超支化聚合物表面改性纳米材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,有机/无机纳米复合材料以其优异的性能越来越受到人们的关注,是材料领域研究的热点之一。纳米粒子表面改性可以降低粒子的表面能,改变粒子的表面极性,提高粒子与基体的亲和力,减少粒子间的团聚,促进纳米粒子在聚合物基体中的分散。对纳米粒子进行表面改性,有利于深入认识纳米微粒的基本物理效应,同时也扩大了纳米粒子的应用范围。目前,主要通过表面活性剂法,原位聚合法及表面接枝聚合等方法来改性纳米粒子。在无机微粒表面接枝聚合,可以更好地改善聚合物基体和无机填料的相容性,更有利于形成性能优良的纳米复合材料。
     具有特殊分子构造从而具有独特性质的超支化聚合物受到了广泛的关注,其在界面与表面科学上发挥着重要作用,可用来制造功能化的表面、界面材料。与线型聚合物相比,它们拥有良好的溶解性,低熔融黏度,大量的末端基团等。其一般可以通过AB_X型单体的缩聚反应或加成反应,自缩合乙烯基聚合以及潜在AB_n单体的开环聚合等方法来合成。应用超支化聚合物改性纳米粒子是一种新的引人关注的方法。
     本文采用自缩合乙烯基聚合通过原子转移自由基聚合的技术在纳米氧化硅,埃洛石纳米管表面设计接枝超支化聚合物,超支化接枝共聚物以及超支化共聚物,制备了超支化聚合物/无机杂化纳米复合材料,并以接枝有超支化对氯甲基苯乙烯的纳米氧化硅为模板制备了内径为10-40nm的聚合物空心球。
     1.通过连续表面引发自由基聚合在纳米氧化硅表面接枝超支化接枝共聚物
     利用自缩合乙烯基聚合的方法在纳米SiO_2表面成功接枝了超支化的聚对氯甲基苯乙烯,得到了接枝有超支化聚合物的纳米氧化硅(SN-HBP);再利用其表面的活性链末端引发基团来引发甲基丙烯酸甲酯进行原子转移自由基聚合,从而制得超支化接枝共聚物修饰的纳米氧化硅(SN-HBP-PMMA)。
     2.通过纳米氧化硅模板表面引发自缩合乙烯基聚合制备交联聚合物纳米囊
     利用自缩合乙烯基聚合(SCVP)的方法在纳米SiO_2表面成功接枝了超支化的聚对氯甲基苯乙烯,得到了接枝有超支化聚合物的纳米氧化硅(SN-HBP),将其表面聚合物链末端的卤素基团转变为氨基,与六甲撑二异氰酸酯(HDI)发生交联反应,再用HF溶液将纳米氧化硅核刻蚀,获得内径为10-40nm交联的聚合物纳米空心球。
     3.通过表面引发自缩合乙烯基(共)聚合在埃洛石纳米管表面接枝超支化(共)聚合物
     利用原子转移自由基聚合的技术,在埃洛石纳米管表面实现了2-(溴乙酰氧基)乙基丙烯酸酯(2-((bromoacetyl)oxy)ethyl acrylate)的自缩合乙烯基聚合以及其与丙烯酸正丁酯的自缩合乙烯基共聚合,在埃洛石纳米管表面成功接枝了超支化聚合物及其共聚物。
In recent years, organic/inorganic nanocomposites have attracted more and more attention and become one of the focuses in the area of materials due to excellent properties. The surface modification of the inorganic nanoparticles can reduce the surface energy of the nanoparticles, change the surface polarity of the nanoparticles, increase the affinity of the nanoparticles to the polymeric matrice, avoid aggregation of the nanoparticles and improve the dispersibility of the nanoparticle in polymeric matrice. It is helpful to understand the basic physical effects of nanoparticles, and enlarge the scope of its application. At present, the main methods of surface modification have surface reactive agent, in-situ polymerization and surface graft polymerization etc. The surface graft polymerization would further improve compatibility between the nanoparticles and polymeric matrice in order to fabricate more excellent nanocomposites.
     Hyperbranched polymers have attracted considerable attention because of their specific architecture, unique chemical and physical properties, and they have played a vital role in interface and surface sciences, which can be used advantageously as functional surfaces and interfacial materials. In addition, they have high solubility, low viscidity and high density of surface functional groups compared to linear analogues. Hyperbranched polymers have been synthesized in a one-pot route via self-polycondensation or an addition polymerization reaction of ABx-type monomer, self-condensation vinyl polymerization (SCVP), ring-opening polymerization (ROP) of latent AB_n monomers and so on. It is a promising route that hyperbranched polymer is used to surface-modify the nanoparticles.
     In this paper, hyperbranched (co)polymers modified inorganic nanoparticles and nanotubes have been prepared by self-condensing vinyl polymerization via surface-initiated atom transfer radical polymerization technique on the surface of silica nanoparticles, halloysite nanotubes. And the crosslinked polymeric nanocapsules with inner diameter of about 10-40nm were fabricated from silica templates grafted hyperbranched PCMS.
     1. Well-defined hyperbranched-graft copolymer grafted silica nanoparticles by consecutive the surface-initiated atom transfer radical polymerization We prepared the well-defined hyperbranched-graft copolymer grafted silica nanoparticles (SN-HBP-PMMA) by the surface-initiated atom transfer radical polymerization of methyl methacrylate from the hyperbranched polymer grafted silica nanoparticles (SN-HBP), via the self-condensing vinyl polymerization (SCVP) of p-chloromethyl styrene.
     2. Preparation of crosslinked polymeric nanocapsules by surface-initiated self-condensing vinyl polymerization on silica templates
     We develop a novel method for crosslinked polymeric nanocapsules with inner diameter of about 10-40nm from the nanosilica templates grafted hyperbranched polymers with amino-terminated hyperbranched polymers by the crosslinking with hexamethylene diisocyanate (HDI) after the surface end groups had been transformed to amino groups, then the nanosilica templates were removed by HF etching to produce the crosslinked polymeric nanocapsules. The hyperbranched polymer grafted silica nanoparticles (SN-HBP) prepared by the self-condensing vinyl polymerization (SCVP) of p-chloromethyl styrene.
