MIMO双基地雷达目标参数测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MIMO双基地雷达是近年来提出来的一个新概念,对其理论和技术的研究已成为雷达领域的热点课题之一。由于结合了MIMO技术和双基地雷达的特点,MIMO双基地雷达具有反侦察、抗干扰、反隐身、对抗反辐射导弹的潜在优势,在未来雷达中具有广阔的应用前景。本文围绕MIMO双基地雷达中的目标参数测量理论和若干关键问题展开了深入研究,主要研究内容及成果如下:
     1、针对发射分集平滑算法存在的问题,提出了基于虚阵的双重平滑相参多目标估计算法。该算法首先对虚子阵进行平滑处理,然后在虚子阵之间进行平滑处理,最后通过特征值方法估计多个目标的方向。理论分析和仿真结果表明,该算法可进一步提高多目标角度估计的精度和分辨力,同时可估计更多的信源数。
     2、建立了MIMO双基地雷达多目标信号处理模型,提出了一种相干多目标角度-多普勒频率联合估计算法。该算法首先对MIMO接收机输出的虚拟阵列多目标回波数据进行解相干处理,然后基于传播算子构造特殊矩阵,通过特征参数与待测参数之间的对应关系,实现了多目标发射角、接收角和双基多普勒频率的联合估计。该算法不涉及多维非线性谱峰搜索,只需一次特征值分解,且估计出的参数可自动配对。仿真结果表明了所提出算法的正确性和有效性。
     3、为了估计多目标空间角度,建立了L型MIMO双基地雷达的信号模型,提出了一种L型阵列配置MIMO双基地雷达空间多目标定位方法。该方法利用L型接收阵列所包含的相对发射阵和接收阵的目标四维角度信息,先对接收信号进行解相干处理,然后根据DOA矩阵法的思想构造估计矩阵,通过特征参数与待估参数之间特定关系,导出了多目标四维角度联合估计算法公式,进而实现双基地雷达的空间多目标定位。该算法不涉及多维非线性谱峰搜索,计算量较小,且估计出的参数可自动配对。仿真结果表明了该算法的正确性和可行性。
     4、为了在没有同步信息情况下测量目标的距离、角度、多普勒频率,提出了一种基于LFM信号的MIMO双基地雷达的参数测量新方法。通过对正、负斜率LFM回波信号脉压后的峰值差实现多普勒频率的估计,通过目标反射的MIMO角度信息实现发射角和接收角的估计。目标位置通过所估计发射角、接收角和时延差得到。计算机仿真结果验证了所提出新算法的正确性和有效性。从便于工程应用角度出发,又提出一种单发射天线MIMO双基地雷达目标参数测量新方法。该方法在已知基线距离的条件下,收发之间无需进行时间、角度和频率同步,便可测得目标的全部参数。
     5、建立了发射-接收信号模型,推导了发射-接收等效方向图的表达式,给出了发射信号集的约束条件和信号集实例,提出SEA-MPPSO优化新算法并对发射-接收等效方向图进行赋形设计。仿真表明,采用该方法可以得到所需要的发射-接收等效波束形状。
     6、为了提高MIMO双基地雷达抗干扰能力,提出了MIMO最大信干噪比准则(MIMO-MSINR)、MMO最小均方误差准则(MIMO-MMSE)、MIMO阵列最小方差无畸变响应准则(MIMO-MVDR)下的MIMO双基地自适应波束形成算法。推导了三种算法公式,给出了算法步骤。仿真结果表明:MIMO双基地雷达自适应波束形成算法可有效地形成干扰零陷,系统抗干扰性能得到显著的改善。
MIMO bistatic radar is a new conception in recent years, and the research for its theory and technique has become one of hot problem in the domain of radar. Since it has both characteristics of MIMO technique and the bistatic radar, the MIMO bistatic radar is provided with the potential ability of the anti-reconnaissance,anti-jamming, anti-stealth and anti-radiation attack, and can be widely found application in the future radar. This dissertation is devoted to do researching in-depth on the target measurement theory and several key techniques in MIMO bistatic radar. The main contributions can be summarized as follows.
