木薯淀粉接枝丙烯酸超强吸水树脂的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超强吸水树脂是一种轻度交联的聚合物,它能吸收和保持高于自身重量几百倍以上的水分。本论文主要采用反相乳液聚合方法,以木薯淀粉为主要原料,N,N′-亚甲基双丙烯酰胺为交联剂,分别以过硫酸钾、高锰酸钾、过氧化氢-亚硫酸钠为引发剂通过接枝共聚反应合成淀粉-丙烯酸接枝共聚物,考察了乳液浓度、单体用量、交联剂用量、引发剂用量、反应温度和丙烯酸中和度对树脂吸水性能的影响。并通过红外光谱、X-射线衍射、热重分析等方法表征接技产物结构。具体内容如下:
     一、研究了木薯淀粉与丙烯酸接枝共聚物的制备,试验了高锰酸钾、过硫酸钾及过氧化氢-亚硫酸钠三种引发剂的引发效果,实验结果表明高锰酸钾的引发效果最佳;并考察了以高锰酸钾为引发剂时,乳液浓度、单体用量、交联剂用量、引发剂用量、反应温度和丙烯酸中和度对吸水树脂吸水率的影响。实验结果表明最佳接枝工艺条件为:淀粉乳浓度1.11%,单体与淀粉的质量比10:1,引发剂和交联剂用量分别为6.3 mmol·L~(-1)和9.0 mmol·L~(-1),反应温度为50℃,丙烯酸中和度为50%;该条件下的接枝产物对去离子水的吸收可达1600余倍,对自来水的吸收可达380倍。
     二、采用红外光谱(IR)、差示扫描量热法(TG-DSC)、扫描电镜(SEM)和X-射线衍射(XRD)等方法对产物的结构进行了表征。结果表明:红外光谱分析证明产物具有羰基的特征吸收;热分析图谱表明产物比淀粉具有更高的热稳定性;X-射线衍射证明有木薯淀粉的半晶体结构变为无定形态;扫描电镜图谱表明木薯淀粉表面被丙烯酸破坏。以上表征证明在木薯淀粉链上接枝上丙烯酸。
     三、对接枝制备的超强吸水树脂的吸水速率、保水能力、热稳定性、抗盐性、恢复性等性能进行了实验,实验结果如下:
     (1)实验证明超强吸水树脂保水性能非常优越。
     (2)超强吸水树脂在蒸馏水中的吸液速率相当快,吸液后150min达到饱和,这表明吸水树脂在蒸馏水中的吸液速率比较快。
     (3)在电解质溶液中,随着电解质浓度的增加,树脂吸水性能下降,对于相同浓度的电解质溶液,金属离子所带电荷数越大,树脂的吸收性能越低。
     (4)超强吸水树脂对有机溶剂几乎不具有吸液能力,但在一定浓度范围内的有机水溶液中具有一定的吸液能力,并出现吸液临界点。
     (5)超强吸水树脂具有良好的重复使用能力。
     (6)超强吸水树脂的吸收性能受温度的影响较小,可以在较宽温度范围内使用。
     (7)树脂在中性范围内使用,能发挥较高吸水性能,而在强酸性或强碱性条件下,吸水性能下降。
Super absorbent resins (SAR) are lightly crosslinking hydrophilic polymers that can absorb and retain aqueous solutions up to hundreds of times their own weight. In this paper, a graft copolymer was synthesized by copolymerization of acrylic acid (AA) onto cassava starch, with N,N'-methylene diacrylamide as cosslinking agent, potassium persulfate potassium permanganate and hydrogen peroxide-sodium sulfite as an initiator. The effects of the amount of crosslinking agent, monomer, initiator, the reaction temperature, neutralization degree of acrylic acid, the mass ratio of AA/starch and concentration of starch emulsion were studied. The grafting copolymerization was analysed by FT-IR, XRD and TG.-DSC.