     3. Halloysite nanotubes grafted hyperbranched (co)polymers via surface-initiated self-condensing vinyl (co)polymerization
     We report a convenient method to modify the surface of HNT with a hyperbranched polymer and copolymer shell by surface-initiated self-condensing vinyl polymerization (SCVP) of 2-((bromoacetyl) oxy) ethyl acrylate (BAEA) and the self-condensing vinyl copolymerization (SCVCP) of n-butyl acrylate (BA) and BAEA via atom transfer radical polymerization (ATRP) technique.
引文
[1]Gleiter H.Nanocrystalline materials.Prog.Mater.Sci.1989,33:223-315.
    [2]张立德,牟季美.纳米材料和纳米结构.北京科学出版社,2001.
    [3]Suryanarayana C.,Koch C.C.Nanocrystalline materials-current research and duture directions.Hyperfine Interactions 2000,130:5-44.
    [4]Bourgeat-Lami E.,Espiard Ph.,Guyot A.Poly(ethyl acrylate)latexe encapsulating nanoparticles of silica:1.Functionalization and dispersion of silica.Polymer 1995,36:4385-4389
    [5]Turner M.R.,Duguet E.,Labrugere C.Characterization of silane-modified ZrO_2power surfaces.Surf.Interface Anal 1997,25:917-923
    [6]Pukanszky B.,Demjen Z.Effect of surface coverage of silane treated CaCO_3 on the tensile properties of polypropylene composites.Polym.Compos.1997,18:741-747.
    [7]Pukanszky B.,Demjen Z.Silane treatment in polypropylene composites:adsorption and coupling.Macromol.Symp.1999,139:93-105.
    [8]Spange S.Silica surface modification by cationic polymerization and carbenium intermediates.Prog.Polym.Sci.2000,25:781-849.
    [9]Tsubokawa N.,Kogure A.Surface grafting of polymers onto inorganic ultrafine particles reaction of functional polymers with acid anhydride groups introduced onto inorganic ultrafine particle.J.Polym.Sci.:Polym.Chem.1991,29:697-702.
    [10]Tsubokawa N.grafting of polymers with controlled molecular weight onto ultrafine silica surface.J.Polym.Sci.:Polym.Chem.1995,33:581-586.
    [11]Huang W.,Skanth G.,Baker G.L.,Bruening M.L.Surface-Initiated Thermal Radical Polymerization on Gold.Langmuir 2001,17:1731-1736.
    [12]de Boer B.,Simon H.K.,et al."Living" free radical photopolymerization initiated from surface-grafted iniferter monolayers.Macromolecules 2000,33:349-356.
    [13]Mulfort K.L.,Ryu J.,Zhou Q.Y.Preparation of surface initiated polystyrenesulfonate films and PEDOT doped by the films.Polymer 2003,44:3185-3192.
    [14]Husseman M.,Malmstrom E.E.,McNamara M.,Mate M.,et al.Controlled synthesis of polymer brushes by "living" free radical polymerization techniques.Macromolecules 1999,32:1424-1431.
    [15] Tsujii Y., Ejaz M., Sato K., et al. Mechanism and kinetics of RAFT-mediated graft polymerization of styrene on a solid surface. 1. Experimental evidence of surface radical migration. Macromolecules 2001, 34: 8872-8878.
    [16] Baum M., Brittain W. J. Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique. Macromolecules 2002, 35:610-615.
    [17] Raula J., Shan J., Nuopponen M., et al. Synthesis of gold nanoparticles grafted with a thermoresponsive polymer by surface-induced reversible addition fragmentation chain transfer polymerization. Langmuir 2003, 19: 3499-3504.
    [18] Xiao D., Wirth M. J. Kinetics of surface-initiated atom transfer radical polymerization of acrylamide on silica. Macromolecules 2002, 35: 2919-2925.
    [19] Kim J. B., Bruening M. L., Baker G. L. Surface-initiated atom transfer radical polymerization on gold at ambient temperature. J. Am. Chem. Soc. 2000, 122: 7616-7617.
    [20] Kim J. B., Huang W., Bruening M. L., Baker G. L. Synthesis of triblock copolymer brushes by surface-initiated atom transfer radical polymerization. Macromolecules 2002,35:5410-5416.
    [21] Pyun J., Jia S., Kowalewski T., Patterson G. D., Matyjaszewski K. Synthesis and characterization of organic/inorganic hybrid nanoparticles: kinetics of surface-initiated atom transfer radical polymerization and morphology of hybrid nanoparticle ultrathin films. Macromolecules 2003, 36: 5094-5104.
    [22] Brantley E. L., Jennings G. K. Fluorinated polymer films from acylation of ATRP surface-initiated poly (hydroxyethyl methacrylate). Macromolecules 2004, 37: 1476-1483.
    [23] Zhao B., Brittain W. J. Synthesis of tethered polystyrene-block-poly (methyl methacrylate) monolayer on a silicate substrate by sequential carbocationic polymerization and atom transfer radical polymerization. J. Am. Chem. Soc. 1999, 121:3557-3558.
    [24] Zhao B., Brittain W. J. Synthesis of polystyrene brushes on silicate substrates via carbocationic polymerization from self-assembled monolayers. Macromolecules 2000,33:342-348.
    [25] Jordan R., West N., Ulman A., Chou Y. M., Nuyken O. Nanocomposites by surface-initiated living cationic polymerization of 2-oxazolines on functionalized gold nanoparticles. Macromolecules 2001, 34: 1606-1611.
    [26] Advincula R., Zhou Q., Park M., et al. Polymer brushes by living anionic surface initiated polymerization on flat silicon (SiO_x) and gold surfaces: homopolymers and block copolymers. Langmuir 2002, 18: 8672-8684.
    [27] Fan X. Zhou Q., et al. Living anionic surface-initiated polymerization of styrene from clay nanoparticles using surface bound 1, 1-diphenylethylene initiators. Langmuir 2002, 18:4511-4518.
    [28] Zhou Q., Wang S., et al. Living anionic surface-initiated polymerization of a polymer on silica nanoparticles. Langmuir 2002, 18: 3324-3331.