     1、In order to solve the problem in the algorithm of transmission diversity smoothing (TDS), an algorithm of virtual subarrays dual smoothing (VSDS) is proposed. First the smoothing processing of the echo signals in the virtual subarrays is carried out, then the smoothing processing between the virtual subarrays is done, finally the multitarget directions are estimated by the eigenstructure-based methods. The theoretical analysis and simulation results show that the performance of the proposed method is better than the TDS algorithm, and its maximum estimated targets can break through the limitation of the number of transmitters.
     2、A multitargets signal model of MIMO bistatic radar is set up and a joint angles-Doppler frequencies estimation algorithm for multitargets is proposed. In the algorithm, the virtual array data of multitarget echoes in MIMO receivers are firstly decorrelated, and a special matrix based on the propagation operator is then constructed, finally the joint estimation of the DODs, DOAs and Doppler frequencies can be obtained by the corresponding relationships between the eigenvalues or eigenvectors and the estimated parameters. The proposed algorithm does not need the multi-dimensional nonlinear peak search, and do only an eigenvalue decomposition, and the estimated parameters of the targets can be paired automatically. The correctness and effectiveness of the proposed method are verified with the computer simulation.
     3、In order to estimation the multitargets in space, the signal model for L shaped MIMO bistatic radar is set up and a novel method of multitarget localization in L shaped MIMO bistatic radar is proposed. Based on four angles information involved in L shaped receiving array from target to transmiter and receiver, the joint estimation algorithm for four angles of multitarget can be obtained by the following steps: decorrelating the array data of received echoes first, then constructing estimation matrix based on the DOA matrix method, finally using the given relationship between the eigenvalue and the estimated parameters. As a result, the multitarget localization in three dimensions is achieved in the bistatic radar. The proposed algorithm does not refer to multi-dimensional nonlinear peak search, and need only once eigenvalue decomposition, so that the computed load of the algorithm is low, and the estimated parameters of the targets can be paired automatically. The correctness and effectiveness of the proposed method are verified with the computer simulation.
     4、In order to measure the range, angle, and Doppler frequency of the target without any synchronization in the bistatic radar, a novel complete parameter estimation method based on separability of a pair of LFM signal is presented. The Doppler frequency is measured by the time difference between two peak positions corresponding to the positive and the negative LFM return signal respectively. DODs and DOAs of the target are estimated by the information involved in the returned MIMO signals. The target position can be located in the presence of the estimated DODs, DOAs and the signal delay difference between the echo and the directive wave signal in MIMO bistatic radar. The correctness and effectiveness of the proposed method are verified by the computer simulation. In order to implement in engineering, a novel complete parameter estimation method with single transmitting antenna for bstatic radar is presented. With this method the target parameters can be measured without any time, angle and frequency synchronization between transmitter and receiver.
     5、The transmitting-receiving signal model is set up and the expression of transmitting-receiving equivalent pattern has been derived. The restriction of set of transmitting signal and an example are presented. A method with SEA-MPPSO algorithm to designe the transmitting-receiving equivalent pattern has been proposed. The computer simulation results testify the validity of the method.
     6、In order to increase the anti-jamming ability of MIMO bistatic radar, the adaptive algorithms for beamforming with criterion of MIMO maximum signal to interference and noise ratio (MIMO-MSINR), MIMO minimum mean square error (MIMO-MMSE)、MIMO minimum variance distortionless response (MIMO-MVDR) have been presented. The formula of three algorithms are derived and the steps are also presented. The simulation results show that the jamming gap in the pattern can be effectively formed and the anti-jamming ablility evidently improved by the proposed algorithms.
引文
[1]杨振起,张永顺,骆永军.双(多)基地雷达系统[M].北京:国防工业出版社,1998.
    [2]D J Rabideau, P Parker,D Rabideau. Ubiquitous MIMO digital array radar[C]. Conference Record of the 37。 Asilomar Conference on Signals. Systems and Computers.2003:1057-1064.
