磺化6-羧基壳聚糖的制备、表征及血液相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳聚糖具有聚阳离子电解质的特性,作为血液接触材料时容易吸附血细胞形成血栓或使血细胞膜变形而发生溶血。本研究将壳聚糖氧化制备成6-羧基壳聚糖,再将-SO3H基团接枝到6-羧基壳聚糖分子上制备磺化6-羧基壳聚糖,并系统研究了6-羧基壳聚糖和磺化6-羧基壳聚糖结构、理化性质和血液相容性。
     首次观察到在碱性环境中沉淀析出的β-壳聚糖分子具有平行链形成的微纤结构;建立了在冰乙酸介质中,以NO2氧化多孔壳聚糖分子中C6位羟甲基制备6-羧基壳聚糖的方法,一次反应氧化度可达47%,由于冰乙酸介质可部分吸收在反应过程中生成的水,明显降低了氧化降解等副反应。
     系统研究了6-羧基壳聚糖的理化性质。6-羧基壳聚糖具有两性聚电解质的通性,当6-羧基壳聚糖的脱乙酰度85%、氧化度37%时,其等电点pI=4.9。6-羧基壳聚糖的血液相容性明显高于壳聚糖,6-羧基壳聚糖膜可在不明显降低壳聚糖膜断裂强度的前提下大大提高壳聚糖膜的血液相容性。制备了具有选择性吸附性能的6-羧基壳聚糖均匀颗粒,可有效地吸附尿酸、马尿酸和肌酐,而不吸附牛血清蛋白。
     制备了与天然抗凝血材料肝素分子结构相似的磺化6-羧基壳聚糖,-SO3H基团以共价键优先联在6-羧基壳聚糖分子中的氨基上、其次是二级羟基、第三是一级羟基。发现了-COOH和-SO3H对抗凝血性能的协同效应,通过控制-COOH和-SO3H的比例得到其抗凝血活性与肝素钠相当的磺化6-羧基壳聚糖钠盐,硫含量为10.5%的磺化6-羧基壳聚糖钠盐的抗凝血活性与肝素钠(含硫10.1%)相当,有望作为价格昂贵的抗凝血材料——肝素的替代物。
Chitosan is a nature polysaccharide having similar structure with cellulose. Because of its polycation electrolyte characteristics, chitosan could easily adsorb erythrocytes and thrombocytes, which carried negative charges on the surface, to form thrombus or cause hemolysis when it contacted with blood. In this paper, the microfibers inβ-chitosan sample were observed for the first time. In addition, chitosan was oxidized to 6-carboxychitosan; further more, sulfo groups were grafted on it in formamide medium to give sulfated 6-carboxylchitosan. The structures, properties and blood compatibilities of 6-carboxychitosan and sulfated 6-carboxylchitosan were studied.
     By dispersing porous chitosan powder in glacial acetic acid, the hydroxymethyl groups of chitosan were successively oxidized to carboxyl groups with NO2 gas to form 6-carboxychitosan. Because glacial acetic acid could soak into porous chitosan powder and absorbed the water produced in the oxidization process, not only the degree of oxidization (DO) of hydroxymethyl groups in 6-carboxychitosan might reach to 47%, much higher than did in other mediums such as tetrachloromethane, water etc, but also the oxidative degradation reaction of chitosan could be weakened obviously. The 6-carboxychitosan has the common characteristics of an amphoteric polyelectrolyte, When the DO and degree of deacetylation of 6-carboxychitosan was 37% and 85%, respectively, the isoelectric point (pI) value of 6-carboxychitosan is 4.9. All antithrombosis test, hemolysis test, and blood cell morphology observation with SEM revealed that 6-carboxychitosan had superior blood compatibility to chitosan. By dipping chitosan films in saturated NO2-glacial acetic acid solution, the hydromethyl groups on the film surface could be oxidized to carboxyl groups without decreasing obviously tensile strength of the films. The blood compatibilities of the modified chitosan films were superior to chitosan ones. By crosslinking 6-carboxy-chitosan with glutaraldehyde, 6-carboxy-chitosan spheres were obtained. 6-Carboxy-chitosan spheres, having no adsorption for albumin, were good adsorbent for some uremic toxins such as uric acid, hippuric acid, etc.
     6-Carboxychitosan was sulfated with chlorosulfonic acid in formamide to give sulfated 6-carboxylchitosan. In sulfated 6-carboxylchitosan, -SO3H groups were primarily grafted on–NH2, next on secondary–OH, and thirdly on–CH2OH positions. With the content of sulfur in sodium salt of sulfated 6-carboxylchitosan increased, the anticoagulation activity of it increased slowly when the content not more than 4.2%, and rapidly when the content more than 4.2%. When the content of sulfur in sodium salt of sulfated 6-carboxylchitosan was 10.5%, the anticoagulation activity of it was similar with heparin sodium (The content of sulfur was 10.1%). The sodium salt of sulfated 6-carboxylchitosan was more similar with heparin sodium than sodium salt of sulfated chitosan did in both structure and anticoagulation activity.
引文
[1] Freier T, Koh HS, Kazazian K, et al. Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials, 2005,26(29):5872~5878.
    [2] Di Martino A, Sittinger M, Risbud MV. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials, 2005;26(30):5983~5990.