     Three initiation systems, potassium permanganate, potassium persulfate and hydrogen peroxide-sodium sulfite were used to initiate the graft polymerization of acrylic acid (AA) onto cassava starch. The initiating effects were investigated, and the results showed that the potassium permanganate was the best initiator for this reaction. Initiating with potassium permanganate, the influences of the amount of crosslinking agent, monomer, initiator, the reaction temperature, neutralization degree of acrylic acid, the ratio of AA/starch and concentration of starch emulsion were studied. Such a condition was optimized, as concentration of starch emulsion 1.11%, mass ratio of monomer to starch 10:1, 9.0mmol·L~(-1) crosslinking agent and 6.3mmol·L~(-1) initiator, 50% neutralization degree of acrylic acid and reaction tmperature 50℃respectively. Under the condition, graft polymerizations of acrylic acid (AA) with cassava starch were done. The absorption rate of the resin was up to 1600 g/g in distilled water, 380 g/g in tap water.
     The surface sturcture and heat property were analyzed by IR, SEM, TG-DSC, etc. The analysis of IR showed that the synthesized product had carbonyl's character, which proved graft polymerizations of acrylic acid (AA) with cassava starch. TG-DSC analysis indicated that the products had good thermostability. X-RAY showed that the surface structure of starch became amorphous from semi-crystalline. SEM analysis showed that the surface of starch was destroyed by acrylic acid (AA).
     In the last paper, the evaluations of some influential factors such as retention ability, absorption rate, recovery ability, stability and anti-saltability are researched, and some important conclusions were drawn:
     (1) The results had shown that the SAR had water retention ability and a satisfied stability.
     (2) The absorption rate of SAR in distilled water was fast and achieved saturating in the first 150 min respectively.
     (3) The SAR in electrolyte solution declined with the increase of metal cationic charge and the concentration of solution.
     (4) The SAR nearly had no absorbency in pure organic solvents, but it had one in the mixture of organic solvents(o) and water(w) with a special volume ratio Vo:Vw and appeared a critical point in specific mixture of organic solvents(o) and water(w) with a special volume ratio Vo:Vw.
     (5) The results had shown the SAR had outstanding recovery properties.
     (6) The effect of temperature on the absorbency of SAR was weak, and the SAR was used in a large temperature range.
     (7) The SAR absorbed more in neutral solutions than in acidic or alkli solutions.
引文
[1]李建颖.高吸水与高吸油性树脂[M].北京:化学工业出版社,2005:1-2