    [3]Fishler E, Haimovich A, Blum R, et al. MIMO radar:An idea whose time has come [C], Radar Conference 2004 Proceedings of the IEEE. Philadelphia, Pennsylvania: Wyndham Philadelphia,2004:71-78.
    [4]Fishler E, Haimovich A, Blum R, et al. Performance of MIMO radar system s: advantages of angular diversity [C]. Conference Record of the Thirty2Eighth A silomar Conference on Signals, System and Computers. Pacific Grove, California: Mission Research Corporation,2004:7-10.
    [5]Jin M, Liao G S and Li J, Joint DOD and DO A Estimation for Bistatic MIMO Radar[J], IEEE Trans. Signal Processing,2009,89(2):244-251.
    [6]N.J.Willis and H.D.Griffiths. Advances in Bistatic Radar[M]. Raleigh, NC:SciTech Publishing Inc.,2007.
    [7]M.I.Skolnik. Radar Handbook[M],3rd ed New York:McGraw-Hill,2008.
    [8]Griffiths Hugh. New direction in bistatic radar[C]. Radar Conference,2008, RADAR'08, IEEE,2008.
    [9]Yajima M., Tsuchikawa K., Murakami T., et al. Study of a bistatic radar system using VLBI technologies for detecting space debris and the experimental verification of its validity [J]. Earth,Moon,and Planets,2007,100(1-2):57-76.
    [10]Wu Manqing, Ruan Xinchang, et al. An experimental S-band pulse chasing bistatic radar system-PCBRS-I[C]:Radar Conference,1995.,Record of the IEEE International,1995.
    [11]Himed B. Effects of bistatic clutter dispersion on STAP system [J].Radar, Sonar and Navigation,IEE Proceeding-,2003,150(1):28-32
    [12]Foschini G J. Layered space-time architecture for wireless communication in a fading environment when using multiple antennas [J]. Bell Labs Technical Journal, Jan.1996:41-59
    [13]Tarokh V., Seshadri N, Calderbank A R. Space-time codes for high data rate wireless communication:performance criterion and code construction [J]. IEEE Trans. on Information Theory,1998(2):744-765
    [14]Gesbert D., Bolcskei H., Gore D. A. et al. Outdoor MIMO wireless channels: models and performance prediction [J]. IEEE Transaction on Communication,2002, 50(12):1926-1934
    [15]Jensen,M. A, Wallace, J. W. A review of antennas and propagation for MIMO wireless communications [J]. IEEE Transactions on Antennas and Propagation, 2004,52(11):2810-2824
    [16]Sayeed, A. M. Deconstructing Multiantenna Fading Channels [J]. IEEE Transactions on Signal Processing,2002,50(10):2563-2579
    [17]Dorey J., Gamier G. and Auvray G. R.. Synthetic impulse and antenna radar [C]. International Conference on Radar, Paris,1989:556-562
    [18]张庆文,保铮,张玉洪.综合脉冲和天线雷达的时空三维匹配滤波及其性能分析[J].电子科学学刊,1994(5):481-489
    [19]陈伯孝,张守宏.基于稀布阵综合脉冲孔径雷达的长时间相干积累方法[J].电子科学学刊,1998(4):573-576
    [20]Chen B. X., Zhang S. H. and Wang Y. J. et al. Analysis and experimental results onsparse array synthetic impulse and aperture radar [C]. Proceeding of CIE International Radar Conference, Beijing, China,2001:76-80.