    [3] Shahidi F, Abuzaytoun R. Chitin, chitosan, and co-products:chemistry, production, applications, and health effects. Adv Food Nutr, 2005,49:93~135.
    [4] 周永国,齐印阁,王秀娟,等.壳聚糖金属离子吸附尿素性能研究. 中国生物化学与分子生物学报,1999,(4):677~679.
    [5] 周永国,杨越冬,郭学民,等.核-壳型壳聚糖磁性微球的制备、表征及其靶向给药研究. 应用化学,2002,(19): 1178~1182
    [6] Gonzalez-Rodriguez ML, Holgado MA, Sanchez-Lafuente C, et al. Alginate/chitosan particulate systems for sodium diclofenac release. Int J Pharm. 2002,232(1-2):225-34.
    [7] 王虹,袁直,刘小航,等. 尿毒症中分子毒物吸附剂的研究. 中国科学(B辑),2001,(31):298~304.
    [8] Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery.J Control Release, 2004,100(1):5~28.
    [9] Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems. J Control Release, 2003,89(2):151~165.
    [10] Norazril SA, Aminuddin BS, Norhayati MM, et al. Comparison of chitosan scaffold and chitosan-collagen scaffold: A preliminary study. Med J Malaysia, 2004,59(Suppl B):186~187.
    [11] Prabaharan M and Mano JF. Chitosan-based particles as controlled drug delivery systems. Drug Delivery, 2005,12(1):41~57.
    [12] Uchegbu IF, Sadiq L, Arastoo M, et al. Quaternary ammonium palmitoyl glycol chitosan: A new polysoap for drug delivery. Intl J Pharm,2001,224(1-2):185~199.
    [13] Mao S, Shuai X, Unger F,et al. Synthesis,characterization and cytotoxicity of poly(ethylene glycol)-grafttrimethyl chitosan block copolymers.Biomaterials, 2005,26(32):6343~6356.
    [14] Danielsen S, Strand S, de Lange Davies C,et al. Glycosaminoglycan destabilization of DNA-chitosan polyplexes for gene delivery depends on chitosan chain length and GAG properties.Biochim Biophys Acta, 2005,1721(1-3):44~54.
    [15] Mansouri S, Lavigne P, Corsi K, et al. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: Strategies to improve transfection efficacy. Eur J Pharmaceutics Biopharmaceutics, 2004,57(1):1~8.
    [16] Gingras M, Paradis I, Berthod F. Nerve regeneration in a collagen-chitosan tissue-engineered skin transplanted on nude mice. Biomaterials, 2003,24(9):1653~1661.
    [17] Ge Z, Baguenard S, Lim LY,et al. Hydroxyapatitechitin materials as potential tissue engineered bone substitutes.Biomaterials, 2004,25(6):1049~1058.
    [18] Park DJ, Choi BH, Zhu SJ,et al. Injectable bone using chitosan-alginate gel/mesenchymal stem cells/BMP-2 composites. J Cranio-Maxillofacial Surg, 2005,33(1):50~54.
    [19] Hutmacher DW, Schantz T, Zein I,et al.Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res, 2001,55(2):203~216.
    [20] Iwasaki N, Yamane ST, Majima T, et al. Feasibility of polysaccharide hybrid materials for scaffolds in cartilage tissue engineering:Evaluation of chondrocyte adhesion to polyion complex fibers prepared from alginate and chitosan. Biomacromolecules, 2004,5(3):828~833.
    [21] Hsu SH, Whu SW, Hsieh SC,et al.Evaluation of chitosan-alginate-hyaluronate complexes modi-fied by an RGD-containing protein as tissue-engineering scaffolds for cartilage regeneration. Artif Organs, 2004,28(8):693~703.
    [22] Lee JE, Kim KE, Kwon IC, et al. Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold.Biomaterials.2004,25(18):4163~4173.
    [23] Kim SE, Park JH, Cho YW, et al. Porous chitosan scaffold containing microspheres loaded with transforming growth factor-beta1: Implications for cartilage tissue engineering. J Control Release, 2003,91(3):365~374.
    [24] Shi CM, Zhu Y, Ran XZ,et al. Therapeutic Potential of Chitosan and Its Derivatives in Regenerative Medicine, Journal of Surgical Research,2006, 133(2): 185~192.
    [25] Mori T, Murakami M, Okumura M, et al. Mechanism of macrophage activation by chitin derivatives, J Vet Med Sci, 2005,67(1):51~56.
    [26] Cuy JL, Beckstead BL, Brown CD,et al. Adhesive protein interactions with chitosan: Consequences for valve endothelial cell growth on tissue-engineering materials. J Biomed Mater Res A, 2003,67(2):538~547.
    [27] VandeVord PJ, Matthew HW, DeSilva SP, et al. Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res, 2002,59(3):585~590.
    [28] Hsieh CY, Tsai SP, Wang DM,et al. Preparation of gamma-PGA/chitosan composite tissue engineering matrices.Biomaterials, 2005,26(28):5617~5623.
    [29] Batista MKS, Pinto LF, Gomes CAR,et al. Novel highly-soluble peptide–chitosan polymers:Chemical synthesis and spectral characterization, Carbohydrate Polymers ,2006,64 :299~305.
    [30] Ishihara M, Nakanishi K, Ono K, et al. Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials, 2002,23(3):833~840.
