具有优良刚性的增韧PA66的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚已二酰已二胺(polyamide 66,PA66),具有较高的刚性(拉伸屈服应力、弯曲弹性模量)、耐磨性、耐热性、耐化学介质等优良的性能,被广泛应用于机械、仪器仪表、汽车和其他交通工具等领域。为了适应多样化使用性能的要求,国内外对PA66的增韧、提高刚性进行了许多富有成效的研究工作。随着对使用性能要求的提高,PA66高性能化研究的热点集中于使其韧性和刚性同时提高。
     在总结分析PA66增韧、提高刚性机理及影响因素的基础上,本工作设计出韧性刚性同时显著提高的改性PA66应具有如下结构特征:在PA66中引入可以提高刚性的填充剂的同时,引入既能与PA66反应、又能与刚性填充剂表面反应,还具有增韧且基本不引起刚性降低功能的多功能成分,在能效应、熵效应的“驱使”下,多功能成分既能分散于PA66中,提高基体的韧性,又能富集于PA66与刚性填充剂之间,构筑成结合强度高的适度柔性的界面区。这种结构特征,避免了刚性界面易引发界而区基体树脂微裂纹化;受到外力作用时,能在基体树脂和刚性填充剂间很好的传递应力,充分发挥刚性填充剂提高刚性和强度的作用;基体树脂将以剪切屈服形变为主,强韧的界面区能有效地终止剪切形变和银纹化,具有很高的吸收冲击能的能力。
     基于此,本工作以聚丙烯、乙丙弹性体、丁苯弹性体、含有环氧官能团的架桥剂(G)、辅助架桥剂(S)等为主要原料,采用“聚合桥连接和反应性混配”的原理和技术研制出了反应性增切母料(reactive toughening master batch,RTMB),将PA66、RTMB和玻璃纤维(GF)经双螺杆挤出机熔融反应共混,制备出了PA66/RTMB/GF复合材料。采用分级提取、红外分析(IR)法、扫描电镜(SEM)、偏光显微镜(PLM)、热分析、力学性能测定等手段,对RTMB及PA66/RTMB、PA66/RTMB/GF复合材料的结构和性能进行了表征,得出了如下主要结果和结论:
     (1)RTMB由未反应的PP、弹性体,PP、弹性体与架桥剂的接枝共聚物,PP、弹性体由架桥剂形成的桥链连接的接枝共聚物,通过架桥剂的聚合桥链连接的PP、弹性体的交联共聚物,架桥剂的均聚物和共聚物等组成。
     (2)RTMB的含量对PA66/RTMB的力学性能有影响,当PA66/RTMB组成为84/16时综合力学性能最佳,拉伸屈服应力、弯曲弹性模量和悬臂梁缺口冲击强度分别是PA66的90%、84%和308%。
     (3)PA66/RTMB/GF复合材料中,RTMB中的坏氧官能团与PA66分子链上的胺基、羧基以及GF表面的胺基发生了化学反应,组分间形成了化学键连接;PA66基体与GF之间形成了适度柔性强的界面结合。
     (4)PA66/RTMB/GF中PA66的热结晶放热峰起始温度和峰项温度比原料PA66的提高了1.1℃和1.1~5.5℃;随着RTMB含量的增加,PA66的成核和结晶速率先增大后减小。GF能诱发PA66基体沿玻璃纤维表面形成横晶。
     (5)PA66/RTMB/EPDM/GF复合材料的力学性能与加工工艺密切相关:和GF先与PA66复合再与RTMB、EPDM复合的两步法,PA66先与RTMB、EPDM复合再与GF复合的两步法相比,采用PA66、GF、RTMB、EPDM一步复合法制得的复合材料的综合力学性能最好;与螺杆转速为40r/min、120r/min的相比,螺杆转速为90r/min时制得的复合材料的综合力学性能最好。
     (6)GF含量为20%时,随着RTMB含量的增加,PA66/RTMB/GF复合材料的拉伸屈服应力、弯曲弹性模量和悬臂梁缺口冲击强度先提高后降低;RTMB含量为10%时,随着GF含量的增加,PA66/RTMB/GF复合材料的综合力学性能逐渐提高,当PA66/RTMB/GF组成为60/10/30时,拉伸屈服应力、弯曲弹性模量和悬臂梁缺口冲击强度分别提高到原料PA66的1.73倍、2.72倍、3.86倍。
     (7)组成为60/20/20的PA66/RTMB/GF复合材料的热变形温度为201℃,比原料PA66的热变形温度(69.8℃)显著提高。
Poly(hexamethylene adipamide)(polyamide 66,PA66) exhibits excellent properties, such as high rigidity(tensile yield stress,flexural modulus),abrasion resistance,heat resistance,excellent chemical resistance etc.It has been widely used in machinery,electronic equipment,automobiles,and other fields.In order to enlarge the using ranges and satisfy the more requirements for performance,it is necessary to improve the toughness and rigidity of PA66 at the same time,a large number of fruitful researches have focused on the popular topics.