    [21]Rabideau D. J., Parker P.. Ubiquitous MIMO multifunction digital array radar [C]. Proceedings of 37th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, United States,2003:1057-1064
    [22]Robey F. C., Coutts S., Weikle D. et al. MIMO radar theory and experimental results [J]. Proceedings of the 38th Asilomar Conference on Signals, Systems and Computers,2004(1):300-304
    [23]何子述,韩春林,刘波.MIMO雷达概念及其技术特点分析[J].电子学报,2005,(12A):2441-2445
    [24]Fishier E, Haimovich A, Blum R et al.. Spatial diversity in radars:Models and detection performance [J]. IEEE Trans.on Signal Processing,2006(3):823-838
    [25]Li J., Stoica P.. MIMO radar with colocated antennas [J]. IEEE Signal Processing Magazine.2007(5):106-114
    [26]Xu L Z, Li, J. Iterative generalized-likelihood ratio test for MIMO radar[J]. IEEE Trans. Signal Processing,2007(6):2375-2385
    [27]Haimovich A. M., Blum R. S., Cimini L.. MIMO radar with widely separated antennas [J]. IEEE Signal Process. Magazine,2008(1):116-129
    [28]Li J, Petre Stoica.. MIMO radar signal processing [M]. John Wiley & Sons, Inc. 2009
    [29]M. Skolnik. Introduction to radar systems [M].3rd ed. New York:Mc-Graw-Hill, 2002.
    [30]Bliss D. W. and Forsythe K. W.. Multiple-input multiple-output (MIMO) radar and imaging:Degrees of freedom and resolution [C]. Proceedings of 37th Asilomar Conference on Signals, Systems and computers, Pacific Grove, CA,2003:54-59
    [31]Tabrikian J.. Barankin Bounds for Target Localization by MIMO Radars [C]. Proceedings of Fourth IEEE Workshop on Sensor Array and Multichannel, Waltham, MA,2006:278-281
    [32]Bekkerman I, Tabrikian J. Target detection and localization using MIMO radars and sonars [J]. IEEE Transactions on Signal Processing,2006,54(10):3873-3883.
    [33]Bekkerman I, Tabrikian J. Spatially coded transmission for active arrays [C]. Proceedings of International Conference On Acoustics, Speech, Signal Processing, Montreal, Canada,2004, vol.2:209-212.
    [34]Tabrikian J, Bekkerman I. Transmission diversity smoothing for multi-target localization [C]. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, PA:2005, Vol.4:1041-1044.
    [35]Sammartino P E. Target Model Effects on MIMO Radar Performance [C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France,2006, Vol.5:1127-1129.
    [36]Forsythe KW, Bliss D W, Fawcett G S. Multiple-Input Multiple-Output (MIMO) radar:Performance issues [C]. Proceedings of the 38th Asilomar Conference on Signals, Systems and Computers,2004 (1):310-315.
    [37]Chen C Y, Vaidyanathan P P. MIMO Radar Space-Time Adaptive Processing Using Prolate Spheroidal Wave Functions [J]. IEEE Trans. on Signal Processing, 2008(2):623-635.
    [38]Du C, Thompson J S, Petillot Y. Predicted detection performance of MIMO radar [J]. IEEE Signal Processing Letters,2008(15):83-86.
    [39]曾建奎,何子述.慢起伏目标的多输入多输出雷达检测性能分析[J].电波科学学报,2008(1):158-161.
    [40]戴喜增,彭应宁,汤俊.MIMO雷达检测性能[J].清华大学学报(自然科学版),2007(1):88-91.
    [41]Sheikhi A, Zamani A. Temporal coherent adaptive target detection for multi-input multi-output radars in clutter [J]. IET Radar, Sonar and Navigation,2008(2):86-96.