    [31] Obara K, Ishihara M, Ishizuka T, et al. Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials,2003,24(20):3437~3444.
    [32] Loke WK, Lau SK, Yong LL,et al. Wound dressing with sustained anti-microbial capability. J Biomed Mater Res, 2000,53(1):8~17.
    [33] Muzzarelli RA, Guerrieri M, Goteri G, et al. The biocompatibility of dibutyryl chitin in the context of wound dressings. Biomaterials, 2005,26(29):5844~5854.
    [34] Ueno H, Yamada H, Tanaka I, et al. Accelerating effects of chitosan for healingat early phase of experimental open wound in dogs. Biomaterials, 1999,20(15):1407~1414.
    [35] Kojima K, Okamoto Y, Kojima K, et al. Effects of chitin and chitosan on collagen synthesis in wound healing. J Vet Med Sci, 2004,66(12):1595~1598.
    [36] Cho YW, Cho YN, Chung SH,et al. Water-soluble chitin as a wound healing accelerator. Biomaterials, 1999,20(22): 2139~2145.
    [37] Mi FL, Wu YB, Shyu SS, et al. Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery. Biomed Mater Res, 2002,59(3):438~449.
    [38] Joo HY,Kwang GL,Ho CK,et al. The Effects of PVA/Chitosan/Fibroin (PCF)-Blended Spongy Sheets on Wound Healing in Rats. Biol Pharm Bull,2000,23(10): 1220~1223.
    [39] Hu SG, Jou CH, Yang MC. Protein adsorption, fibroblast activity and antibacterial properties of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) grafted with chitosan and chitooligosaccharide after immobilized with hyaluronic acid. Biomaterials, 2003,24(16):2685~2693.
    [40] Rabea EI, Badawy ME, Stevens CV, et al. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules,2003,4(6):1457~1465.
    [41] 郑连英,朱江峰,孙昆山. 壳聚糖的抗菌性能研究,材料科学与工程,2000,18(2): 22~24.
    [42] Ormrod DJ , Holmes CC , Miller TE. Dietary chitosan inhibits hypercholesterolaemia and atherogenesis in the apolipoprotein E-deficient mouse model of atherosclerosis. Atherosclerosis,1998,138(2): 329~334.
    [43] Zhu X, Chian KS, Chan-Park MB, Lee ST. Effect of argonplasma treatment on proliferation of human-skin-derived fibroblast on chitosan membrane in vitro. J Biomed Mater Res A, 2005,73(3):264~274.
    [44] Desai PD, Dave AM, Surekha D. Alcoholysis of salicornia oil using free and covalently bound lipase onto chitosan beads. Food Chemistry,2006,95:193~199.
    [45] Horton D and Just E K. Preparation from chitosan of (1→4)-2-amino-2-deoxy-β -D-glucopyranuronan and its 2-sulfoamino analog having blood-anticoagulant properties. Carbohydrate Research, 1973, (29): 173~179.
    [46] Lillo LE and Matsuhiro B.Chemical modifications of carboxylated chitosan,Carbohydrate Polymers,1997,(34): 397~401.
    [47] Yoo SH, Lee JS, Park S Y,et al. Effects of selective oxidation of chitosan on physical and biological properties, International Journal of Biological Macromolecules, 2005, (35): 27~31.
    [48] Terada N,Morimoto M,Saimoto H,et al.Regioselective synthesis and biological activity of oxidized chitosan,Polymers for Advanced Technologies(Polym Adv Technol),2003,( 14):40~51.
    [49] Drozd NN, Sher AI, Makarov VA, et al. Comparison of antithrombin activity of the polysulphate chitosan derivatives in vivo and in vitro system. Thromb Res, 2001, (102):445~455.
    [50] Jayakumar R, Nwe N, Tokura S,et al. Sulfated chitin and chitosan as novel biomaterials, International Journal of Biological Macromolecules,2007,40(3):175~181.
    [51] Muzzarelli RA, Tanfani F, Emanuelli M, et al. Sulfated N-(carboxymethyl) chitosans: novel blood anticoagulants. Carbohydr Res, 1984, (126): 225~231.
    [52] Chandy T and Rao G.H, Evaluation of heparin immobilized chitosan-PEG microbeads for charcoal encapsulation and endotoxin removal. Artif Cells Blood Substit Immobil Biotechnol, 2000, 28 (1): 65~77.
    [53] Begona CG and Ruth D. Evaluation of the biological properties of soluble chitosan and chitosan microspheres. Int J Pharm, 1997,(148): 231~240.
    [54] Kaifu K,Nishi N,Komai T. Preparation of hexanoyl, decanoyl, and dodecanoylchitin. J Polym Sci,1981,19: 2361~2363.
    [55] Hirano S, Yagi Y. The effects of N-substitution of chitosan and the physical form of the products on the rate of hydrolysis by chitinase from Streptomyces griseus. Carbohydr Res,1980,83(1): 103~108.
    [56] Moore GK, Roberts GA F. Reactions of chitosan: 2. Preparation and reactivity of N-acyl derivatives of chitosan. Int J Biol Macromol,1981,3(5): 292~296.
    [57] Wu YS, Seo T, Sasaki T. Layered structures of hydrophobically modified chitosan derivatives, Carbohydrate Polymers,2006, 63:493~499.
