汽车鼓式制动器多物理场仿真研究及数字化分析平台
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合吉林省汽车产业发展专项基金项目,为突破目前国内鼓式制动器自主研发能力相对较弱的局面,进行了基于多物理场耦合的鼓式制动器关键技术的研究。以多刚体与多柔体动力学、热弹性力学等为理论基础,采用模态综合、有限元和优化设计等方法建立了鼓式制动器刚柔耦合虚拟样机。通过对鼓式制动器进行的动力学仿真分析以及台架验证试验,表明此虚拟样机能正确模拟真实环境下制动器的工作过程,可以获得不同制动工况下制动器的动力学性能。
     为考察对制动效能有重要影响的接触压力分布规律以及结构场的应力、应变情况,建立了鼓式制动器接触分析模型。利用有限元分析技术对鼓式制动器进行了接触分析,得到了接触压力、应力、应变分布规律。分析了制动鼓开裂失效的原因。
     为进一步贴近鼓式制动器的实际工作状况,找到制动鼓开裂原因,在综合考虑结构场的压力、应力应变和温度场的基础上,进行了鼓式制动器热结构耦合场分析。得到了结构场与温度场的耦合作用结果,分析了压力、应力应变、温度的分布规律及三者间的相互耦合作用规律。找到了制动鼓开裂失效的原因。台架验证试验和材料检验实验表明,所进行的多物理场耦合分析能够真实反映鼓式制动器的实际工况。
     搭建了鼓式制动器数字化分析平台,实现了鼓式制动器数字化建模与分析过程的自动化,为鼓式制动器的自主研发提供了仿真技术的支持。本文的创新性工作主要包括以下几点:
     (1)通过理论计算分析方法、数值仿真技术,结合制动器台架试验和材料试验,提出了基于多物理场耦合的鼓式制动器的虚拟样机数字化分析技术,搭建了鼓式制动器数字化分析平台,为鼓式制动器的自主研发提供了仿真技术支持。
     (2)建立了以制动鼓、制动蹄和摩擦片为柔性体,制动凸轮、导轮为刚性体的鼓式制动器刚柔耦合虚拟样机,并进行了制动效能分析。
     (3)采用了运动学、动力学、摩擦学和热结构耦合的综合分析技术,把数字化技术与试验技术结合起来建立鼓式制动器热结构耦合仿真分析模型,将压力、温度及应力应变作为统一的耦合问题来分析,研究鼓式制动器压力场、温度场、应力应变场之间的耦合作用关系。
     课题研究工作得到了吉林省汽车产业发展专项基金项目的资助。
Drum brake is mainly used in medium or heavy trucks or large buses, the braking process is implemented by the friction between the Pair-Parts. The frictional contact of the braking process is a three-dimensional frictional contact of which the conditions is extremely complex and mutable, therefore, the study of the drum brake involves kinds of theories such as multi-body dynamics, tribology, contact mechanics, heat transfer theory and so on. Friction contact, friction heat and the interrelated heat and thermodynamics phenomena have important influence on the frictional behaviours of the frictional pair. Yet at the present time, studies of the drum brake are mainly carried out by theoretical analysis from a single-physics field point, which is limited within the laboratory. Therefore the studies of the stress field, the temperature field and the coupled field of the frictional pair are the most important for designing and analysing drum brakes. Domestic Automobile Enterprises are still at the stage of analogical design or empirical design in the aspect of brakes’designing and analysing , the industrial standards adopted are definition of terms, methods of bench test and requirement of brake performance, not involving the methods of simulation and methods of designing, neither the key technology for designing the automotive brake based on the multi-physics model.
     Aiming at the problems mentioned above, it is imperative to carry out the research of the brake’s key technology based on the multi-physics field coupling by the integrated application of the digital multi-disciplinary design theories and methods, in order to acquire intellectual property rights for key thchnologies, which have economic significance and social significance.
     The virtual prototype technology, tribology, multibody system dynamics, contact mechanics, contact mechanics and heat transfer theory are took as this paper’s theoretical and technological basis. The software of MATLAB, multibody dynamics analysis and finite element analysis are used as this paper’s research tools. To build the rigid-flexibel coupling virtual prototype of the brake, to accomplish dynamics performance analysis and multi-physical finite element analysis, to build a digital designing and analysing platform and to solve the practical problems of braking failure is this paper’s purpose. Thus an indepth study was implemented in this paper, whose main work involvs the following aspects:
     (1) The domestic and foreign study status was analyzed combined with the practical need of the subject, thus the main content of the drum brake’s study was determined, the technical route was proposed and the key points of the study was recognized clearly.