    [29] Choi IS, Langer R. Surface-initiated polymerization of L-lactide: coating of Solid substrates with a biodegradable polymer. Macromolecules 2001, 34: 5361-5363.
    [30] Khan M., Huck W. T. S. Hyperbranched polyglycidol on Si/SiO_2 surfaces via surface-initiated polymerization. Macromolecules 2003, 36: 5088-5093.
    [31] Wieringa R. H., Siesling E. A., et al. Surface grafting of poly (L-glutamates). 1. Synthesis and characterization. Langmuir 2001, 17: 6477-6484.
    [32] Juang A., Scherman O. A., Grubbs R. H., Lewis N. S. Formation of covalently attached polymer overlayers on Si surfaces using ring-opening metathesis polymerization methods. Langmuir 2001, 17: 1321-1323.
    
    [33] Buchmeiser M. R., Sinner F., Mupa M., Wurst K. Ring-opening metathesis polymerization for the preparation of surface-grafted polymer supports. Macromolecules 2000, 33: 32-39.
    [34] Wang Y., Chang Y. C. Synthesis and conformational transition of surface-tethered polypeptide: poly (L-glutamic acid). Macromolecules 2003, 36: 6503-6510.
    [35] Wang Y., Chang Y. C. Grafting of homo- and block co-polypeptides on solid substrates by an improved surface-initiated vapor deposition polymerization. Langmuir 2002, 18: 9859-9866.
    [36] Ingall M. D. K, Joray S. J., et al. Surface functionalization with polymer and block copolymer films using organometallic initiators. J. Am. Chem. Soc. 2000, 122: 7845-7846.
    [37]Hawker C.J,Lee R.,Frechet J.M.J.Ones-step synthesis of hyperbranched dendritic polyesters,J.Am.Chem.Soc.1991,113:4583-4588.
    [38]Muller A.H.E.,Yan D.,Wulkow M.Molecular parameters of hyperbranched polymers made by self-condensing vinyl polymerization.1.Molecular weight distribution.Macromolecules 1997,30:7015-7023.
    [39]Yan D.,Muller A.H.E,Matyjaszewski K.Molecular parameters of hyperbranched polymers made by self-condensing vinyl polymerization.2.Degree of Branching.Macromolecules 1997,30:7024-7033.
    [40]Kim Y.H.,Webster O.W.Hyperbranched polyphenylenes.Macromolecules 1992,25:5561-5572.
    [41]Kim Y.H.,Webster O.W.Water-soluble hyperbranched polyphenylenes:a unimolecular micelle.J.Am.Chem.Soc.1990,112:4592-4593.
    [42]Kim Y.H.,Beckerbauer R.Role of end-groups on the glass-transition of hypergranched polyphenylene and triphenylbenzene derivatives,Macromolecules 1994,27:1968-1971.
    [43]Uhrich K.E.,Hawker C.J.,Frechet J.M.J.,et al.One-step synthesis of hyperbranched polyphenylenes.Macromolecules 1992,25:4583-4587.
    [44]Uhrich K.E.,Hawker C.J.,Frechet J.M.J.,et al.One-step synthesis of hyperbranched macromolecules.Abs.Pap.Am.Chem.Soc.1991,201:137-pmse.
    [45]Kambouris P.,Hawker C.J.A versatile new method for structure determination in hyperbranched macromolecules,J.Chem.Soc.-Perkin Trans.1993,22:2717-2721.
    [46]Wooley K.L.,Hawker C.J.,Lee R.,et al.One-step synthesis of hyperbranched polysters molecular-weight control and chain-end functionalization.Polym.J.1994,26:187-197.
    [47]Turner S.R.,Walter F.,Voit B.I.Hyperbranched aromatic polysters.Abs.Pap.Am.Chem.Soc.1993,205:37-pmse.
    [48]Turner S.R.,Voit B.I.,Mourey T.H.All-aromatic hyperbranched polyesters with phenol and acetate end-groups-synthesis and characterization.Macromolecules 1993,26:4617-1623.
    [49]Walter F.,Turner S.R.,Voit B.I.Hyperbranched polyesters with carboxylic acid end groups. Abs. Pap. Am. Chem. Soc. 1993, 205: 155-poly.
    [50] Voit B. I., Turner S. R. Synthesis and characterization of high-temperature hyperbranched polyesters. Abs. Pap. Am. Chem. Soc. 1992, 203: 201-poly.
    [51] Malmstrom E., Johansson M., Hult A. Hyperbranched aliphatic polyesters. Macromolecules 1995, 28: 1698-1703.
    [52] Kim Y. H. Lyotropic liquid-crystalline hyperbranched aromatic polyamides. J. Am. Chem. Soc. 1992, 114: 4947-4948.
    [53] Ishida Y., Sun A. C. F., Jikei M., et al. Synthesis of hyperbranched aromatic polyamides starting from dendrons as AB(x) monomers: Effect of monomer multiplicity on the degree of branching. Macromolecules 2000,33: 2832-2838.
    [54] Hawker C. J., Chu F. K. Hyperbranched poly (ether ketones): Manipulation of structure and physical properties. Macromolecules 1996,29: 4370-4380.
    [55] Morikawa A. Preparation and properties of hyperbranched poly (ether ketones) with a various number of phenylene units. Macromolecules 1998, 31: 5999-6009.
    [56] Shu C. F., Leu C. M., Huang F. Y. Synthesis, modification, and characterization of hyperbranched poly (ether ketones). Polymer 1999, 40; 6591-6596.
    [57] Bolton D. H., Wooley K. L. Synthesis and characterization of hyperbranched polycarbonates. Macromolecules 1997, 30: 1890-1896.
    [58] Bolton D. H., Wooley K. L. Synthesis and characterization of aromatic hyperbranched polycarbonates. Abs. Pap. Am. Chem. Soc. 1997, 214:123-pmse.
    [59] Aoshima S., Frechet J. M. J, Grubbs R. B., et al. A new approach to dendritic polymers through the vinyl polymerization of AB monomers with multiplication of reactive chain-end. Abs. Pap. Am. Chem. Soc. 1995, 209: 152-poly.
    [60] Sunder A., Mulhaupt R., Haag R., et al. Hyperbranched polyether polyols: A modular approach to complex polymer architectures. Adv. Mater. 2000, 12: 235-239.