    [58] Lee KY, Ha WS, Park WH. Blood compatibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials,1995,16(16):1211~1216.
    [59] Hirano S,Midorikawa T. Novel method for the preparation of N-acylchitosan fiber and N-acylchitosan-cellulose fiber. Biomaterials,1998,19(1-3): 293~297.
    [60] 王小红,马建标,何炳林. 甲壳素、壳聚糖及其衍生物的应用.功能高分子学报,1999,12(2): 197~202.
    [61] Lorenzo-Lamosa ML, Rennan-Lopez C, Vila-Jato JL, et al. Design of microencapsulated chitosan microspheres for colonic drug delivery. J Control Rel, 1998, 52(1-2): 109~118.
    [62] Sato M,Onishi H,Kitano M,et al. Preparation and drug release characteristics of the conjugates of mitomycin C with glycol-chitosan and N-succinyl-chitosan. Biol Pharm Bull,1996,19(2): 241~245.
    [63] Tong YJ, Wang SF, Xu JW,et al, Synthesis of O,O-dipalmitoyl chitosan and its amphiphilic properties and capability of cholesterol absorption, Carbohydrate Polymers. 2005 ,60: 229~233.
    [64] 韦 萍, 王爱勤, 刘 斌,等. 改性壳聚糖膜在兔眼中的降解及组织病理学观察,中国生化药物杂志,2004,25(3):133~135.
    [65] 郭开宇,赵谋明. 甲壳素/壳聚糖的研究进展及其在食品工业中的应用,食品与发酵工业,2000,26(1): 59~64.
    [66] Muzzarelli RAA. Chitin in Nature and Technology Plenum Press. New York and London,1986.
    [67] Doczi J,Fishman A, King JA. Direct evidence of the influence of sulfamic acid linkages on the activity of heparin-like anticoagulants. J Am Chem Society,1953,75: 1512~1513.
    [68] Hirano S,Tanaka Y, Hasegava M, et al. Effect of sulfated derivatives of chitosan on some blood coagulant factors. Carbohydr Res,1985,137: 205~215.
    [69] Ormrrod DJ , Holmes CC , Miller TE. Dietary chitosan inhibits hypercholesterolaemia and atherogenesis in the apolipoprotein E-deficient mouse model of atherosclerosis. Atherosclerosis,1998,138(2): 329~334.
    [70] Nishimura SI, Kai H, Shinada K, et al. Regioselective syntheses of sulfated polysaccharides: specific anti-HIV-1 activity of novel chitin sulfates. Carbohydr Res, 1998, 306(3): 427~433.
    [71] Hirano S, Yamaguchi Y, Mitsutomo Kamiya.Water-Soluble N-(n-Fattyacyl)chitosans , Macromolecular Bioscience, 2003,3(10):1616~5187.
    [72] Nishi N,Ebina A,Nishimura S,et al. Highly phosphorylated derivatives of chitin, partially deacetylated chitin and chitosan as new functional polymers: preparation and characterization. Int J Biol Macromol,1986,8(5): 311~317.
    [73] Werle M, Hoffer M. Glutathione and thiolated chitosan inhibit multidrug resistance P-glycoprotein activity in excised small intestine. Journal of Controlled Release, 2006,111 (1-2):41~46.
    [74] 王爱勤,俞贤达. 烷基化壳聚糖衍生物的制备与性能研究,功能高分子学报,1998,11(1):83~86.
    [75] Li DH, Liu LM, Tian KL,et al. Synthesis, biodegradability and cytotoxicity of water-soluble isobutylchitosan. Carbohydrate Polymers, 2007,67: 40~45.
    [76] 代昭,孙多先,郭瑶. 十六烷基壳聚糖纳米微球负载紫杉醇的研究.中草药,2003,34(2):120~122.
    [77] 吴雁,王亦农,马建标. 水溶性壳聚糖降血脂作用的化学机理(Ⅰ)──水溶性壳聚糖及其衍生物对胆酸盐的结合能力研究. 高等学校化学学报,2004,25 (4): 757~761.
    [78] Kotze AF,Thanon MM,luebetaen HH,et al. Enhancement of paracellular drug transport with highly quaternized N-trimethyl chitosan chloride in neutral environments: in vitro evaluation in intestinal epithelial cells (Caco-2). J Pharm Sci,1999,88(2): 253~257.
    [79] Muslim T,Morimoto M,Saimoto H,et al. Synthesis and bioactivities of poly(ethylene glycol)-chitosan hybrids. Carbohydrate Polymers,2001,46:323~330.
    [80] Chen Q,Liu SQ,Du YM,et al. Carboxymethyl-chitosan protects rabbit chondrocytes from interleukin-1beta-induced apoptosis. Eur J Pharmacol, 2006 ,541(1-2):1~8.
    [81] Wongpanit P, Sanchavanakit N, Pavasant P. Preparation and characterization of microwave-treated carboxymethyl chitin and carboxymethyl chitosan films for potential use in wound care application. Macromol Biosci, 2005 ,5(10):1001~1012.
    [82] Chen XG,Wang Z, Liu WS,et al. The effect of carboxymethyl-chitosan on proliferation and collagen secretion of normal and keloid skin fibroblasts.Biomaterials,2002,23(23):4609~4614.