     Based on the analysis of mechanism of high toughness and rigidity,the works introduce the designing idea to improve toughness and rigidity of PA66 at the same time.The modified PA66 should be prepared through blending the pure PA66 with filler and multi-functional components.The filler can improve the rigidity of PA66.Multi-functional components not only react with PA66 and rigid filler surface,but also improve the toughness and maintained the rigidity simultaneously.Multi-functional components dispersing in PA66 improve the toughness of the matrix PA66,and concentrate in the interlayer between PA66 and rigid filler and form the moderate flexible interlayer with high interfacial adhesion by the effects of energy and entropy.The emergence of such structure can avoid that rigid interface induce the formation of micro-cracks of resin matrix in the interface area,transfer stress between the matrix resin and rigid filler,play completely the role of the rigid filler to enhance rigidity and strength.The resin matrix mainly exhibits shear yield deformation under the external forces,the good interface adhesion can effectively terminate shear deformation,crazing and absorb impact energy.
     Based on the above designs,the reactive toughening master batch(RTMB) was synthesized through the technique "grafting copolymerization,reactive blending" using PP, ethylene-propylene elastomer,styrene-butadiene rubber,containing epoxy functional groups of bridge agents(G) and auxiliary bridge agents(S).The PA66/RTMB/GF composites were prepared by thermal mechanical reactive blending.The structure and properties of RTMB, PA66/RTMB,PA66/RTMB/GF composites were investigated by means of fraction extraction, IR,SEM,PLM,DTA and mechanical properties measuring.The main results and conclusions are as follows:
     (1) The compositions of RTMB are composed of unreacted PP and elastomers,graft polymers of PP and elastomers with bridge agents,crosslinked copolymer of PP and elastomers,elastomers and elastomers by polymer bridge conjuction using bridge agents, homopolymer and copolymers of bridge agents.
     (2) The contents of RTMB have effect on the mechanical properties of PA66/RTMB.As the PA66/RTMB composition is 84/16,PA66/RTMB composite shows the excellent mechanical properties.The tensile yield stress(TYS),flexural modulus(FM) and notchod Izod impact strength(NIIS) of the PA66/RTMB composite are increased to 0.90time, 0.84times and 3.08 times as high as those of the pure PA66 respectively.
     (3) RTMB,GF and PA66 have chemical bonds through the chemical reaction between the epoxy functional group in RTMB,the bottom amide groups and carboxyl groups of PA66 chains and the amide groups in the GF surface.The moderate flexible interplay with high interfacial adhesion has been formed between the PA66 and GF.
     (4) The crystallization beginning and peak temperature of PA66 in PA66/RTMB/GF composite was increased 1.1℃and 1.1~5.5℃than those of pure PA66.With the content of RTMB increasing,PA66 nucleation and crystallization rate first increased and then decreased.GF can induce PA66 matrix to generate transcrystallization along the surface of GF.
     (5) The mechanical properties of PA66/RTMB/EPDM/GF composite are associated intimately with processing technology.Comparing with two-step methods of first blending GF and PA66 then RTMB and EPDM or first blending PA66,RTMB and EPDM then GF, the comprehensive mechanical properties of PA66/RTMB/EPDM/GF composite are best through one-step method;Comparing with screw speed of 40r/min,120r/min,the comprehensive mechanical properties of PA66/RTMB/EPDM/GF composite are best using screw speed of 90r/min.