    [61] Frey H., Lach C., Lorenz K. Heteroatom based dendrimers. Adv. Mater. 1998, 10: 279-293.
    [62] Kumar A., Ramakrishnan S. A novel one-step synthesis of hyperbranched polyurethanes. J. Chem. Soc.-Chem. Commun. 1993, 18: 1453-1454.
    [63] Kumar A., Ramakrishnan S. Hyperbranched polyurethanes with varying spacer segments between the branching points. J. Polym. Sci.: Polym. Chem. 1996, 34: 839-848.
    [64] Meijer E. W., Versteegen R. M., Sijbesma R. P. Synthesis of [N] - polyurethanes and hyperbranched polyurethanes. Abs. Pap. Am. Chem. Soc. 1996, 34: U457- U457.
    [65] Mathias L. J., Carothers T. W. Hyperbranched poly (siloxysilanes). J. Am. Chem. Soc. 1991,113:4043-4044.
    [66] Wang X., Fan X. D., Wang S. J., et al. Synthesis and characterization of Hyperbranched poly (siloxysilanes). Acta polym. Sinica 2006, 9: 1112-1116.
    [67] Suzuki K., Haba O., Nagahata R., et al. Synthesis and characterization of polyamidoamine-based liquid crystalline dendrimers. High Perform. Polym. 1998, 10:231-240.
    [68] Storrier G. D., Takada K., Abruna H. D. Synthesis, characterization, electrochemistry, and EQCM studies of polyamidoamine dendrimers surface-functionalized with polypyridyl metal complexes. Langmuir 1999,15: 872-884.
    [69] Lu P., Paulasaari J., Weber W. P. Hyperbranched materials by ruthenium catalyzed step-growth polymerization of 4-acetylstyrene. Abs. Pap. Am. Chem. Soc. 1996, 212:128-ploy.
    [70] Londergan T. M., You Y. J., Thompson M. E., et al. Ruthenium catalyzed synthesis of cross-conjugated polymers and related hyperbranched materials. Copoly (arylene/1, 1-vinylene) s. Macromolecules 1998, 31: 2784-2788.
    [71] Frechet J. M. J., Henmi M., Gitsovl I., et al. Self-condensing vinyl polymerization- an approach to dendritic matreials. Science 1995,269: 1080-1083.
    [72] Desimone J.M. Branching out into new polymer markets. Science 1995, 269:1060-1061.
    [73] Simon P. F. W, Radke W., Muller A. H. E. Hyperbranched methacrylates by self-condensing vinyl polymerization. Macromol. Rapid Commun. 1997, 18: 867-873.
    [74] Sakamoto K., Aimiya T., Kira M. Preparation of hyperbranched polymethacrylates by self-condensing group transfer polymerization. Chem. Lett. 1997, 18, 865-873.
    [75] Simon P. F. W., Radke W., Muller A. H. E. Hyperbranched methacrylates by self-condensing group transfer polymerization. Abs. Pap. Am. Chem. Soc. 1997, 213:341-poly.
    [76]Hawker C.J.,Frechet J.M.J,Grubbs R.B.,et al.Preparation of hyperbranched and star polymers by a living,self-condensing free-radical polymerization.J.Am.Chem.Soc.1995,117:10763-10764.
    [77]Matyjaszewski K.,Gaynor S.G,Kulfan A.,et al.Preparation of hyperbranched polyacrylates by atom transfer radical polymerization.l.Acrylic AB~* monomers in "living" radical polymerizations.Macromolecules 1997,30:5192-5194.
    [78]Bednarek M.,Biedron T.,Helinski J.,et al.Branched polyether with multiple primary hydroxyl groups:polymerization of 3-ethyl-3-hydroxymethyloxetane.Macromol.Rapid Commun.1999,20:369-372.
    [79]Magnusson H.,Malmstrom E.,Hult A.Synthesis of hyperbranched aliphatic polyethers via cationic ring-opening polymerization of 3-ethyl-3-(hydroxymethyl)oxetane.Macromol.Rapid Commun.1999,20:453-457.
    [80]Liu M.J.,Vladimirov N.,Frechet J.M.J.A new approach to hyperbranched polymers by ring-opening polymerization of an AB monomer:4-(2-hydroxyethyl)-epsilon-caprolactone.Macromolecules 1999,32:6881-6884.
    [81]Sunder A.,Mulhaupt R.,Frey H.Hyperbranched polyether-polyolsbased on polyglycerol:Polarity design by block copolymerization with propylene oxide.Macromolecules 2000,33:309-314.
    [82]Holter D.,Frey H.Degree of branching in hyperbranched polymers.2.Enhancement of the DB:Scope.Acta polym.1997,48:298-309.
    [83]Yah D.Y.,Hou J.,Zhu X.U.,et al.A new approach to control crystallinity of resulting polymers:self-condensing ring-opening polymerization.Macromol.Rapid Commun.2000,21:557-561.
    [84]Suzuki M.,Ii A.,Saegusa T.Multibranching polymerization-palladium-catalyzed ring-opening polymerization of cyclic carbamate to produce hyperbranched dendritic polyamine.Macromolecules 1992,25:7071-7072.
    [85]Suzuki M.,Yoshida S.,Shiraga K.,et al.New ring-opening polymerization via a pi-allylpalladium complex.5.Multibranching polymerization of cyclic carbamate to produce hyperbranched dendritic polyamine.Macromolecules 1998,31: 1716-1719.
    [86]Emrick T.,Chang H.T,Frechet J.M.J.Synthesis of hyperbranched aromatic polyamide from aromatic diamines and trimesic acid.Macromolecules 1999,32:2061-2064.
    [87]Emrick T.,Chang H.T.,Frechet J.M.J.An A_2+B_3 approach to hyperbranched aliphatic polyethers containing chain end epoxy substituents.Macromolecules 1999,32:6380-6382.
    [88]朱道本.功能材料化学进展.北京化学工业出版社 2005,304.
    [89]Hong C.Y.,You Y.Z.,Wu D.C.,et al.Multiwalled carbon nanotubes grafted with hyperbranched polymer shell via SCVP.Macromolecules 2005,38:2606-2611.