    [83] 方波,宋道云,陈鸿雁,等. 微球型壳聚糖胺基吸附剂的制备及性能,化工科技,2000,8(3): 20~23.
    [84] Muzzarelli R, Tarsi R, Filippini O, et al. Antimicrobial properties of N-carboxybutyl chitosan .Antimicrob Agents Chemother, 1990, 34(10): 2019~2023.
    [85] Muzzarelli RAA, Zucchini C, Ilari P, et al. Osteoconductive properties of methylpyrrolidinone chitosan in an animal model.Biomaterials, 1993, 14: 925~929.
    [86] Rinaudo M, Desbrie`res J, Le Dung P, et al. NMR investigation of chitosan derivatives formed by the reaction of chitosan with levulinic acid. Carbohydrate Polymers, (2001), 46(4): 339~348.
    [87] Hoven VP, Tangpasuthadol V, Angkitpaiboon Y,et al. Surface-charged chitosan: Preparation and protein adsorption.Carbohydrate Polymers,2007,68(1):44~53.
    [88] Sui WP, Yin CQ, Chen YJ, et al. Self-assembly of an amphiphilic derivative of chitosan and micellar solubilization of puerarin. Colloids and Surfaces B: Biointerfaces ,2006,48 :13~16.
    [89] Kogan G, Skoyik YA, Zitnanova I,et al. Antioxidant and antimutagenic activity of N-(2-carboxyethyl)chitosan. Toxicol Appl Pharmacol,2004,201(3): 303~310.
    [90] Sun T, Xie WM, Xu PX. Superoxide anion scavenging activity of graft chitosan derivatives. Carbohydrate Polymers, 2004, 58 : 379~382.
    [91] Je JY and Kim SK. Reactive oxygen species scavenging activity of aminoderivatized chitosan with different degree of deacetylation. Bioorganic & Medicinal Chemistry, 2006, 14 :5989~5994.
    [92] Kweon DK,Kang DW. Drug-release behavior of chitosan-g-poly(vinyl alcohol) copolymer matrix. J Appl Polym Sci,1999,74(2): 458~464.
    [93] 魏晓红,梁文权. 基因载体 PEG 化壳聚糖的制备及其表征.中国现代应用药学杂志,2003,20(5):383~385.
    [94] Sashiwa H,Makimura Y,Shigemasa Y,et al. Chemical modification of chitosan: preparation of chitosan–sialic acid branched polysaccharide hybrids.Chem Commun,2000,11: 909~910.
    [95] Jung BO,Kim CH,Choi KS,et al. Preparation of amphiphilic chitosan andtheir antimicrobial activities. J Appl Polym Sci,1999,72(13): 1713~1719.
    [96] Park IK,Ihm JE,Park YH,et al. Galactosylated chitosan (GC)-graft-poly(vinyl pyrrolidone) (PVP) as hepatocyte-targeting DNA carrier. Preparation and physicochemical characterization of GC-graft-PVP/DNA complex (1).J Control Rel,2003,(86): 349~359.
    [97] Risbud M,Hardikar A,Bhonde R.Growth modulation of fibroblasts by chitosan-polyvinyl pyrrolidone hydrogel: implications for wound management .J Biosci, 2000,25(1):25~31.
    [98] Risbud M,Hardikar A,Bhonde R. Chitosan-polyvinyl pyrrolidone hydrogels as candidate for islet immunoisolation: in vitro biocompatibility evaluation. Cell Transplant, 2000, 9(1):25 ~31.
    [99] Krishna Rao KSV, Vijaya Kumar Naidu B, Subha MCS,et al. Novel chitosan-based pH-sensitive interpenetrating network microgels for the controlled release of cefadroxil. Carbohydrate Polymers, 2006, 66: 333~344.
    [100]Sangamesh G. Kumbar, Tejraj M. Aminabhavi. Synthesis and Characterization of Modified Chitosan Microspheres: Effect of the Grafting Ratio on the Controlled Release of Nifedipine through Microspheres,Journal of Applied Polymer Science, 2003, 89: 2940~2949.
    [101]Mahdavinia GR, Zohuriaan-Mehr MJ, Pourjavadi A. Modified chitosan III, superabsorbency, salt- and pH-sensitivity of smart ampholytic hydrogels from chitosan-g-PAN. Polym Adv Technol, 2004, 15: 173~180.
    [102] Dos Santos KSCR, Coelho JFJ, Ferreira P. Synthesis and characterization of membranes obtained by graft copolymerization of 2-hydroxyethyl methacrylate and acrylic acid onto chitosan. International Journal of Pharmaceutics,2006, 310(1-2):37~45.
    [103]王亚敏,石庭森,蒲永林,等. 顺铂壳聚糖微球的制备及特性研究.药学学报,1996,31(4): 300~305.
    [104]Ganza A,Anguiano-Igea S,Otero-Espinar F J,et al. Chitosan and chondroitin microspheres for oral-administration controlled release of metoclopramide. Euro J Pham Bio,1999,48(2): 149~155.
    [105]Chuang WY,Young TH,Yao CH,et al. Properties of the poly(vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro.Biomaterials,1999,20: 1479~1487.
    [106]孙立苹,杜予民,陈凌云,等. 羧甲基壳聚糖水凝胶制备及其在药物控释中的应用.高分子学报,2004,(2):191~195.