     (6) As the GF content is 20%,with the content of RTMB increasing,the TYS,FM and NIIS of PA66/RTMB/GF composite were first increased and then decreased;As the RTMB content is 10%,with the content of GF increasing,the comprehensive mechanical properties of PA66/RTMB/GF composites increased gradually;As the PA66/RTMB/GF composition is 60/10/30,the TYS,FM and NIIS of the PA66/RTMB/GF composite are increased to 1.73 times,2.72 times and 3.86 times as high as those of the pure PA66 respectively.
     (7)As the PA66/RTMB/GF composition is 60/20/20,thermal deformation temperature of PA66/RTMB/GF composition is 201℃,which is obvious higher than that of the pure PA66(69.8℃).
引文
[1]MBS.World Congress of PA2000.Zurich:Mar 2000.23
    [2]福本修编.聚酰胺树脂手册.施祖培等泽.北京:中国石化出版社,1994,2
    [3]L.A.Utracki.History of Commercial Polymer Alloys and Blends.Polymer Engineering and Science,1995,35(1):1
    [4]贾娟花,苑会林.耐水解玻璃纤维增强尼龙66的制备及性能研究.工程塑料应用,2005,33(8):10-12
    [5]Kannan K.Short fiber-reinforced PA6 and ABS blends Mechanical properties and morphology.Int.Polym.Process,1994,9(2):92-104
    [6]刘相果,彭晓东,刘江,等.偶联剂对短玻纤增强PA66微观结构及性能影响研究.工程塑料应用,2003,31(7):1-4
    [7]刘广健,靳艳英,张西洋.池窑法玻璃纤维增强PA66性能研究.塑料,2005,34(2):56-59
    [8]王旭,胡燕,唐伟,等.玻纤增强PA66复合材料的耐乙二醇性能研究.塑料工业,2006,34(4):29-32
    [9]刘义,张建纲,荣树茂,等.MAH-g-POE及玻璃纤维对尼龙66的改性研究.石化技术与应用,2007,25(2):138-141
    [10]刘亚庆,董娟.高抗冲玻纤增强尼龙66的研制.塑料科技,2002,(3):16-18
    [11]崔欣,王静江.增强增韧尼龙66汽车专用料的性能研究.塑料工业,2007,35(4):62-65
    [12]B.Mouhmida,A.Imada,N.Benseddiqa,et al.A study of the mechanical behaviour of a glass fibre reinforced polyamide 6,6:Experimental investigation.Polymer Testing,2006,(25):544-552
    [13]S.Barbouchi,V.Bellenger,A.Tcharkhtchi,et al.Effect of water on the fatigue behaviour of a pa66/glass fibers composite material.J Mater Sci,2007,(42):2181-2188
    [14]Liping Li,Bin Li,Fei Tang.Influence of maleic anhydride-grafted EPDM and flame retardant on interfacial interaction of glass fiber reinforced PA-66.European Polymer Journal,2007,(43):2604-2611
    [15]V.Bellenger,A.Tcharkhtchi,Ph.Castaing.Thermal and mechanical fatigue of a PA66/glass fibers composite material.International Journal of Fatigue,2006,(28):1348-1352
    [16]J.L.Thomason.Structure-Property Relationships in Glass-Reinforced Polyamide,Part1:The Effects of Fiber Content.POLYMER COMPOSITES,2006,10:552-562
    [17]彭树文.碳纤维增强尼龙66的研究.工程塑料应用,1998,26(9):5-7
    [18]杨世英,陈栋传,鲍靖.工程塑料手册.北京:中国纺织出版社,1994:69-131
    [19]李丽,王海庆,孙玉璞,等.碳纤维增强尼龙66的研究.98全国高分子材料工程应用研讨会论文集,1998
    [20]Z.KOR1NEK,J.STEIDL,CH.PLASKOS.Impact properties of short carbon fiber reinforced polyamide after different treatments.JOURNAL OF MATERIALS SCIENCE LETTERS,2000,(19):729-731
    [21]Plastics World.1985,44(7):35
    [22]吕家桢,冯新,张云灿,等.钛酸钾晶须增强尼龙66时的偶联与造粒.南京化工大学学报,2001,23(1):27-29