     (2) Digital multibody dynamics model of the drum brake was built and the simulation of the braking performance based on the regid-flexible coupling method was implemented. First the three-dimensional solid model was built using the three-dimensional geometric modeling software, then the drum brake’s rigid-flexible coupling virtual prototype was generated in the environment of the multibody dynamics simulation by using the multibody dynamics simulation software and finite element analysis and the Interface Technology between the softwares. At last, boundary conditons was determined, constraint was applied on the kinematic pair, and the braking performance process under defferent working conditons of the drum brake was implemented. The checking of the braking performance simulation results by bench test proves that, the rigid-flexible coupling virtual prototype which was built can accurately pre-estimate the braking performance, friction torque, braking time and so on as the response indicators, the time-domain load output could be applied as the boundary conditons in the finite element analysis.
     (3) The finite element analysis model was built and contact analysis was implemented in order to examine the distribution of the drum brake’s contact pressure, and study the static stress field and the strain field, Getting the conclusion that the distribution law of the contact perssure between the friction lining and the brake drum is non sinusoidal, the values of which are large in the two side and small in the middle, and the distribution difference between the simulation result and the theoretical analysing result was examined. The law of the stress distribution and the corresponding strain conditions was analyzed, on this basis, the failure cause of the first cracking form of the brake drum in the truck E260 was analyzed, the analyzed conclusion was verified by experiment of examining the material, the results demonstrate that the results of the contact analysis could be used to analyse the cracking failure of the brake drum.
     (4) In order to analyse the dynamic varing process of the temperature and stress of the drum brake under the combined influence of the multi-physics field, the digital multi-physics coupling model of the drum brake was built, thermal-structure coupling simulation analysis and thermal failure simulation analysis was implement. First the multi-physics coupling analysis model was built, then the boundary conditons of the dynamics simulation was imported and was applied on the finite element model; Secondly, the thermal-structure analysis was implemented based on the contact analysis. The frictional heat generation and dissipation analysis was accomplished by coupling analysis, getting the temperature field of the friction process of the friction pair; the stress field under the influences from several boudary conditions was analysed. Aiming at the problem of the cracking failure of the E260 truck, the eastablished thermal-structure coupling analysis model was used to implement a simulation analysis. The analysis indicated that, the first cracking form of the brake drum was caused by the concentration of the mechanical stress at the fillet of the flange, further proving the conclusion of the contact analysis. The second cracking form of the brake drum was caused by the thermal fatigue which was caused by the thermal stress. The bench test and the material inspecting test demonstrated that, the conclusion of the simulation analysis correspond to the results of the test, that is, the establish coupling analysis model is right.
     (5) The digital platform for desining and analysing was developed. After building the solid model, multi-flexible-body dynamics model, finite element contact analysis model and thermoelastic coupling model, the interface file among the calculation software, dynamics analysis software and finite element analysis software was established, through file management, the softwares could achieve collaboration, realizing the coordinating working between the multi-flexible-body dynamics simulation and the finite element thermoelastic coupling analysis. On this basis,the simulation model can be refined repeatedly through bench test, and man-machine interface can be set up using the refined model, kinds of brake’s properties can be simulated on computer graphically, thus the digital platform for the brake’s designing and analysing was developed.
     The innovative work of this paper are mainly listed as follows:
     (1) Through the method of theoretical calculating analysis and numerical simulation technology, combined with the brake’s bench test and material examining test, a digital technique of designing and analysing the drum brake’s virtual prototype was provided base on the multi-physics coupling, establishing a digital platform for brake’s designing and analysing.
     (2) A comprehensive analysing technology including kinematics, dynamics, tribology and thermoelastic coupling was used in combination with digital technology and test technology to build the thermokinetics model of the brake, the problems of the pressure distribution, thermal analysis and the stucture strengh was unified as one coupling problem, in order to study the coupling effects among the stress field, temperature field and stress field.
     (3) The rigid-flexible coupling virtual prototype of the drum brake was established ,of which the brake drum, brake shoes and friction film are flexible body, brake cam, idler pulley are rigid body.