    [2]G F Fanta,R C Burr.Copolymers of starch-I copolymerization of gelatinized wheat starch with acrylonitrile:Fractionation of copolymer and effect of solvent on copolymer composition[J].Journal of Applied Polymer Science,1966,10:926-927
    [3]G F Fanta,R C Burr.Copolymers of starch-Ⅱ copolymerization of gelatinized wheat starch with acrylonitrile:influence of reaction conditions on copolymer composition[J].Journal of Applied Polymer Science,1966,B4:765
    [4]G F Fanta,R C Burr.Copolymers of starch-Ⅲ copolymerization of gelatinized wheat starch with acrylonitrile:Influence of chain modifiers on copolymer compositional[J].Journal of Applied Polymer Science,1967,11:457
    [5]D W Lim,K G Song,K J Yoon,et al.Synthesis of Acrylic acid-based superabsorbent interpenetrated with sodium PVA sulfate using inverse-emulsion polymerization[J].European Polymer Journal,2002,(38):579-586
    [6]J E Puig.Synthesis and application of nanoparticles vis microemulsion polymerization[J].Revista Mexicana de Fisica,1999,(5):45
    [7]H T Deo,V D Gotmare.Acrylonitrile monomer grafting on gray cotton to impart high water absorbency[J].Journal of Applied Polymer Science,1999,(5):72
    [8]M Takaki,T Ito NS M Svh.Synthesis of colored superabsorbent polymer and its use to demonstrate convection currents water by heating[J].Journal of Chemical Education,1999,(1):76
    [9]D W Lim,H S Whang,K J yun.Synthesis and absorbency of a superabsorbent from sodium starch sulfate-g-polyacrylonitrile[J].Journal of Applied Polymer Science,2001,(79):1423-1430
    [10]T Sakiyama,C H Chu,T Fujh,et al.Preparation of a polyelectrolyte complex ge from chitosan and k-carrageenan and Its pH-sensitive swelling[J],Journal of Applied Polymer Science,1993,(50):2021-2025
    [11]M Nagura,N Takagi,T Koyano,et al.Structures and physicochemical properties of high water content tough hydrogels prepared by blending of poly(vinyl alcohol)with poly(strenesulfonic acid)sodium salt[J].Polymer Journal,1994,(26):675-679
    [12]K Walsh,B Gain.Super absorbent polymer-produces say growth is still in diapers[J].Chemical Weekly,1997,159(32):23
    [13]陈雪萍,翁志学.高吸水性树脂地研究进展和应用[J].化工生产与技术,2000,7(1):17-19
    [14]刘延伟.国内外高吸水性树脂最新发展动向[J].中国化工信息,2000,(19):9
    [15]黄美玉,蒋利人,吴如,等.超高吸水性聚丙烯酸钠的制备[J].化学世界,1984,(2):129-130
    [16]季鸿渐,张万喜,潘振远,等.高分子吸水树脂的合成和性能研究[J].高分子通报,1992,(2):111-115
    [17]朱秀林,路建美.内交联型高吸水性树脂的合成及性能研究[J].高分子材料科学与工程,1993,9(4):19-22
    [18]柳明珠.丙烯酰胺与洋芋淀粉接枝共聚物的合成及其超高吸水性能的研究[J].高分子材料科学与工程,1992,8(4):19-20
    [19]路建美,朱秀林,胡逢吉,等.乌头酸与丙烯酸钠的微波辐射共聚制高吸水性树脂[J].石油化工,1999,28(1):36-39
    [20]崔英德,郭建维.Preparation of acrylic superabsorbents with core-shell structure by modified inverse suspension polymerization[J].化工学报,2000,51(6):723-724
    [21]崔英德,郭建维,刘册,等.静态溶液聚合法合成SA-IP-SPS型高吸水性树脂[J],化工学报,2003,54(5):665-669