    [90]Xu Y.Y.,Gao C.,Kong H.,et al.Growing multihydroxyl hyperbranched polymers on the surfaces of carbon nanotubes by in situ ring-opening polymerization.Macromolecules 2004,37:8 846-8853.
    [91]赵辉,罗运军,李杰等.高分子材料科学与工程.2005,21:118-191.
    [92]Tsubokawa N.,Hayashi S.,Nishimura J.Grafting of hyperbranched polymers onto ultrafine silica:postgraft polymerization of vinyl monomers initiated by pendant azo groups of grafted polymer chains on the surface.Prog.Org.Coat.2002,44:69-74.
    [93]Mori H.,Boker A.,Krausch G.,et al.Surface-grafted hyperbranched polymers via self-condensing atom transfer radical polymerization from silicon surfaces.Macromolecules 2001,34:6871-6882.
    [94]Mori H.,Seng D.C.,Zhang M.,Muller A.H.E.Hybrid nanoparticles with hyperbranched polymer shells via self-condensing atom transfer radical polymerization from silica surfaces.Langmuir 2002,18:3682-3693.
    [95]Fujiki K.,Satoh T.,et al.Postgrafting of hyperbranched dendritic polymer from terminal amino groups of polymer chains grafted onto silica surface.J.Macromol.Sci.:Pure Appl.Chem.2000,37:357-377.
    [96]Kim H.J.,Moon J.H.,Park J.W.A hyperbranched poly(ethyleneimine)grown on surfaces.J.Colloid Interface Sci.2000,227:247-249.
    [97]Kim C.O.,Cho S.J.,Park J.W.Hyperbranching polymerization of aziridine on silica solid substrates leading to a surface of highly dense reactive amine groups.J. Colloid Interface Sci.2003,260:374-378.
    [98]Shi B.,Lu X.,Zou R.,Luo J.,Chen D.,et al.Observations of the topography and friction properties of macromolecular thin films at the nanometer scale.Wear 2001,251:1177-1182.
    [99]Hedrick J.L.,Hawker C.J.,Miller R.D.,Twieg R.,et al.Structure Control in Organic-Inorganic Hybrids Using Hyperbranched High-Temperature Polymers.Macromolecules1997,30:7607-7610.
    [1]Liu E In:Nalwa H.S.eds.Polymeric Nanostructures and Their Applications.American Scientific Publishers,2007.
    [2]Bontempo D.,Tirelli N.,Feldman K.,Masci G.,Crescenzi V.,Hubbell J.A.Atom transfer radical polymerization as a tool for surface functionalization.Adv.Mater.2002,14:1239-1241.
    [3]Xia J.H.,Matyjaszewski K.Atom transfer radical polymerization.Chem.Rev.2001,101:2921-2990.
    [4]von Werne Y.,Patten Y.E.Preparation of structurally well-defined polymer-nanoparticle hybrids with controlled/living radical polymerizations.J.Am.Chem.Soc.1999,121:7409-7410.
    [5]Pyun J.,Matyjaszewski K.,Kowalewski T.,Savin D.,Patterson G.,Kickelbick G.,Huesing G.Synthesis of well-defined block copolymers tethered to polysilsesquioxane nanoparticles and their nanoscale morphology on surfaces.J.Am.Chem.Soe.2001,123:9445-9446.
    [6]Qin S.,Qin D.,Ford W.T.,Resasco D.E.,Herrera J.E.Polymer Brushes on Single-Walled Carbon Nanotubes by Atom Transfer Radical Polymerization of n-Butyl Methacrylate.J.Am.Chem.Soe.2004,126:170-176.
    [7]Kong H.,Gao C.,Yah D.Y.Controlled Functionalization of Multiwalled Carbon Nanotubes by in Situ Atom Transfer Radical Polymerization.J.Am.Chem.Soc.2004,126:412-413.
    [8]Liu P.,Zhang L.X.,Su Z.X.Surface-initiated ATRP of HEA from Nano-crystal α-Fe_2O_3 under Ultrasonic Irradiation.J.Nanosci.Nanoteeh.2005,5:1713-1717.
    [9]Rupert B.L.;Mulvihill M.J.;Arnold J.Atom-transfer radical polymerization on zinc oxide nanowires.Chem.Mater.2006,18:5045-5051.
    [10]Watson K.J.,Zhu J.,Nguyen S.T.,Mirkin C.A.Hybrid nanoparticles with block copolymer shell structures.J.Am.Chem.Soc.1999,121:462-463.
    [11]Zhao B.,Brittain W.J.Synthesis,characterization,and properties of tethered polystyrene-b-polyacrylate brushes on flat silicate substrates.Macromolecules 2000,33:8813-8820.
    [12]Henrik B.,Manfred L.H.,Stefan N.,Hellmuth W.ATRP grafting from silica surface to create first and second generation of grafts. Polym. Bull. 2000,44: 223-229.
    [13] Borner H. G., Beers K., Matyjaszewski K., Sheiko S. S., Moller M. Synthesis of molecular brushes with block copolymer side chains using atom transfer radical polymerization. Macromolecules 2001, 34: 4375-4383.
    [14] Zhao H. Y., Farrell B. P., Shipp D. A. Nanopatterns of poly (styrene-block-butyl acrylate) block copolymer brushes on the surfaces of exfoliated and intercalated clay layers. Polymer 2004,45: 4473-4481.
    [15] Liu P., Wang T. M., Su Z. X. Self-assembly of well-defined polyacrylamide-polystyrene copolymer on fibrillar clays via ultrasonic-assisted surface-initiated atom transfer radical polymerization. J. Nanosci. Nanotech. 2006, 7: 1684-1688.
    [16] Zhang F., Xu F. J., Kang E. T., Neoh K. G. Modification of titanium via surface-initiated atom transfer radical polymerization (ATRP). Ind. Eng. Chem. Res. 2006,45:3067-3073.
    [17] Shanmugharaj A. M., Bae J. H., Nayak R. R., Ryu S. H. Preparation of poly(styrene-co-acrylonitrile)-grafted multiwalled carbon nanotubes via surface-initiated atom transfer radical polymerization. J. Polym. Sci.: Polym. Chem.2007,45:460-470.