    [107]Zhao ZP, Wang Z, Wang SC. Formation, charged characteristic and BSA adsorption behavior of carboxymethyl chitosan/PES composite MF membrane.Journal of Membrane Science, 2003, 217 :151~158.
    [108]Miao J, Chen GH, Gao CJ. A novel kind of amphoteric composite nanofiltration membrane prepared from sulfated chitosan (SCS ). Desalination,2005, 181:173~183.
    [109]El-Sherbiny IM, Lins RJ, Abdel-Bary EM, et al. Preparation, characterization, swelling and in vitro drug release behaviour of poly[N-acryloylglycine-chitosan] interpolymeric pH and thermally-responsive hydrogels. European Polymer Journal,2005, 41:2584~2591.
    [110]El-Sherbiny IM, Abdel-Bary EM, Harding DRK. Swelling Characteristics and In Vitro Drug Release Study with pH- and Thermally Sensitive Hydrogels Based on Modified Chitosan. Journal of Applied Polymer Science, 2006,102: 977~985.
    [111]Whistler RL, Kosil M. Anticoagulant activity of oxidized and N- and O-sulfated chitosan. Arch Biochem Biophys,1971,142(1): 106~110.
    [112]Zhou YG,Yang YD,Wang DJ,et al. Preparation and characterization of 6-carboxychitosan. Chem Lett,2003,32(8): 682~683.
    [113]Zhou YG,Yang YD,Chuo HM,et al.Preparation and rheological behaviors of 6-carboxy-chitosan. J Appl Polym Sci,2004,94(3): 1126~1130.
    [114]Terada N,Morimoto M,Saimoto H,et al. Regioselective synthesis and biological activity of oxidized chitosan. Polymers for Advanced Technologies,2003,14:40~51.
    [115]Yilmaz E, Adali T, Yilmaz O,et al. Grafting of poly(triethylene glycol dimethacrylate) onto chitosan by ceric ion initiation. Reactive & Functional Polymers, 2007,67(1):10~18.
    [116]Hu-Lin Jiang , You-Kyoung Kim , Rohidas Arote,et al. Chitosan-graft-polyethylenimine as a gene carrier. Journal of Controlled Release,2007,117 (2):273 ~280.
    [117]Yoo SH, Lee JS, Park SY, et al. Effects of selective oxidation of chitosan on physical and biological properties. International Journal of Biological Macromolecules,2005, 35: 27~31.
    [118]徐辉碧,黄开勋. 硒的化学,生物化学及其在生命科学中的应用.华中理工大学出版社,1994.
    [119]崔胜云,崔善花,池善女,等. 硒化甲壳胺的制备及性质.延边大学学报,2002,28(3):171~175.
    [120]陈盛,林曦,郑斌华. 锌与甲壳胺络合物的制备.应用化学,1998,15(4):65~67.
    [121]Xie M,Liu HH,Chen P, et al. CdSe/ZnS-labeled carboxymethyl chitosan as a bioprobe for live cell imaging. Chem Commun(camb), 2005, 28(44):5518~5520.
    [122]曹轩,胡舜钦,沈国励,等. 基于壳聚糖-溴化氰改性褐藻酸钠凝集作用的日本血吸虫安培免疫传感器.高等学校化学学报,2003,24(8):1377~1380.
    [123]张文涛,卢世壁,王继芳,等. 组织工程软骨移植修复兔膝关节软骨缺损.中华外科杂志,1998,36:591~593.
    [124]雄鹰,付颖丽,于炜婷,等. 海藻酸钠/壳聚糖微胶囊包埋人卵巢癌细胞腹腔移植的实验研究.中华器官移植杂志,2003,24(2):86~88.
    [125]余贯华,计剑,王东安,等. 两种新型聚氨酯涂层材料的血液相容性研究.生物医学工程学杂志,2004,21(2):184~187.
    [126]Khairoun I,Deriessens FCM,Boltong MG,et al. Addition of cohesion promotors to calcium phosphate cements. Biomaterials,1999,20(4):393~398.
    [127]Zhao L, Xu L, Mitomo H, et al. Synthesis of pH-sensitive PVP/CM-chitosan hydrogels with improved surface property by irradiation. Carbohydrate Polymers, 2006,64 :473~480.
    [128]Kumbar SG.,Tejraj M. Aminabhavi. Synthesis and Characterization of Modified Chitosan Microspheres: Effect of the Grafting Ratio on the Controlled Release of Nifedipine through Microspheres. Journal of Applied Polymer Science, 2003, 89: 2940~2949.
    [129]Courtney JM , Lamba NM, Sundaram S, et al. Biomaterials for blood-contacting applications. Biomaterials,1994,15(10):737~744.
    [130]Hirano S,Zhang M, Nakagawa M,et al. Wet spun chitosan-collagenfibers, their chemical N-modification and blood compatibility. Biomaterials,2000,21:997~1003.
    [131]Mao C, Yuan J, Mei H,et al. Introduction of photocrosslinkable chitosan to polyethylene film by radiation grafting and its blood compatibility.Materials Science and Engineering C, 2004, 24: 479~485.
    [132]Amiji MM. Surface modification of chitosan membranes by complexation-interpenetration of anionic polysaccharides for improved blood compatibility in hemodialysis.J Biomater Sci Polym Ed,1996,8(4):281~98.