    [23]杨宁,贵大勇,田军.晶须增强尼龙66及其合金力学性能研究.塑料,2006,35(2):14-17
    [24]Xiangyang Hao,Guosheng Gai,Fangyun Lu,et al.Dynamic mechanical properties of whisker/PA66composites at high strain rates.Polymer,2005,(46):3528-3534
    [25]王文广.塑料配方技术.北京:化学工业出版社,1998
    [26]陈妍,张鹏远,陈建峰,等.纳米改性氢氧化铝/尼龙66复合材料的制备及其力学性能的研究.塑料,2004,33(3):54-57
    [27]王东红,石玉.纳米SiC/PA66复合材料的研究.化工新型材料,2004,32(2):11-12,18
    [28]卢会敏,徐翔民,李小红,等.两次挤出制备尼龙66(o|¨)纳米SiO2复合材料及其结构与性能.高分子材料科学与工程,2007,23(3):182-185
    [29]李洪潮,田敏,张颖新,等.改性蛭石粉体填充PA66微观结构及性能影响研究.矿产保护与利用,2008,(5):17-20
    [30]Xiangrnin Xu,Binjie Li,Huimin Lu,et al.The interface structure of nano-SiO2/PA66 composites and its influence on material's mechanical and thermal properties.Applied Surface Science,2007:1-7
    [31]Xiaohui Liu,Qiuju Wu.Polyamide 66/Clay Nanocomposites via Melt Intercalation.Macromol.Mater.Eng,2002,(287):180-186
    [32]Park Min Gyoo,Sriram Venkataramani,Sung Chul Kiln.Morphology,Thermal,and Mechanical Properties of Polyamide 66/Clay Nanocomposites with Epoxy-Modified Organoclay.Journal of Applied Polymer Science,2006,(101):1711-1722
    [33]Kumar,B.N.R.,Suresha,B.,Venkataramareddy,M..Effect of particulate fillers on mechanical and abrasive wear behaviour of polyamide66/polypropylene nanocomposite.Materials and Design,2009,(10):1016
    [34]王雪芹,李滨耀.硅灰石填充尼龙66的力学性能.应用化学,1995,12(4):84-86
    [35]赵文聘,黄平,徐长旭.超细针状硅灰石短纤维在尼龙66中的应用.塑料科技,2005,(2):33-34
    [36]贾娟花,苑会林,夏文广.硅灰石填充改性尼龙66的研究.塑料,2005,34(6):10-14
    [37]Wu S.Phase structure and adhesion in polymer blends:a criterion for rubber toughening.Polymer,1985,26:1855-1863
    [38]夏胜利,何晓春.POE官能化及其增韧PA66的研究.南通职业大学学报,2007,21(2):92-95
    [39]丁雪佳,王军,徐日炜,等.超细全硫化胶粉/PA66共混体系的动态力学性能研究.塑料,2004,33(5):48-51
    [40]李学峰.用MAH改性PE和IEPDM增韧PA66及增韧机理分析.抚顺石油学院学报,1997,17(3):22-26
    [41]C B Bucknall,A Lazzeri.Rubber toughening of plastics.Part ⅫⅠ:Dilatational yielding in PA66/EPR blends.Journal of Materials Science,2000,(35):427-435
    [42]张明,张云灿,吕忆农.相容性对PA66/POE共混材料形态、微结构及力学性能的影响.复合材料学报,2005,22(5):113-119
    [43]王丽妹,王益龙,陈振宇,等.PE-g-MAH增容PA66/POE的形态与性能.合成树脂与塑料,2007,24(3):67-70
    [44]AJ Oshinski,H Keskkula,DR Paul-Polymer.Rubber toughening of polyamides with functionalized block copolymers.Pt.2:nylon-6,6.Polymer,1992,33(22):284-293
    [45]Roohollah Dermanaki Farahani,Abmad Ramazani S.A.Melt preparation and investigation of properties of toughened Polyamide 66 with SEBS-g-MA and their nanocom.Materials and Design,2008,(29):105-111
    [46]李学,何杰,刘明德,等.增韧尼龙66的结构分析.工程塑料应用,1993,21(4):42-44
    [47]张保卫,崔燕,孙锡龙.EVA接枝马米酸酐增韧聚酰胺66.塑料科技,2003,(4):24-26
    [48]刘卫平.PA6/POE超韧合金的形态和性能,现代塑料加工应用,1998,10(3):8-10
    [49]Paul D R et al.Polymer,1987,(28):1073-1083
    [50]吕彦梅,唐华杰.刚性增韧材料.塑料科技,1999,(1):33-37