    [18] Liu P., Liu W. M., Xue Q. J. Preparation of Comb-like Polystyrene Grafted Silica Nanoparticles.J. Macromol. Sci.: Pure Appl. Chem. 2004, A41: 1001-1004.
    [19] Liu P., Su Z. X. Preparation of polystyrene grafted silica nanoparticles by two-steps UV induced reaction. J. Photochem. Photobio., A Photochem. 2004, 167: 237-240.
    [20] Liu P., Wang T. M. Preparation of Well-defined Star Polymer from Hyperbranched Macroinitiator Based Attapulgite by Surface-initiated Atom Transfer Radical Polymerization (SI-ATRP) Technique. Ind. Eng. Chem. Res. 2007,46: 97-102.
    [21] Mori H., Seng D. C., Zhang M., Muller A. H. E. Hybrid nanoparticles with hyperbranched polymer shells via self-condensing atom transfer radical polymerization from silica surfaces. Langmuir 2002, 18: 3682-3693.
    [22] Hong C. Y., Zou Y. Z., Wu D., Liu Y., Pan C. Y. Multiwalled carbon nanotubes grafted with hyperbranched polymer shell via SCVP. Macromolecules 2005, 38: 2606-2611.
    [23] Liu P.; Wang T. M. Surface-Graft Hyperbranched Polymer via Self-Condensing Atom Transfer Radical Polymerization from Zinc Oxide Nanoparticles. Polym. Eng. Sci. 2007,47:1296-1301.
    [24] Frechet J. M. J., Henmi M., Gitsovl I., et al. Self-condensing vinyl polymerization- an approach to dendritic matreials. Science 1995, 269: 1080-1083.
    [25] Muller A. H. E., Yan D. Y., Wulko M. Molecular parameters of h yperbranched polymers made by self-condensing vinyl polymerization. 1. Molecular weight distribution. Macromolecules 1997, 30: 7015-7023.
    [26] Yan D. Y, Muller A. H. E., Matyjaszewski K. Molecular parameters of hyperbranched polymers made by self-condensing vinyl polymerization. 2. Degreeof branching. Macromolecules 1997, 30: 7024-7033.
    [27] Matyjaszewski K., Gaynor S., G. Muller A. H. E. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization. 3. Effect of reaction conditions on the self-condensing vinyl polymerization of 2-((2-bromopropionyl) oxy) ethyl acrylate. Macromolecules 1997, 30: 7042-7049.
    
    [28] Yan D. Y., Zhou Z. P., Muller A. H. E. Molecular weight distribution of hyperbranched polymers generated by self-condensing vinyl polymerization inpresence of a multifunctional initiator. Macromolecules 1999, 32: 245-250.
    [29] Gaynor S. G., Edelman S. Z., Kulfan A., Matyjaszewski K. Branched and hyperbranched macromolecules by atom transfer radical polymerization. Polym. Prep. 1996,37:413-414.
    [30] Zhang X., Chen Y. M., Gong A. J., Chen C. F., Fu X. Dendrigraft polystyrene initiated by poly(p-chloromethyl styrene): synthesis and properties. Polym. Int. 1999, 48: 896-900.
    [31] Liu P., Liu W. M., Xue Q. J. Self-assembly of functional silanes onto Nano-sized Silica. Chin. J. Chem. Phys. 2003, 16: 481-486.
     [32] Liu P., Tian J., Liu W. M., Xue Q. J. Surface Graft Polymerization of styrene onto nano-sized silica with a one-pot method. Polym. J. 2003, 35: 379-383.
    [33] Jikei M., Kakimoto A. Hyperbranched polymers: A promising new class of materials. Prog. Polym. Sci. 2001, 26: 1233-1285.
    [34] Masami K., Junko N., Kotaro S., Mitsuo S. Controlled cationic polymerization of p-(Chloromethyl)styrene:BF3-catalyzed selective activation of a C-O terminal from alcohol.Macromolecules 2003,36:3540-3544.
    [35]Ribbe A.,Prucker O.,Ruhe J.Imaging of polymer monolayers attached to silica surfaces by element specific transmission electron microscopy.Polymer 1996,37:1087-1096.
    [1]Jiang P.,Bertone J.F.,Colvin VL.A lost-wax approach to monodisperse colloids and their crystals.Science 2001,291:453-457.
    [2]Wilcok D.L.,Berg M.,Bernat T.,et al.Hollow and solid spheres and microspheres:science and technology associated with their fabrication and application,materials research society proceedings.Pittsburgh,PA:Materials Research Society1995.
    [3]Jin R.,Cao Y.,Mirkin C.A.,et al.Photoinduced conversion of silver nanospheres to nanoprisms.Science 2001,294:1901-1903.
    [4]Emmerich O.,Hugenberg N.,Schmidt M.,et al.Molecular boxes based on hollow organosilicon micronetworks Adv.Mater.1999,11:1299-1303.
    [5]Sukhorukov G..,Fery A.,Mohwald H.Intelligent micro- and nanocapsules.Prog.Polym.Sci.2005,30:885-897.
    [6]Duan H.,Chen D.,Jiang M.,et al.Self-assembly of unlike homopolymers into hollow spheres in nonselective solvent.J.Am.Chem.Soc.2001,123:12097-12908.
    [7]Zhang L.,Eisenberg A.Multiple Morphologies and Characteristics of "Crew-Cut"Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid)Diblock Copolymers in Aqueous Solutions.J.Am.Chem.Soc.1996,118:3168-3181.
    [8]Ding J.F.,Liu G.J.Water-soluble hollow nanospheres as potential drug carriers.J.Phy.Chem.B.1998,102:6107-6113.
    [9]Ding J.F.,Liu G.J.Polystyrene-block-poly(2-cinnamoylethyl methacrylate)nanospheres with cross-linked shells.Macromolecules 1998,31:6554-6558.
    [10]Ding J.F.,Liu G.J.Structures of polystyrene-block-poly(2-cinnamoylethyl methacrylate)films deposited on mica surfaces from block-selective solvents.Langmuir 1999,15:1738-1747.