    [42]Lehmann N. H., Fishler E. Haimovich A.M. et al. Evaluation of transmits diversity in MIMO radar direction finding [J]. IEEE Trans. On Signal Process.:2007,55(5): 2215-2225
    [43]Dave Wilcox, Mathini Sellathurai and Tharmalingam Ratnarajah. A comparison of MIMO and phased array radar with the application of MUSIC [C]. Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, Nov.2007, 1529-1533
    [44]邵慧,田文涛,张浩等.MIMO雷达非均匀布阵的性能分析[J].雷达科学与技术,2008,4(8):247-252
    [45]夏威,何子述.APES算法在MIMO雷达参数估计中的稳健性研究[J].电子学报,2008,36(9):1084-1089
    [46]吴向东,赵永波,张守宏等.一种MIMO雷达低角跟踪环境下的波达方向估计新方法[J].西安电子科技大学学报(自然科学版),2008,35(5):793-798
    [47]江胜利,刘中,邓海.基于MIMO雷达的相干分布式目标参数估计的Cramer-Rao下界[J].电子学报,2009,37(1):101-107
    [48]赵光辉,陈伯孝,朱守平.基于SIAR体制的单基地MIMO雷达方向图综合及测角性能分析[J].中国科学E辑,2009,39(1):181-192
    [49]曲毅,廖桂生,李军等.MIMO雷达约束总体最小二乘改进算法[J].系统工程与电子技术,2009,31(2):319-312
    [50]王鞠庭,江胜利,刘中.复合高斯杂波中MIMO雷达DOA估计的克拉美-罗下限[J].电子与信息学报,2009,31(4):786-790
    [51]张娟,张林让,刘楠.MIMO雷达最大似然波达方向估计方法[J].系统工程与电子技术,2009,31(6):1292-1295
    [52]杨巍,刘峥.MIMO雷达波达方向估计的性能分析[J].西安电子科技大学学报(自然科学版),2009,36(5):819-826
    [53]江胜利,王鞠庭,何劲等.冲击杂波下的MIMO雷达的DOA估计方法[J].航空学报,2009,30(8):1454-1459
    [54]许红波,粟毅,黄春琳等.MIMO雷达的近场模型DOA估计[J].信号处理,2009,25(11):1710-1717
    [55]马鹏,王伟,张剑云.非合作源MIMO雷达的多目标定位与参数估计[J].安徽大学学报(自然科学版),2010,34(1):69-73
    [56]Hana G.,Alexander M. H.. Localization performance of coherent MIMO radar systems subject to phase synchronization errors [C]. IEEE Proceedings of the 4th International Symosium on Communications, Control and Signal Processing, Limassol, Cyprus, Mar.2010,214-218
    [57]许红波,王怀军,陆珉等.多通道雷达成像于DOA外场试验研究[J].系统工程与电子技术,2010,32(4):755-761
    [58]Zhang J., Zhang L. R. and Yang Z. W. al et.. Signal subspace reconstruction method of MIMO radar [J]. Electronics Letters,2010,46(7):531-533
    [59]Deng H. Polyphase code design for orthogonal netted radar systems. IEEE Trans. Signal processing,2004(11):3126-3135.
    [60]刘波.MIMO雷达正交波形设计及信号处理研究[D].电子科技大学,2008.
    [61]Stoica P, Li J, Xie Y. On probing signal design for MIMO radar [J]. IEEE Trans. Signal Processing,2007(8):4151-4161.
    [62]Li J, Stoica P. MIMO radar-diversity means superiority [C]. Proceedings of 14th Annu. Workshop Adaptive Sensor Array Processing. MIT Lincoln Laboratory, Lexington, MA, June 2006.