引文
[1]林慕义,宁晓斌.工程车辆全动力制动系统[M].北京:冶金工业出版社,2007.
    [2]宁晓斌.基于虚拟样机技术的重型汽车制动器研究[D].北京:北京科技大学,2004.
    [3]宁晓斌,张文明.矿用汽车鼓式制动器制动效能因数的仿真分析[J].有色金属,2005,57(2):20-22.
    [4]管仁梅.大客车鼓式制动器的多柔体ADAMS建模[D].吉林大学硕士学位论文.2004.
    [5]黄学文,张金换,董光能,谢友柏.汽车摩擦制动噪声研究进展与发展趋势[J].汽车工程.2007,29(5):385-388.
    [6]管迪华,朱新潮,成波.鼓式制动器结构振动噪声研究[J].汽车工程.1993,15(2):71-77.
    [7]周明刚.鼓式制动器低频振动理论与特性研究[D],武汉:华中科技大学,2006.
    [8]宁晓斌,张文明,王国彪.用虚拟样机技术分析鼓式制动器的振动[J].有色金属,2003,55(2):105-108.
    [9]李亮,宋健,李永,郭振宇.制动器热分析的快速有限元仿真模型研究[J].系统仿真学报.2005,17(12):2869-2877.
    [10]郭应时,付锐,杨鹏飞,袁伟.鼓式制动器瞬态温度场数值模拟计算[J].长安大学学报(自然科学版).2006,26(3):87-90.
    [11]孟召辉.汽车鼓式制动器热性能有限元分析[D].吉林大学硕士学位论文.2007.
    [12]吕振华,亓昌.蹄-鼓式制动器热弹性藕合有限元分析[J].机械强度,2003,25(4):401-407.
    [13]马迅,秦剑.基于有限元法的制动鼓的耦合分析[J].机械设计与研究,2005,21(1):68-71.
    [14]赵凯辉,魏朗.鼓式制动器三维热-机耦合温度场仿真[J].农业机械学报,2009,40(2):32-36.
    [15]丁厚福,李先芬,祖方遒,苏勇,陈翌庆.低合金铸铁汽车制动鼓的失效分析[J].合肥工业大学学报,2004,27(9):983-986.
    [16]程和法,黄笑梅,陈翌庆,苏勇.HT200制动鼓的失效分析及其新材质的研制[J].机械工程材料,2001,25(10):36-38.
    [17]黄笑梅.低合金化灰铸铁汽车制动鼓的研制[J].汽车工艺与材料,2002,(1):22-24.
    [18]朱育全.制动鼓(盘)研究现状与发展趋势[J].西北工业大学学报,2001,(3):73-76.
    [19]朱景宏.桑车后制动鼓化学成分的控制[J].上海大学学报(自然科学版),1999,(5):184-186.
    [20]丁厚福,李先芬,祖方遒,苏勇,陈翌庆.低合金铸铁汽车制动鼓的失效分析[J].合肥工业大学学报(自然科学版),2004,27(9):983-986.
    [21]李先芬,丁厚福,苏勇,陈翌庆,祖方遒.汽车制动鼓的失效分析[J].理化检验-物理分册,2004,40(10):517-524.
    [22] Sage A M,Dawson J V..A High-carbon,V-Mo,High-strength Gray Cast Iron for Castings Subjected to Thermal Fatigue[J].AFS Transactions,1992,92-96:253-263.
    [23]管欣,申军烽,管仁梅.鼓式制动器多柔性体ADAMS建模与仿真[J].汽车技术,2007,10:6-9.
    [24]陈宏伟,宋健,王铁山,任露泉.AUDI盘式制动器的幂函数乘积模型[J].汽车工程,2002,24(3):263-265.
    [25]王登峰,王玉伟,陈晓春,赵继业..制动盘的纵波模态对制动尖叫声影响研究[J].汽车技术,2008,1:9-12.
    [26] Shan Shih , Rajesh Somnay , Robert Hannon , et al. Improved drum brake shoe factor prediction with the consideration of system compliance[C]//SAE International Truck and Bus Meeting and Exposition,Portland,2000:1-1.
    [27] Hohmann C, Schifner K, Oerter K ,et. al. Contact analysis for drum brakes and disk brakes using ADINA[J].Computers and Structures,1999,72:185-198.
    [28] Rajesh Somnay , Shan Shih , Paul Johnston. Improved drum brake performance prediction considering coupled thermal and mechanical effects[C]//SAE Paper2001-01-2728.