    [51]王文广主编.塑料改性实用技术.北京:中国轻工业出版社,2000:321
    [52]卢会敏,徐翔民,李小红,等.尼龙66/纳米SiO2复合材料的形态和力学性能.塑料工业,2006,34(4):48-50
    [53]Xaohui Liu,Qiuju Wu.Polyamide 66/Clay Nanocomposites via Melt Intercalation.Macromolecular Materials and Engineering,2002,287(3):180-186
    [54]田敬华,张明连,刘波,等.PPO/PA66合金接枝增容剂的制备及性能研究.橡塑技术与装备,2002,28(8):1-5
    [55]欧阳文斌,程奎,沈经纬.SMA增容PPO/PA66合金的结构与性能Ⅱ.力学和耐热性能.中国塑料,2002,16(6):19-22
    [56]沈经纬,欧阳文斌,阮文红.SMA增容PPO/PA66合金的结构与性能Ⅰ相形态和结晶结构.中国塑料,2002,16(5):25-29
    [57]冯威,李佐邦,胡洋,等.PPO-g-MA对PPO/PA66共混物的原位增容作用.合成树脂与塑料,1999,16(5):31-34
    [58]张师军,顺觉生.SEBS-g-MAH对PPO/PA66相容性影响的研究.塑料工业,2001,29(3):23-24
    [59]李海东,程凤梅,王宇明,等.聚丙烯的官能化及其与尼龙66相容性研究.工程塑料应用,2003,31(3):5-7
    [60]顾书英,马广华,罗源.马米酸酐改性聚丙烯与尼龙6共混物的性能.塑料科技,2000,138(4):1-4
    [61]张增民.PA66/PP共混合金力学性能的研究.塑料,1995,24(3):29-32
    [62]A Sacchi,LD Landro,M Pegoraro,et al.Morphology of isotactic polypropylene-polyamide 66blends and their mechanical properties.European Polymer Journal,2004,40(88):1705-1713
    [63]张师军,张薇,尹华,等.聚丙烯接枝甲基丙烯酸缩水甘油酯对尼龙66/聚丙烯合金增容作用的研究.石油化工,2004,33(5):455-459
    [64]Shishan Wu,Bo Chi,Han Yan,et al.A Study of LLDPE Functionalized through Ultraviolet Irradiation and Interfacial Interaction of PA66/Functionalized LLDPE Blends.Journal of Applied Polymer Science,2006,(99):2029-2032
    [65]SC Wong,YW Mai.Effect of rubber functionality on microstructures and fracture toughness of impact-modified nylon 6,6/polypropylene blends:1.Structure—property relationships.Polymer (Netherlands),1999,(40):1553-1566
    [66]Zhaobin Chen,Tongsheng Li,Xujun Liu,et al.Friction and wear mechanisms of Polyamide66/High Density Polyethylene Blends.Polymer Physics,2005,43:2514-2523
    [67]Borg Warner公司技术资料
    [68]Monsnto公司技术资料
    [69]傅荣政,谢文炳.SMPAH在PA6/ABS合金中的相容化作用研究.工程塑料应用,1998,26(2):23-26
    [70]Claude L,et al.Advances in Polymer Technology,1999,18(3):255
    [71]Kitayama N,Keskkula H,Paul DR.Reactive compatibilization of nylon rene-acrylonitrile copolymer blends.Part 1.Phase inversion behavior.Polymer,2000,41(22):8041-8052
    [72]Kitayama N,Keskkula H,Paul DR.Reactive compatibilization of nylon 6/styrene-acrylonitrile copolymer blends.Part 2.Dispersed phase particle size.Polymer,2000,41(22):8053-8060
    [73]Kitayama N,Keskkula H,Paul DR.Reactive compatibilization of nylon styrene-acrylonitrile copolymer blends Part 3.Tensile stress-strain behavior.Polymer,2001,42(8):3751-3759
    [74]王经武编著.塑料改性技术.北京:化学工业出版社,2004,237
    [75]吉青,乔宝福,赵得禄.高分子的溶度参数理论[J].物理学报,2007,56(3):1815-1818
    [76]B.A.Miller-Chou,J.L.Koenig.A review of polymer dissolution[J].Progress in Polymer Science,2003,28(8):1223-1270
    [77]L.F.Chen,B.Wong,W.E.Baker.Melt grafting of glycidyl methacrylate onto polypropylene and reactive compatibilization of rubber toughened polypropylene.Polymer Engineering and Science,1996,36(12):1594-1607
