wireless Communications, 2009,8(1):424-431.
    [85]Kragh; C R F. A Novel Approach to the Analysis of Diversity Receivers Corrupted by Partial-Band Noise Interference. IEEE Transactions on Communications,2008,56(8):1221-1224.
    [86]Simon M K, Alouini M-S. Digital Communication Over Fading Channels. New Jersey:John Wiley, 2000.
    [87]T.C. L, W. H, K.H. L. Rejection of partial-band noise jamming with FFH/BFSK product combining receiver over Nakagami-fading channel. IET Electronics Letters,1998,34(10):960-961.
    [88]Huo G, Alouini M S. Another look at the BER performance of FFH/BFSK with product combining over partial-band jammed Rayleigh-fading channels. IEEE Transactions on Vehicular Technology, 2001,50(5):1203-1215.
    [89]项飞,甘良才.短波差分跳频通信系统抗多音干扰的性能分析.武汉大学学报(理学版),2006,52(3):380-384.
    [90]朱毅超,甘良才,熊俊俏,等BICM在差分跳频系统中的应用.电波科学学报,2009,24(1):15-21.
    [91]陈智,李少谦,董彬虹,等.一种差分跳频系统的频率转移函数.电子科技大学学报,2003,32(5):525-529.
    [92]易大进,李瑞欣,杨千里.差分跳频图案性能检验探讨.铁道学报,2007,29(4):121-124.
    [93]杨裕亮,何遵文,匡镜明.差分跳频系统的转移函数研究.通信学报,2002,23(4):103-108.
    [94]易大进,杨千里.基于仿射密码原理的差分跳频频率转移函数研究.空军工程大学学报(自然科学版),2005,6(3):50-52.
    [95]刘忠英,姚富强.基于可加性模糊系统原理的差分跳频G函数算法.电子学报2002,30(5):647-650.
    [96]El-Wahed W F A, Ahmed H S, Hussein R M. New encryption schema based on swarm intelligence chaotic map. in:Proc. of The 7th International Conference on Informatics and Systems. Cairo, Egypt:2010.1-7.
    [97]朱秀林,胡用时,于奇CHESS系统中一种改进的G函数算法.重庆邮电学院学报(自然科学版),2005,17(4):444-446.
    [98]Lee J S, Miller L E, Kim Y K. Probability of Error Analyses of a BFSK Frequency-Hopping System with Diversity Under Partial-Band Jamming Interference-Part II:Perf ormance of Square-Law Nonlinear Combining Soft Decision Receivers. IEEE Transactions on Communications,1984, COM-32(12):1243-1250.
    [99]Robertson R C, Ha T T. Error probability of fast frequency hopped MFSK with noise-normalization combining in a fading channel with partial-band interference. IEEE Transactions on Communications,1992,40(2):404-412.
    [100]Zhu L P, Yao Y, Zhu Y S. Antijam performance of FFH/BFSK with noise-normalization combining in a Nakagami-m fading channel with partial-band interference. IEEE Communications Letters, 2006,10(6):429-431.
    [101]Chang Chung-Liang, Tu Te-Ming. Performance Analysis of FFH/BFSK Product-Combining Receiver With Partial-Band Jamming Over Independent Rician Fading Channels. IEEE Transactions On Wireless Communications,2005,4(6):2629-2635.
    [102]Robertson R C and Lee K Y. Performance of fast frequency-hopped MFSK receivers with linear and self-normalization combining in a Rician fading channel with partial-band interference. IEEE journal on seleced areas in communications,1992,10(4):731-741.
    [103]Robertson R C, Iwasaki H, Kragh M. Performance of a fast frequency-hopped noncoherent MFSK receiver with nonideal adaptive gain control. IEEE Transactions on Communications,1998,46(1): 110-114.
    [104]Zhang Jil-iang, Kah C T, Li K H. Suppression of partial-band-noise jamming for FFH/MFSK systems over frequency-selective Rician-fading channels. in:Proc. of International Symposium on Information Theory and Its Applications,2008. Auckland, New Zealand:2008.1-4.
    [105]Maljevic I Z, Dukic M I. Comparison of FFH FSK nonlinear combining receivers in a fading channel with partial-band interference. in:Proc. of IEEE 4th International Symposium on Spread Spectrum Techniques and Applications Proceedings. Germany:IEEE,1996.1273-1277
    [106]Nakagami M, The m-distribution-A general formula of intensity distribution of rapid fading. in: Statistical Methods in Radio Wave Propagation, W. G. Hoffman, Ed. Oxford, UK:Permagon Press, 1960:3-36.
    [107]Hamdi K A, Pap L. A unified framework for interference analysis of noncoherent MFSK wireless communications. Communications, IEEE Transactions on,2010,58(8):2333-2344.
    [108]Lei X, Beaulieu N C, Fan P. Precise MGF performance analysis of amplify-and-forward cooperative diversity in Nakagami-m fading. in:CWIT 2009, Ottawa, Canadian,2009:13-16.
    [109]Alouini M-S, Abdi A, Kaveh M. Sum of gamma variates and performance of wireless communication systems over Nakagami-fading channels. IEEE Transactions on Vehicular Technology,2001,50(6):1471-1480.
    [110]Jeffrey A, Zwillinger D. Table of integrals, series and products.7th ed. New York:Elsevier Pre Ltd., 2007.
    [111]卢开澄.组合数字(第3版).北京:清华大学出版社,2002.
    [112]Pham V H, Chouinard J Y, Semmar A, et al. On the channel and signal cross correlation of downlink and uplink mobile UHF DTV channels with antenna diversity. IEEE Transactions on Broadcasting,2010,56(2):235-248.
    [113]Kim Y G, Beaulieu N. A performance comparison of erasure tests with diversity reception for noncoherent M-ary FSK signaling. IEEE Transactions on Wireless Communications,2010,9(4): 1315-1325.
    [114]Jorgenson M B, Johnson R W, Blocksome R, et al. Implementation and On-Air Testing of a 64 kbps Wideband HF Data Waveform. in:Proc. of Military Communications Conference,2010(MILCOM 2010). San Jose, CA:IEEE,2010.645-650.
    [115]Liolis K, Panagopoulos A, Arapoglou P D M. An analytical unifying approach for outage capacity achieved in SIMO and MISO broadband satellite channel configurations. in:Proc. of 3rd European Conference on Antennas and Propagation(EuCAP 2009). Berlin:IEEE,2009.2911-2915.
    [116]Chen Y, Hu L, Yuen C, et al. Intrinsic measure of diversity gains in generalised distributed antenna systems with cooperative users. IET Communications,2009,3(2):209-222.
    [117]Crisp M J, Li S, Watts A, et al. Uplink and Downlink Coverage Improvements of 802.11g Signals Using a Distributed Antenna Network. Journal of Lightwave Technology,2007,25(11):3388-3395.
    [118]Zhang J, Teh K C, Li K H. Symbol Error probability analysis of FFH/MFSK receivers over frequency-selective Rician-fading channels with partial-band-noise jamming. Communications, IEEE Transactions on,2009,57(10):2880-2885.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700