    [29] Daniel Thuresson.Influence of material properties on sliding contact braking applications[J].Wear,2004,257(5):451-460.
    [30] Shih-Wei Kung, Greg Stelzer and Kelly A. Smith.A Study on Low Frequency Drum Brake Squeal[C]//SAE Technical Paper Series, 2004-01-2787.
    [31] Yitzong (Jim) Chern and R. H. Basch(Ford Motor Company).A Drum Brake Squeal Analysis in the Time Domain[C]// SAE Technical Paper Series, 2005-01-2312.
    [32] S Qiao,D M Beloiu,R A Ibrahim. Deterministic and Stochastic Characterization of Friction-Induced Vibration in Disc Brakes[J]. Nonlinear Dynamics,2004,36: 361–378.
    [33] Minggang Zhou, Yong Wang, Qibai Huang. Study on the Stability of Drum Brake Non-Linear Low Frequency Vibration Model[J]. Arch Appl Mech, 2007, 77: 473–483.
    [34] Minggang Zhou, Yuan Chen, Yong Wang, Jingdong Zhou. Study on the Limit Cycle Oscillation of the Drum Brake Non-Linear Vibration Model at Low Frequency[J]. Int J Mech Mater Des, 2008, 4:317–324.
    [35] Kwangjin Lee, Frank W Brooks,Jr. Hot Spotting and Judder Phenomena in Aluminum Drum Brakes[J]. Transactions of the ASME, 2003,125:44-51.
    [36] H S Qi, A J Day. Investigation of Disc/Pad Interface Temperatures in Friction Braking[J].Wear,2007,262:505-513.
    [37] Jinchun Huang, CharlesM. Krousgrill, Anil K. Bajaj. Modeling of Automotive Drum Brakes for Squeal and Parameter Sensitivity Analysis [J]. Journal of Sound and Vibration, 2006, 289:245-263.
    [38] ZHOU Ming-gang, HUANG Qibai, WANG Yong, XU Zhisheng. Non-linear 2-DOF modeI and centre manifold theo to study limit cycle oscillations caused by drum-brake judder[J]. Journal of Chongqing University:English Edition, 2007, 6(1):55-62.
    [39] Yi Dai, Teik C. Lim. Suppression of Brake Squeal Noise Applying Finite Element Brake and Pad Model Enhanced by Spectral-Based Assurance Criteria [J]. Applied Acoustics,2008,69(3):196-214.
    [40] Francesco Massia, Laurent Baillet, Oliviero Giannini, Aldo Sestieri. Brake squeal: Linear and Nonlinear Numerical Approaches [J]. Mechanical Systems and Signal Processing,2007, 21(6):2374-2393.
    [41] Guillaume Fritz, Jean-Jacques Sinou, Jean-Marc Duffal, Louis Je′ze′quel. Effects of Damping on Brake Squeal Coalescence Patterns-Application on a Finite Element Model[J].Mechanics Research Communications, 2007, 34(2):181-190.
    [42] G. Lou, T.W. Wu, Z. Bai. Disk Brake Squeal Prediction Usingthe ABLE Algorithm [J]. Journal of Sound and Vibration, 2004, 272(3-5):731-748.
    [43] Ji-Hoon Choi, In Lee.Finite element analysis of transient thermoelastic behaviors in disk brakes[J]. WEAR, 2004,257:47-58.
    [44] VOLDRICH Josef . Frictionally excited thermoelastic instability in disc brakes: Transient problem in the full contact regime[J].International journal of mechanical sciences,2007,49(2):129-137.
    [45] F. E. Kennedy and F. F. Ling. A Thermal,Thermoelastic and Wear Simulation of a High Energy Sliding Contact Problem[J].ASME Journal of Lubrication Technology,1974,97:497-507.
    [46] P.Zagrodzki, K.B.Lam,E.A1 Bahkali,J.R.Barber. Nonlinear Transient Behavior of a Sliding System With Frictionally Excited Thermo-elastic Instability [J].Journal of Tribology, 2001, 123:699-708.
    [47] Ramesh Edara.Heavy Vehicle Disc Brake Components Design Using CAE Tools[C]// SAE Technical Paper Series, 2006-01-3559.