    [11]Nardin C.,Hirt T.,Leukel J.,et al.Polymerized ABA triblock copolymer vesicles.Langmuir 2000,16:1035-1041.
    [12]Huang H.,Remsen E.E.,Kowalewski T.,et al.Nanocages derived from shell cross-linked micelle templates.J.Am.Chem.Soc.1999,121:3805-3806.
    [13]Liu S.,Weaver J.V.M.,Save M.,et al.Synthesis of pH-responsive shell cross-linked micelles and their use as nanoreactors for the preparation of gold nanoparticles.Langmuir 2002,18:8350-8357.
    [14] McDonald C. J., Bouck K. J., Chaput A. B., et al. Emulsion polymerization of voided particles by encapsulation of a nonsolvent. Macromolecules 2000, 33: 1593-1605.
    [15] Lee D. I., Mulders M. R., Nicholson D. J., et al. Hollow polymer latex particles. US Patent 5521253, 1996.
    [16] Okubo M., Ichikawa K., Fujima M. Polymer latexes: preparation,characterization and applications (eds. Daniels E S , Sudol E D ,E1-Aasser M S). ACS Symposium Series 492, Washington, DC: American Chemical Society 1992,282-288.
    [17] Vanderhoff J. W., El-Aasser M. S. Polymer Latexes: Preparation, characterization and applications (eds. Daniels E S , Sudol E D ,E1-Aasser M S). ACS Symposium Series 49, Washington, DC: American Chemical Society 1992,272-281.
    [18] Vanderhoff J. W., Park J. M., El-Aasser MS. Polymeric materials science and engineering, Proceedings of the ACS Division of Polymeric Materials: Science and Engineering. Washington, DC: American Chemical Society 1991, 64: 345 -346.
    [19] Jang J., Ha H. Fabrication of hollow polystyrene nanospheres in microemulsion polymerization using triblock copolymers. Langmuir 2002, 18: 5613-5618.
    [20] Decher G., Hong J. D. Buildup of ultrathin multilayer films by a self-assembly process. I.Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromol Chem. Macromol. Symp. 1991,46: 321-327.
    [21] Hammond P. T. Recent explorations in electrostatic multilayer thin film assembly. Curr. Opin.Colloid Interface Sci 2000, 4: 430-442.
    [22] Gao C. Y., Leporatti S., Moya S., et al. Stability and mechanical properties of polyelectrolyte capsules obtained by stepwise assembly of poly(styrenesulfonate sodium salt) and poly(diallyldimethyl ammonium) chloride onto melamine resin particles. Langmuir 2001, 17: 3491-3495.
    [23] Sukhorukov G. B., Brumen M., Donath E., et al. Hollow polyelectrolyte shells: exclusion of polymers and donnan equilibrium. J. Phys. Chem. B 1999, 103:6434-6440
    [24] Sukhorukov G. B., Dahne L., Hartmann J., et al. Controlled precipitation of dyes into hollow polyelectrolyte capsules based on colloids and biocolloids.Adv. Mater. 2000,12:112-115.
    [25] Leporatti S., Voigt A., Mitlohner R., et al. Scanning force microscopy investigation of polyelectrolyte nano- and microcapsule wall texture. Langmuir 2000, 16: 4059-4063.
    [26] Gao C. Y., Leporatti S., Donath E., et al. Surface texture of poly(styrenesulfonate sodium salt) and poly(diallyldimethylammonium chloride) micron-sized multilayer capsules: a scanning force and confocal microscopy study. J. Phys. Chem. B 2000,104: 7144-7149.
    [27] Georgieva R., Moya S., Leporatti S., et al. Conductance and capacitance of polyelectrolyte and lipid-polyelectrolyte composite capsules as measured by electrorotation. Langmuir 2000, 16: 7075-7081.
    [28] Antipov A. A., Sukhorukov G. B., Donath E., et al. Sustained release properties of polyelectrolyte multilayer capsules. J. Phys.Chem. 5 2001, 105: 2281-2284.
    [29] Radtchenko I. L., Sukhorukov G. B., Leporatti S., et al. Assembly of alternated multivalent ion/polyelectrolyte layers on colloidal particles. Stability of -the multilayers and encapsulation of macromolecules into polyelectrolyte capsules. J Colloid Interface Sci. 2000, 230: 272-280.
    [30] Gittins D. I., Caruso F. Tailoring the polyelectrolyte coating of metal nanoparticles. J. Phys. Chem. B 2001, 105: 6846-6852.
    [32] Mandal T. K., Flemming M. S., Walt D. R. Production of hollow polymeric microspheres by surface-confined living radical polymerization on silica templates. Chem. Mater. 2000, 12: 3481-3487.
    [33] Mu B., Wang T. M., Liu P. Well-defined dendritic-graft copolymer grafted silica nanoparticle by consecutive surface-initiated atom transfer radical polymerizations. Ind. Eng. Chem. Res. 2007, 46(10): 3069-3072.
    [34] Mori H., Seng D. C., Zhang M., Muller A. H. E. Hybrid nanoparticles with hyperbranched polymer shells via self-condensing atom transfer radical polymerization from silica surfaces. Langmuir 2002, 18: 3682-3693.
    [1]Jikei M.,Kakimoto M.Hyperbranched polymers:a promising new class of materials.Prog Polym Sci.2001,26:1233-1285.
    [2]Voit B.New developments in hyperbranched polymers.J Polym Sci:Polym Chem.2000,38:2505-2525.
    [3]Qin S.,Qin D.,Ford W.T.,Resasco D.E.,Herrera J.E.Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate.J Am Chem Soc.2004,126:170-176
    [4]Gao C.,Yan D.Hyperbranched polymers:from synthesis to applications.Prog Polym Sci.2004,29:183-279.
    [5]Hawker C.J,Chu F.,Pomery P.J,Hill D.J.T.Hyperbranched poly(ethylene glycol)s:a new class of ionconducting materials.Macromolecules 1996,29:3831-3838.
    [6]Malmstrtrom E.,Johansson M.,Hult A.Hyperbranched aliphatic polyesters.Macromolecules.1995,28:1698-1703.