    [133]Beena MS,Chandy T,Sharma CP. Heparin immobilized chitosan--poly ethylene glycol interpenetrating network: antithrombogenicity.Artif Cells Blood Substit Immobil Biotechnol,1995,23(2):175~92.
    [134]Wang XH, Li DP, Wang WJ,et al. Covalent immobilization of chitosan and heparin on PLGA surface.International Journal of Biological Macromolecules,2003,33(1-3):95~100.
    [135]Wang X,Yan Y,Lin F,et al. Preparation and characterization of a collagen/chitosan/heparin matrix for an implantable bioartificial liver. J Biomater Sci Polym Ed,2005,16(9):1063~1080.
    [136]Chupa JM, Foster AM, Sumner SR,et al. Vascular cell responses to polysaccharide materials in vitro and in vivo evaluations. Biomaterials,2000,21(22):2315~2322.
    [137]Zhu AP, Zhang M, Shen J.Blood compatibility of chitosan/heparin complex surface modified ePTFE vascular graft.Applied Surface Science,2005,241:485~492.
    [138]Andersson M, Lofroth,Jan Z.Small particles of a heparin/chitosan complex prepared from a pharmaceutically acceptable microemulsion.Int J Pharm,2003,257(1):305~309.
    [139]Zhu AP, Zhang M, Wu J, et al. Covalent immobilization of chitosan/heparin complex with a photosensitive hrtero-bifunctional crosslinking reagent on PLA surface.Biomaterials,2002,3(23):4657~4665.
    [140]谭庆刚 , 林全愧 , 范德增,等. 去质子化调控的肝素/壳聚糖抗凝血多层膜.高等学校化学学报,2006,27(4):787~789.
    [141]Lin WC, Lin TY, Yang MC, et al. Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate. Biomaterials,2004,25(10):1947~1957.
    [142]Schatz C,Bionaz A,Lucas JM,et al.Formation of polyelectrolyte complex particles from self-complexation of N-sulfated chitosan. Biomacromolecules, 2005,6(3):1642~1647.
    [143]Mariappan MR,Alas EA,Williams JG,et al. Chitosan and chitosan sulfate have opposing effects on collagen-fibroblast interactions.Wound Repair Regen,1999,7(5):400~406.
    [144]Muzzarelli RAA, Tanfani F, Emanuelli M, et al. Chitin in Nature and Technology, Plenum, New York, 1986, p. 469.
    [145]Ishihara C,Shimakawa S,Tsuji M,et al.A sulfated chitin, SCM-chitin III, inhibits the clearance of human erythrocytes from the blood circulation in erythrocyte-transfused SCID mice.Immunopharmacology, 1995,29(1):65~71.
    [146]Park PJ, Je JY, Jung WK,et al. Anticoagulant activity of heterochitosans and their oligosaccharide sulfates. Eur Food Res Tech,2004,219 (5): 529~533.
    [147]Vongchan P, Sajomsang W, Subyen D,et al. Anticoagulant activity of a sulfated chitosan.Carbohydrate Res,2002,337:1233~1236.
    [148]Nishimura K,Nishimura S,Seo H,et al. Macrophage activation with muti-porous beads prepared form partially deacetylated chitin. Biomed Mater Res,1986,20(9):1359~1372.
    [149]Hirano S,Noishiki Y.The blood compatibility of chitosan and N-acylchitosan.Biomed Mater Res,1985,19:413~417.
    [150]Senel S, Mcclure SJ. Potential applications of chitosan in veterinary medicine. Adv Drug Deliv Rev,2004,56(10):1467~1480.
    [151]Liu WG, Zhang JR, Cheng N, et al.Anticoagulation Activity of Crosslinked N-Sulfofurfuryl Chitosan Membranes.Journal of AppliedPolymer Science, 2004,94:53~56.
    [152]Lin CW,Lin JC. Surface characterization and platelet compatibility evaluation of surface-sulfonated chitosan membrane.J Biomater Sci Polym Ed,2001,12(5):543~547.
    [153]Vongchan P,Sajomsang W,Subyen D,et al.Anticoagulant activity of a sulfated chitosan.Carbohyd Res,2002,337(13):1233~1236.
    [154]Huang RH,Du YM,Yang JH,et al.Influence of functional groups on the in vitro anticoagulant activity of chitosan sulfates.Carbohyd Res,2003,338(6):483~489.
    [155]屠美, 牟善松, 黄海. 改性壳聚糖类肝素化合物血液相容性研究.中国医学物理学杂志,2003,20(4):297~298.
    [156]Minami S,Masuda M,Suzuki H et al. Subcutaneous injected chitosan induces systemic activation in dogs.Carbohydrate Polymers,1997,33(4):285~294.
    [157]Sharon S, Katanchalee MN. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials.Colloids and Surfaces B: Biointerfaces,2005,42(2):147~155.
    [158]Mansoor MA. Permeability and blood compatibilityproperties of chitosan2poly ( ethylene oxide ) blend membranes for haemodialysis. Biomaterials,1995,16:593~599.
    [159]Kim YH, Han DK, Park KD, et al. Enhanced blood compatibility of polymers grafted by sulfonated PEO via a negative cilia concept. Biomaterials,2003,24:2213~2223.