    [48] Krzysztof Arczewski, Janusz Fraczek. Friction Models and Stress Recovery Methods in Vehicle Dynamics Modelling[J]. Multibody System Dynamics, 2005, 14: 205-224.
    [49] H Ouyang, J E Mottershead, W Li. A Moving-Load Model for Disc-Brake Stability Analysis[J].ASME Journal of Vibration and Acoustics2003,125:53-58.
    [50] YuanMao Huang , J S Shyr. On Pressure Distributions of Drum Brakes[J].ASME Journal of Mechanical Design, 2002, 124:115-120.
    [51] D.C.Barton. Modelling of Materials for Automotive Braking[J]. International Materials Reviews, 2004, 49(6):379-385.
    [52] I. Paczelt, Z. Mroz. Optimal Shapes of Contact Interfaces Due to Sliding Wearin the Steady Relative Motion [J].International Journal of Solids and Structures, 2007, 44:895-925.
    [53] Edward J. Park, Luis Falcao da Luz, Afzal Suleman. Multidisciplinary Design Optimization of an Automotive Magnetorheological Brake Design[J]. Computers and Structures,2006,16(7):405-416
    [54] Daniel Thuresson. Stability of Sliding Contact—Comparison of a Pin and a Finite Element Model [J]. Wear, 2006,261(7-8):896-904.
    [55] Shuqin Du, James W.Fash .Finite element analysis of frictionally-excitedthermoelastic instability in 3D annular disk. International Journal of Vehicle Design[J],2000,23(3/4):203-217.
    [56] Tsuyoshi Kodashima,Michio Kurasbide.Active Cooling and Thermal Stress Reduction in a Poroelastic Hollow Sphere[J]. Journal of Thermal Stresses,1997,20(3):389-405.
    [57] Antti Papinniemia, Joseph C.S. Lai, Jiye Zhao,Lyndon Loader. Brake Squeal: a Literature Review[J]. AppliedAcoustics 2002,63:391–400.
    [58] A. Yevtushenko, R. Chapovska. Effect of Time-Dependent Speed on Frictional Heat Generation and Wear in Transient Axisymmetrical Contact of Sliding[J]. Archive of Applied Mechanics,1997,67:331-338.
    [59] Kwangjin Lee. Frictionally Excited Thermoelastic Instability in Automotive Drum Brakes[J]. ASME Journal of Tribology, 2000, 122: 849-855.
    [60] S. Ramousse1, J. W. Hoj and O. T. Sorensen.Thermal Characterisation of Brake Pads[J]. Journal of Thermal Analysis and Calorimetry,2001, 64:933-943.
    [61] M. Naji, M. Al-Nimr, S. Masoud. Transient Thermal Behavior of a Cylindrical Brake System[J]. Heat and Mass Transfer, 2000, 36:45-49.
    [62] D. Joachim-Ajao, J. R. Barber. Effect of Material Properties in Certain Thermoelastic Contact Problems[J]. ASME Journal of Applied Mechanics, 1998, 65: 889 -893.
    [63] Kwangjin Lee, J. R. Barber. The effect of shear tractions on frictionally excited thermoelastic instability [J]. Wear, 1993, 160:237-242.
    [64] C.H. Gao, X.Z. Lin. Transient Temperature Field Analysis of a Brake in a Non-Axisymmetric Three-Dimensional Model [J]. Journal of Materials Processing Technology,2002, 129(1):513-517.
    [65] Abdullah M.Al-Shabibi J.R.Barber. Transient solution of a two-dimensional TEI problem using a reduced order model[C]//SAE 2001 World Cingress,Detroit,Michigen,USA.
    [66] Ji-Hoon Choi, In Lee. Finite element analysis of transient thermoelastic behaviors in disk brakes[J]. Wear, 257 (2004) 47–58.
    [67] Kwangjin Lee, Barber J.R.Frictionally excited thermoelastic instability in automotive disk brakes[J].ASME Jouranal of tribology,1993,115(4):607-614.
    [68] JiHoon Choi, In Lee. Finite Element Analysis of Transient Thermoelastic Behaviors in Disk Brakes[J].Wear, 2004, 257:47-58.
    [69] P. Zagrodzki, K. B. Lam, E. Al Bahkali, J. R. Barber. Nonlinear Transient Behavior of a Sliding System With Frictionally Excited Thermoelastic Instability [J]. ASME Journal of Tribology,2001, 123: 699-708.