    [7]Shu C.F.,Leu C.M.Hyperbranched poly(ether ketone)with carboxylic acid terminal groups:synthesis,characterization,and derivatization.Macromolecules 1999,32:00-105.
    [8]Matyjaszewski K.,Gaynor S.G.,Kulfan A.,Podwika M.Preparation of hyperbranched polyacrylates by atom transfer radical polymerization.1.Acrylic AB~*monomers in "living" radical polymerizations.Macromolecules 1997,30:5192-5194.
    [9]Gaynor S.G.,Edelman S.,Matyjaszewski K.Synthesis of branched and hyperbranched polystyrenes.Macromolecules 1996,29:1079-1081.
    [10]Hazer B.Synthesis of PS-PEG and PMMA-PEG branched block copolymers by macroinimers.J Macromol Sci:Macromol Rep A.1991,28:47-52.
    [11]Zhang H.,Ruckenstein E.Dendrite polymers from vinyl ether.Polym.Bull.1997,39:399-406.
    [12]Suzuki A.,Li A.,Saegusa T.Multibranching polymerization:palladium-catalyzed ring-opening polymerization of cyclic carbamate to produce hyperbranched dendritic polyamine.Macromolecules 1992,25:7071-7072.
    [13]Liu B.,Kazlauciunas A.,Guthrie J.T.,Perrier S.One-pot hyperbranched polymer synthesis mediated by reversible addition fragmentation chain transfer (RAFT) polymerization. Macromolecules 2005, 38: 2131-2136.
    [14] Suzuki M., Yoshida S., Shiraga K., et al. New ring-opening polymerization via a pi-allylpalladium complex. 5. Multibranching polymerization of cyclic carbamate to produce hyperbranched dendritic polyamine. Macromolecules 1998, 31: 1716-1719.
    [15] Emrick T., Chang H. T., Frechet J. M. J. Synthesis of hyperbranched aromatic polyamide from aromatic diamines and trimesic acid. Macromolecules 1999, 32: 2061-2064.
    [16] Liu P. Hyperbranched polymers modified nanosurfaces. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, 2nd edn. American Scientific Publisher. 2008, in press.
    [17] Mori H., Seng D. C., Zhang M. F., Muller A. H. E. Hybrid nanoparticles with hyperbranched polymer shells via selfcondensing atom transfer radical polymerization fromsilica surfaces. Langmuir 2002, 18: 3682-3693.
    [18] Kaneko Y., Imai Y., Shirai K., Yamauchi T., Tsubokawa N. Preparation and properties of hyperbranched poly (amidoamine) grafted onto a colloidal silica surface. Colloids Surf. A Physicochem. Eng. Aspects 2006, 289: 212-218.
    [19] Mu B., Wang T. M., Liu P. Well-defined dendritic-graftcopolymer grafted silica nanoparticle by consecutive surface-initiated atom transfer radical polymerizations. Ind. Eng. Chem. Res. 2007,46: 3069-3072.
    [20] Wang D. H., Baek J. B., Tan L. S. Grafting of vapor-grown carbon nanofibers (VGCNF) with a hyperbranched poly (ether-ketone). Mater. Sci. Eng B. 2006, 132: 103-107.
    [21] Rhodes S. M., Higgins B., Xu Y. J., Brittain W. J. Hyperbranched polyol/carbon nanofiber composites. Polymer 2007, 48: 1500-1509.
    [22] Liu P., Wang T. M. Surface-graft hyperbranched polymer via self-condensing atom transfer radical polymerizationfrom zinc oxide nanoparticles. Polym. Eng. Sci. 2007,47:1296-1301
    [23] Xu Y. Y., Gao C., Kong H., Yan D. Y., Jin Y. Z., Watts P. C. P. Growing multihydroxyl hyperbranched polymers on the surfaces of carbon nanotubes by in situ ring-openingpolymerization. Macromolecules 2004, 37: 8846-8853.
    [24] Hong C. Y., You Y. Z., Wu D. C., Liu Y., Pan C. Y. Multiwalled carbon nanotubes grafted with hyperbranched polymer shell via SCVP. Macromolecules 2005, 38: 2606-2611.
    [25] Pan B. F., Cui D. X., Gao F., He R. Growth of multi-amine terminated poly (amidoamine) dendrimers on the surface of carbon nanotubes. Nanotechnology 2006, 17:2483-2489.
    [26] Yang Y. K., Xie X. L., Yang Z. F., Wang X. T., Mai Y. W. Multiwalled carbon nanotubes functionalized by hyperbranched poly (urea-urethane)s by a one-pot polycondensation. Macromol. Rapid Commun. 2006, 27: 1695-1701.
    [27] Choi J. Y., Oh S. J, Lee H. J., Wang D. H., Tan L. S., Baek J.B. In situ grafting of hyperbranched poly (ether ketone) s onto multiwalled carbon nanotubes via the A_3 + B_2 approach. Macromolecules 2007,40: 4474-4480.
    [28] Liu P., Wang T. M. Preparation of well-defined star polymer from hyperbranched macroinitiator based attapulgite by surface-initiated atom transfer radical polymerization technique. Ind. Eng. Chem. Res. 2007,46: 97-102.
    [29] Bates T. F, Hildebrand F. A., Swineford A. Morphology and structure of endellite and halloysite. Am. Mineral. 1950, 35: 463-484.
    
    [30] Lvov Y., Price R., Gaber B., Ichinose I. Thin film nanofabrication via layer-by-layer adsorption of tubule halloysite, spherical silica, proteins and polycations. Colloids Surf. A Physicochem. Eng. Aspects. 2002, 198-200: 375-382.
    [31] Du M. L., Guo B. C., Liu M. X., Jia D. M. Preparation and characterization of polypropylene grafted halloysite and their compatibility effect to polypropylene/halloysite composite. Polym. J. 2006, 38: 1198-1204.
    [32] Jikei M., Kakimoto M. Hyperbranched polymers: a promising new class of materials.Prog. Polym. Sci. 2001, 26: 1233-1285
    
    [33] Mori H., Seng D. C., Zhang M. F., Muller A. H. E. Hybrid nanoparticles with hyperbranched polymer shells via selfcondensing atom transfer radical polymerization from silica surfaces. Langmuir 2002, 18: 3682-3693.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700