    [63]保铮,张庆文.一种新型米波雷达—综合脉冲孔径雷达.现代雷达,1995,(1)
    [64]DENG Hai. Discrete Frequency-Coding Waveform Design for Neted Radar Systems[J]. IEEE Signal Processing Letters,2004,11(2):179-182
    [65]Hammad, A. Khan and David, J. Edwards:Doppler problems in orthogonal MIMO radars [C], Proc. Int. Conf. on Radar, New York, USA, April 2006, pp.244-247
    [66]王敦勇,袁俊泉,马晓岩.基于遗传算法的MIMO雷达离散频率编码波形设计[J],空军雷达学院学报,2007,21(2):105-107
    [67]Yang Y. and Blum R. S.. Waveform Design for MIMO Radar Based on Mutual Information and Minimum Mean—Square Error Estimation [C].40th Annual Conference on Information Sciences and Systems,2006, Vol.1:111-116
    [68]Bo Liu Zishu He and Qian He. Optimization of discrete frequency codig waveform for MIMO radar [C]. IEEE Inte. Conf. Commun., Circuits and Systems (ICCCAS'07), Kokura, Fukuoka, Japan, June,2007,2:966-970
    [69]刘波,何子述.基于遗传算法的正交多相码设计[J].电子测量与仪器学报,2008,22(2):62-66
    [70]Bo Liu and Zishu He. Comment on'Discrete frequency-coding waveform design for netted radar systems'[J]. IEEE Signal Processing Letters,2008,15:449-451
    [71]刘波,韩春林,苗江宏.MIMO雷达正交频分LFM信号设计及性能分析[J].电子科技大学学报,2009,38(1):28-31
    [72]Emanuele G. and Marco L.. MIMO radar waveform design:a divergence-based approach for sequential and fixed-sample size tests [C].3rd IEEE International Workshop on Computational Adavances in Multi-Sensor Adaptive, Aruba, Dutch Antillel, Dec.,2009:165-168
    [73]Stephen Searle and Stephen Howard. Waveform design and processing for multichannel MIMO radar [C].2009 International Radar Conference, Bordeaux, Oct.,2009:1-6
    [74]Yang Yang, Rick S. Blum, Zishu He. Waveform design for MIMO radar via alternating projection [J]. IEEE Trans. On Signal Process.,2010,58(3):1440-1445
    [75]Satyabrata S. and Arye N.. OFDM MIMO radar with mutual-information waveform design for low-grazing angle tracking [J]. IEEE Trans. On Signal Process.,2010, 58(6):3152-3162
    [76]Xiufeng Song, Shengli Zhou and Peter Willett. Reducing the waveform cross correlation of MIMO radar with space-time coding [J]. IEEE Trans. On Signal Process.,2010,58(8):4213-4224
    [77]Ji Li, J. Conan and S. Pierre. Joint Estimation of Channel Parameters for MIMO Communication Systems [C].2nd International Symposium on Wireless Communication Systems.2005, pp:22-26.
    [78]Haidong Yan, Jun Li and Guisheng Liao, Multitarget Identification and Localization Using Bistatic MIMO Radar Systems[J].EURASIP Journal on Advances in Signal Processing.2008,8(2):1-8
    [79]Chen D F, Chen B X, and Qi G D. Angle estimation using ESPRIT in MIMO radar [J]. Electronics Letters,2008,44(12):770-771.
    [80]郑志东,张剑云.基于ESPRIT的MIMO雷达测向方法[J].雷达科学与技术,2009,7(3):205-210
    [81]陈金立,顾红,苏卫民.一种双基地MIMO雷达快速多目标定位方法[J].电子与信息学报,2009,31(7):1664-1668.
    [82]Liu Y. Wu M. Y. and Wu S. J.. Fast OMP algorithm for 2D angle estimation in MIMO radar [J]. Electronics Letters,2010,46(6):444-445
    [83]Zhang X. and Xu D.. Angle estimation in MIMO radar using reduced-dimension Capon [J]. Electronics Letters,2010,46(12):860-861
    [84]Liu X. L. and Liao G. S.. Multi-target localisation in bistatic MIMO radar[J]. Electronics Letters,2010,46(13):945-946
    [85]曲毅,廖桂生,朱圣棋等.MIMO雷达的目标运动方向及速度估计[J].西安电子科技大学(自然科学版),2008,35(5):781-786
    [86]秦国栋,陈伯孝,陈多芳等.双基地多载频MIMO雷达目标运动参数估计[J].系统工程与电子技术,2009,31(4):799-806
    [87]Chen Y. H.. Joint estimation of angle and Doppler frequency for bistatic MIMO radar [J]. Electronics Letters,2010,46(2):103-104.
    [88]吕晖,冯大政,和洁等.一种新的双基地MIMO雷达目标定位和多普勒频率估计方法[J].电子与信息学报,2010,32(9):2167-2171.
    [89]张贤达,保铮.通信信号处理[M].北京:国防工业出版社,2000:325-326
    [90]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004:107-110.