    [78]B.Boutevin,J.M.Lusinchi,Y.Pietrasanta,et al.Improving poly(ethylene terephthalate)/high-density polyethylene blends by using graft copolymers.Polymer Engineering and Science,1996,36(6):879-884
    [79]Zhang Hongjie,Wang Jingwu,Cao Shaokui,et al.Toughened Polypropylene with Balanced Rigidi(Ⅰ):Preparation and Chemical Structure of Toughening Master Batch.Polymers for Advanced Technologie,2000,11(7):334-341
    [80]W.Y.Chiang,W.D.Yang.Polypopylene Composites,Ⅰ:Sudies of the Effect of Grating of Acrylic Acid and Solane Coupling Agent on the Performance of Polypropylene Mica Composites.Journal of Applied Polymer Science,1988,35(3):807-823
    [81]T.Inoueo.Selective crosslinking in polymer blends.Ⅱ.Its effect on impact strength and other mechanical properties of polypropylene/unsaturated elastomer blends.Journal of Applied Polymer Science,1994,54(6):723-733
    [82]T.Inoueo,S.Tokuhito.Selective Crosslinking Reaction in Polymer Blends.Ⅲ.The Effects of the Crosslinking of Dispersed EPDM Particles on the Impact Behavior of PP/EPDM blends.Journal of Applied Polymer Science,1995,56(9):1113-1125
    [83]唐萍,曾邦禄,唐军,等.化学交联聚丙烯的研究.高分子材料科学工程,1997,13(1):18-21
    [84]Y.J.Sun,G.H.Hu,M.Lambla.Free radical grafting of glycidyl methacrylate onto polypropylene in a corotating twin screw extruder[J].Journal of Applied Polymer Science,1995,57(9):1043-1054
    [85]薛奇.高分子结构研究中的光谱方法.北京:高等教育出版社,1995,36-54
    [86]T.M.谢缅维奇主编.聚合物物理化学手册.第三卷.北京:中国石化出版社,1995,34-39,259-264
    [87]Zhang Hongjie,Wang Jingwu,Li Jing,ec al.Toughened Polypropylene with Balanced Rigidity(Ⅲ):Compositions and Mechanical Properties.Journal of Applied Polymer Science,2001,79(8):1345-1350
    [88]董炎明编著.高分子分析手册.北京:中国石化出版社,2004,271-274
    [89]Wu S.Phase structure and adhesion in polymer blends:a criterion for rubber toughening.Polymer,1985,26:1855-1863
    [90]Wu Souheng.A generalized criterion for rubber toughening:The criterion matrix ligament thickness.Journal of Applied Polymer Science,1988,35:549-562
    [91]S Newman,S Strella.Stress—strain behavior of rubber-reinforced glassy polymers.Journal of Applied Polymer Science,1965,9(6):2297-2312
    [92]S Strella.Rubber reinforcement of glassy polymers.Journal of Applied Polymer Science,1966,4(3):527-528
    [93]CB Bucknall,D Clayton,WE Keast.Rubber-toughening of plastics.Journal of Materials Science,1972,7:1443-1453
    [94]王经武编著.塑料改性技术.北京:化学工业出版社,2004,261-289
    [95]牛艳华,吴智华.玻纤增强热塑性复合材料界面结晶行为的研究进展.工程塑料应用,2004,32(1):68-71
    [96]Chang-kwon Moon.Effect of molecular weight and fiber diameter on the interfacial behavior in glass fiber/PP composites.Journal of Applied Polymer Science,1998,67(7):1191-1197

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700