    [160]Don TM,King CF,Chiu W Y,et al.Preparation and characterization of chitosan-g-poly(vinyl alcohol)/poly(vinyl alcohol) blends used for the evaluation of blood-contacting compatibility.Carbohydrate Polymers,2006,63:331~339.
    [161]Amiji MM. Sythesis of qnionic poly(ethylene glycol)derivative for chitosan surface modification in blood-contacting applications. Carbohydrate polymers,1997,32:193~199.
    [162]Benesch J, Tengvall P.Blood protein adsorption onto chitosan.Biomaterials,2002,23(12):2561~2568.
    [163]Huang RH, Du YM, Yang JH. Preparation and anticoagulant activity of carboxybutyrylated hydroxyethyl chitosan sulfates. Carbohydrate Polymers,2003,51(4):431~438.
    [164]Kuen YL, Wan SH, Won HP. Blood compatibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials,1995,16(16):1211~1216.
    [165]Kaifu K, Komai T. Wetting characteristics and blood clotting on surfaces of acylated chitins. Biomed Mater Res, 1982,16(6):757~766.
    [166]Mao C, Zhao WB, Zhu AP. A photochemical method for the surface modification of poly(vinyl chloride) with O-butyrylchitosan to improve blood compatibility. Process Biochemistry,2004,39(9):1151~1157.
    [167]Mao C, Zhu JJ, Hu YF, et al. Surface modification using photocrosslinkable chitosan for improving hemocompatibility. Colloids surf B Biointerfaces,2004,38(1-2):47~53.
    [168] Yang YD, Yu JG, Zhou YG,et al. Preparation and Blood Compatibility of Oxidized-chitosan Films , Chinese Chemical Letters,2005,16(7):991~994.
    [169]杨越冬,于九皋,周永国,啜惠民,王东妮. 6-羧基壳聚糖的制备及血液相容性研究,中国生物医学工程学报,2007,26(4).
    [170]Harris JM,Struch EC ,Case MG,et al. Synthesis and characterization of poly(ethylene glycol) derivatives. J Polym Sci :Polym Chem Ed ,1984,22 (2):341~352.
    [171]Sugimoto M,Morimoto M,Sashiwa H,et al . Preparation and characterization of water-soluble chitin and chitosan derivatives. Carbohydrate Polymers,1998,36(1):49~59.
    [172]Mincheva R, Manolova N, Paneva D,et al. Novel polyelectrolyte complexes between N-carboxyethylchitosan and synthetic polyelectrolytes. European Polymer Journal,2006,42:858~868.
    [173]De Queiroz AA,Ferraz HG,Abraham GA, et al.Development of new hydroactive dressings based on chitosan membranes:characterization and in vivo behavior.J Biomed Mater Res A,2003,64(1):147~54.
    [174]张守松,周长忍,邹翰. 甲壳糖-聚硅氧烷复合材料研究. 高分子材料科学与工程,1999,15(3):163~165.
    [175]Wang XH, Li DP, Wang WJ, et al.Crosslinked collagen/chitosan matrix for artificial livers. Biomaterials,2003,24(19):3213~20.
    [176]朱孔营, 渠荣遴, 李 方, 等. 低分子量壳聚糖制备与应用研究进展. 高分子通报, 2006(2): 41~44.
    [177]王纬, 薄淑琴, 秦汶, 等. 不同脱乙酰度壳聚糖 Mark-Houwink 方程的订定. 中国科学, B 辑, 1990, (11): 1126~1130.
    [178]Qu X, Wirsen A, Olander B, et al. Surface modification of high density polyethylene tubes by coating chitosan, chitosan hydrogel and heparin. Polymer Bulletin,2001, 46(3): 223~229.
    [179] Klinkmann H., Falkenhagen D., and Courtney JM.. Blood purification by haemoperfusion. Int. J. Artif. Organs, 1979, 2(6): 296~308.
    [180]何炳林,赵晓斌. 高分子金属络合物配位吸附尿素分子的研究. 中国科学(B 辑),1993,23(6):567~574.
    [181]Qurashi M. T., Blair H. S., Allen S. J.. Studies on modified chitosan membranes. II. Dialysis of low molecular weight metabolites . J. Appl. Poly. Sci., 1992, 46: 263~269.
    [182]Chandy T., Sharma CP.. Preparation and performance of chitosan encapsulated activated charcoal (ACCB) adsorbents for small molecules. J. Microencapsul, 1993,10(4): 475~486.
    [183]Zhou Yong-Guo, Yang Yue-Dong, Guo Xue-Min, et. al. Effect of molecular weight and degree of deacetylation of chitosan on urea adsorption properties of copper chitosan. Journal of Applied Polymer Science, 2003, 89(6): 1520~1523.
    [184]Yang Yue-dong. Simultaneous determination of creatine, uric acid, creatinine and hippuric acid in urine by high performance liquid chromatography. Biomedical Chromatography, 1998, (12): 47~49.
    [185]王 虹, 张明明, 袁 直,等. 交联壳聚糖树脂对部分尿毒症毒物的吸附性能研究,离子交换与吸附, 2002, 18(3): 193~198.
    [186]Han DK, Lee NY, Park KD, et al. Heparin-like anticoagulant activityof sulphonated poly(eythylene oxide) and sulphonated Poly(ethylene oxide)-grafted polyurethane. Biomaterials, 1995, 16(6): 467~471.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700