    [91]Pillai S U, Kwon B H. "Forward/backward spatial smoothing techniques for coherent signal identification", IEEE Trans. On ASSP,1989,37(1),8-15.
    [92]许红波,王怀军,陆珉等.一种新的MIMO雷达DOA估计方法[J].国防科技大学学报,2009,31(3):92-96.
    [93]W.Q.Wang,C.B.Ding, and X.D.Ling.Time and phase synchronization via direct-path signal for bistatic synthetic aperture radar systems. IET Radar Sonar Navigation,2008,2(1),1-11.
    [94]Griffiths,H.D..From a different perspective:principles, practice and potential of bistatic radar, Proc. International Conference RADAR 2003, Adelaide, Australia,Sept.2003,pp1-7
    [95]王超锋,尹锦荣,基于外辐射源雷达系统的目标定位算法[J],现代雷达,2006.10,pp18-20
    [96]Hugh Griffiths,Chris Baker. The signal and interference environment in passive bistatic radar[J], IEEE Information, Decision and Control,2007.
    [97]张永顺,童宁宁,赵国庆.雷达电子战原理[D],国防工业出版社,2006.1,pp.198-201
    [98]A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, The development of phased-array radar technology, Lincoln Lab. J.12(2):321-340 (2000).
    [99]C. A. Fowler, Old radar types never die; they just phased array, or...55 years of trying to avoid mechanical scan, IEEE AES Syst. Mag.24A-24L (Sept.1998).
    [100]B. Liu, Z. He, J. Zeng, and B. Liu, Polyphase orthogonal code design for MIMO radar systems, Proc. Int. Conf. Radar, CIE'06, Oct.2006, pp.1-4.
    [101]Zeng Xiangneng, Zhang Yongshun, Guo Yiduo. Polyphase coded signal design for MIMO radar using MO-MicPSO [J]. Journal of Systems Engineering and Electronics, accepted for publishing.
    [102]Kennedy J, Eberhart R. Particle swarm optimization [A]. Proc IEEE Int. Conf. on Neural Networks [C]. Perth,1995:1942-1948.
    [103]Shi Yuhui, Eberhart R. A modified particle swarm optimization [A]. Proc IEEE Int. Conf. on Evolutionary Computation [C]. Anchorage,1998:69-73.
    [104]Ray T, Liew K M. A swarm with an effective information sharing mechanism for unconstrained and constrained single objective optimization problems [A]. Proc IEEE Int. Conf. on Evolutionary Computation [C].Seoul,2001:75-80.
    [105]Daniel W, Boeringer, Douglas H, Wemer. Particle Swarm Optimization versus Genetic Algorithm for Phased Array Synthesis [J]. IEEE Transactions on Antenna and Propagation,2004,52:771-779
    [106]Buthainah Sabeeh No'man Al-kazemi. Multi-Phase Particle Swarm Optimization [D]. Syracuse University, May,2002.
    [107]C.L.DOLPH, A Current Distribution for Broadside Arrays Which Optimizes the Relationship between Beam Width and Side-Lobe Level. Proceedings of the I.R.E. and Waves and Electronics [J],1946:335-348.
    [108]Luca Marcaccioli Roberto Vincenti Gatti, Roberto Sorrentino. A novel phase-only method for shaped beam synthesis and adaptive nulling[C].33rd European Microwave Conference.2003. Munich.739-742.
    [109]陈如清,俞金寿.混沌粒子群混合优化算法的研究与应用[J].系统仿真学报,2008.20(3):685-688
    [110]张宇,王建新.MIMO雷达发射波束成形技术研究[J].南京理工大学学报,2008..32(3):356-359
    [111]王永良,丁前军,李荣峰,自适应阵列处理,国防工业出版社[M],2009.2:30-31
    [112]Harry L.Van Trees,Optimum Array Processing Part IV of Detection,Estimation,and Modulation Theory[M],John Wiley & Sons,Inc.,NewYork,清华大学出版社(中译本),2002:328-331

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700