    [22]赵兴宝.高吸水树脂的市场现状与预测[J].现代化工.1998,(4):33-35
    [23]胡木.保水剂的制作与应用[J].中外技术情报,1992,(6):29-30
    [24]郭宏霞,王继武,秦振平,等.高吸水性树脂的性能分析及应用前景[J].延安大学学报(自然科学版),1997,16(3):32-36
    [25]杨俊华.国内外高吸水性树脂的发展概况[J].化工新型材料,1992,20(2):1-9
    [26]王斌瑞,蔡典雄,赵兴宝.果树施用保水剂及发展前景[J].烟台果树,2000,(2):7-9
    [27]孙景生,张寄阳,段爱旺,等.中瑞保水剂及其对土壤与作物的效应[J].灌溉排水,2000.19(4):41-44.67
    [28]赵华,范瑞生.高吸水性聚合物的应用发展[J].中国塑料,1999,13(4):11-16
    [29]刘延栋,刘京.高吸水性树脂在日用化学工业中的应用[J].日用化学工业,1995,(1):22-24
    [30]乌兰.高吸水性树脂在农业上的应用与前景展望[J].中国水土保持,2006,(4):45-47
    [31]戴长华.世界高吸水树脂发展现状[J].化工商品科技情报,1996,19(4):49-50
    [32]闫挥,周秀苗.耐盐性高吸水树脂[J].化工新型材料,2001,29(12):11-13
    [33]孙克时,李志强,张淑玲,等.水溶液共聚法合成耐盐性高吸水性树脂[J].化工与粘合,2000,(3):105-107
    [34]李晓阳,朱佩芳,胡嘉念.新型烧伤敷料的研制与评价[LJ].生物医学工程学杂志,1994,11(1):5-8
    [35]林松柏,林建明,施荣望.聚丙烯酸-高岭土杂化高吸水材料的合成与性能[J].华侨大学学报,2000,21(3):246-251
    [36]刘郁杨,邵颖息.PYA/Sim杂化材料的制各与表征[J].高分子材料科学与工程,2002,18(1):123-126
    [37]K Nakamura.Antibacterial cellulose fiber and production process[P].EP905289,1999
    [38]S K Fugger.Process for making perfume-impregnated hydrogel-forming[P].WO9904830,1999
    [39]李侃社,邵水源,闰兰英.聚丙烯酸钠吸水树脂/聚乙烯醇/高氯酸锂聚电解质的制备与性能[J].高分子材料科学与工程,2003,19(5):101-104
    [40]Mino G.,Kaizerman.A new method for the preparation of graft copolymers[J].Journal of applied polymer science,1958,35:242
    [41]张连生,王玉芹,杨巍.Ce~(4+)-Ce~(3+)循环体系引发淀粉与丙烯酰胺接枝共聚合反应动力学研究[J].高分子学报,1994,(3):354-358
    [42]李朝阳,丘坤元.铈盐-过硫酸盐复合引发体系的研究[J].高分子学报,1994,(6):753-757
    [43]K M Mostafa.Graft polymerization of acrylic acid onto starch using potassium permanganate acid(Redox System)[J].Journal of Applied Polymer Science,1995,56:263-269
    [44]邹丽霞,刘峙嵘,黄林海.高锰酸钾引发淀粉与丙烯酰胺接枝共聚反应的研究[J]. 湿法冶金,2001,20(3):156-160
    [45]于九皋,刘峰,高建平,等.高锰酸钾引发淀粉丙烯腈接枝共聚反应动力学[J].化学工业与工程,1999,16(2):81-84
    [46]李和平,李梦琴,王晓曦,等.淀粉/BA-Vac接枝共聚物的合成及应用研究[J].高分子材料科学与工程,1997,13(1):135-138
    [47]巫拱生,李敏.APS-FAS引发丙烯腈与淀粉接枝共聚合反应和高吸水性树脂的研究[J].青岛大学学报,1990,3(2):52-61
    [48]Z S Fu,W D Liang,A M Yang.Role and relevance of polarity and hindrance of vinyl monomers in graft copolymerization onto potato starch[J],Journal of Applied Polymer Science,2002,85:896-899
    [49]余刚,张开,代模栏.乙烯基类单体与淀粉的接枝共聚反应(Ⅰ)[J].成都科技大学学报,1990,(5):1-10
    [50]李晓,赵秋,袁惠根,等.焦磷酸锰(Mn~(3+))络阴离子引发淀粉与丙烯酸酯接枝共聚的研究[J].化学反应工程与工艺,1997,13(1):7-13
    [51]田汝川,刘向红.乙酞丙酮铜(Ⅱ)引发淀粉与甲基丙烯酸甲醋接枝共聚合的研究[J].高分子学报,1992(1):103-107
    [52]唐星华,杨平,郑建辉.铬酸引发内烯酸正丁酯与淀粉接枝共聚反应[J].化学研究与应用,2001,13(1):87-89
    [53]J P Gao,J G Yu.Comparison of transition mentals in the graft copolymerization of vinyl monomers onto starch[J],Journal of Macromolecular Science Pure and Applied Chemistry,1998,A35(3):483-494
    [54]杨波,赵榆林,刘烨.淀粉和丙烯酰胺的辐照接枝共聚反应研究[J].高分子材料科学与工程,200l,17(6):64-66
    [55]王庆军,全一武,张粉英,等.利用~(60)Coγ辐射聚合技术研制淀粉型农用高吸水材料[J].核技术,2003,26(4):311-314
    [56]O B Wurzburg[美]编,变性淀粉的性能与应用[M].北京:纺织工业出版社,1989:191
    [57]喻发全,黄世英,张宝真,等.紫外光引发淀粉接枝丙烯腈的研究(Ⅱ)[J].高分子材料科学与工程,1999,15(1):142-144
    [58]罗雁彬,郑小霞,陈泽芳,等.丙烯酸与淀粉微波固相接枝共聚反应研究[J].化学研究与应用,1999,11(6):687-690
    [59]J W Vanderhoff,E B Bradford,H L Tarkowski.Inverse emulsion polymerization[J].Advances in Chemistry Series,1962,34:32-51
    [60]胡金生,曹同玉,刘庆普.乳液聚合[M],北京:化学工业出版社,1986:291
    [61]M V Dimonie,C M Boghina,N Marinescu,et al.Inverse suspension polymerization of acrylamide[J].European Polymer Journal,1982,18(7):639-644
    [62]D Hunkeler,A E Hamielec,W Baad.Mechanism,kinetics and modeling of he inverse-microsuspension homopolymerization of acrylamide[J].International Journal of Polymeric Materials,1989,30:127-142
    [63]李建宗,程时远,黄鹤.反相乳液聚合研究进展[J].高分子通报,1993,(2):71-76
    [64]A Adrian,F David.Polymerisation processes and polymeric compositions[P].EP0172724,1986
    [65]Reekmans Steven Irene 30zff(BE),Cornet Phillip(BE),Surfactant composition for inverse emulsion polymerization of polyacrylamide and process of using the same[P].US6686417,2004
    [66]高庆,陈正国,路国红.可交联AA/AM反相乳液聚合的稳定性研究[J].湖北大学学报,2001,23(3):255-257
    [67]程原,杜拴丽.丙烯酰胺反相乳液聚合的研究[J].华北工学院学报,1999,20(1):79-82
    [68]D Benda,J Snuparek,V O Cermak.Cygen inhibition and the influence of pH on the inverse emulsion polymerization of the acrylic rnonomers.European Polymer Journal,2001,37(6):1247-1253
    [69]曹亚峰,杨锦宗,刘兆丽,等.脂肪酸盐用于反相乳液中淀粉接枝反应乳化剂的研究[J].精细化工,2003,20(6):326-336
    [70]尹丽,尚小琴,符新,等.木薯淀粉丙烯酰胺反相乳液接枝共聚的研究[J].热带农业工程,2006,(1):6-10
    [71]尚小琴,童张法,龚福忠,等.含固相淀粉的反相乳液体系稳定性研究[J].高分子材料科学与工程,2007,27(3):70-73
    [72]陈欣,张兴英.反相乳液聚合制备耐盐性高吸水树脂[J].化工新材料,2007,35(7):73-75
    [73]尚小琴,章张法,廖丹葵,等.反相乳液五元体系淀粉接枝共聚反应动力学[J].化工 学报,2006,57(6):1220-1224
    [74]胡金生.乳液聚合[M].北京:化学工业出版社,1987,101-105
    [75]王正辉,王红娟.乳液聚合新进展[J].胶体与聚合物,2001,19(1):37-41
    [76]刘玉勇.反相乳液聚合研究进展[J].化学推进剂与高分子材料,2003,19(6):27-30
    [77]L Y Song,M Z Wang,Y H Cong.The mechanism of ~(60)Co γ-ray radiation induced interfacial redox reaction in inverse emulsion and its application in the synthesis of polymer microcapsules[J].European Polymer Journal,2007,48(1):150-157
    [78]尚小琴,童张法,龚福忠,等.含固相淀粉的反相乳液体系稳定性研究[J].高分子材料科学与工程,2006,22(4):138-141
    [79]李雅丽,曹会兰,杨建武.高吸水性树脂的合成与性质研究[J].宝鸡文理学院学报(自然科学版),2003,23(2):121-123
    [80]张本山.几种淀粉颗粒的结构与形貌特征[J].华南理工大学学报(自然科学版),2005,33(6):68-73
    [81]清华大学分析化学教研室主编.现代仪器分析[M].北京:清华大学出版社,1983,164-214
    [82]谢忠信,赵守铃等编著.X-射线光谱分析[M].北京:科学出版社,1982,45-53
    [83][日]神户博太郎编,刘振海等译.热分析[M].北京:化学化工出版社,1979,7-14
    [84]朱诚身.聚合物结构分析[M].北京:科学出版社,2004
    [85]田中豐.化学工业(日).北京:科学出版社,1987,194-197
    [86]郭建维,崔英德,廖列文,等.反相悬浮法合成高吸水性树脂的研究[J].广州化工,2000,28(4):148-150
    [87]李丽,曾冲,单晓波.天然高分子吸水材料的制备工艺与性能评价[J].材料科学与工艺,2006,14(5):470-473

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700