    [70] BY L. Afferrante, M. Ciavarella, J. R. Barber. Sliding thermoelastodynamic instability[J]. Proc. R. Soc. A,2006, 462: 2161-2176.
    [71] Y.B. Yi, J. R. Barber. P. Zagrodzki. Eigenvalue Solution of Thermoelastic Instability Problems Using Fourier Reduction[J]. Proc. R. Soc. Lond. A, 2000, 456: 2799-2821.
    [72] M. Ciavarella, J.R. Barber. Stability of thermoelastic contact for a rectangular elastic block sliding against a rigid wall[J]. European Journal of Mechanics A/Solids, 2005, 24:371-376.
    [73] M. Eltoukhy, S. Asfour, M. Almakky, C. Huang. Thermoelastic Instability in Disk Brakes: Simulation of the Heat Generation Problem[J]. Proceedings of the COMSOL Users Conference, Boston, USA,2006.
    [74] J. R. Barber. Thermoelasticity and Contact[J].General Lecture,Third International Congress on Thermal Stresses,Thermal Stresses’99 ,Cracow, Poland, 1999.
    [75] L. Afferrante, M. Ciavarella, P. Decuzzi, G.Demelio.Transient Analysis of Frictionally Excited Thermoelastic Instability in Multi-Disk Clutches and Brakes[J].Wear,2003, 254:136-146.
    [76] Abdullah M., Al-Shabibi, J.R. Barber. Transient Solution of a Thermoelastic Instability Problem Usinga Reduced Order Model[J]. International Journal of Mechanical Sciences, 2002, 44:451-464.
    [77] Josef Voldrich. Frictionally Excited Thermoelastic Instability in Disc Brakes—Transient Problem in the Full Contact Regime [J]. International Journal of Mechanical Sciences, 2007, 49(2):129-137.
    [78] Jung ho Hwang, Heung seob Kim. The thermal analysis of brake disc with 3-D coupled analysis[J]. Key Engineering Materials, 2005,297/300(1):305-310.
    [79] Carslaw H S,Jaeger J C.The conduction of heat in solids[M].Oxford:Clarendon Press,1959.
    [80] Daniel Thuresson. Influence of material properties on sliding contact braking applications[J].Wear,257 (2004) 451–460.
    [81] Kwangjin Lee, Frictionally excited thermoelastic instability in disc brakes[J]., International Journal of Mechanical Sciences 49 (2007) 129–137.
    [82] Olesiake , Determination of temperature and wear during braking, Wear 210 (1997) t20-126.
    [83] Masashi Daimaruya,Hidetoshi Kobauashi,Khairul Fuad.Thermoelasto-Plastic Stresses and Thermal Distortions in a Brake Drum[J].Journal of Thermal Stresses,1997,20(3):345-361.
    [84] Malak Naji,M Al-Nimr.Dynamic Thermal Behavior of a Brake System[J].Heat Mass Transfer,2001,28(6):835-845.
    [85] D. Severin, S. D?rsch.Friction Mechanism in Industrial Brakes [J]. Wear, 2001, 249: 771-779.
    [86] C.H.Gao, J.M.Huang, X.Z.Lin, X.S.Tang. Stress Analysis of Thermal Fatigue Fracture of Brake Disks Based on Thermomechanical Coupling[J]. Transactions of the ASME,2007,129:536-543.
    [87] R.J.Gu, M.Shillor.Thermal and Wear Analysis of an Elastic Beam in Sliding Contact[J].International Journal of Solids and Structures,2001, 38:2323-2333.
    [88] Khairul Fuad, M. Daimaruya, H. Kobayashi.Temperature and Thermal Stresses in a Brake Drum Subjected to Cyclic Heating[J]. Journal of Thermal Stresses, 2008, 26:37-41.
    [89]李增刚.ADAMS入门祥解与实例[M].北京:国防工业出版社,2007.
    [90]郑建荣. ADAMS-虚拟洋机技术入门与提高[M].北京:机械工业出版社,2001.
    [91]张旭,毛恩荣.机械系统虚拟样机技术的研究和开发[J].中国农业大学学报,1999,4:
    [92]王国强,张进平,马若丁.虚拟样机技术及其在ADAAS上的实践[M].西安:西北工业大学出版社,2002.
    [93]李鹏辉.虚拟样机技术在车辆动力学中的应用[J].大众科技,2005,11:91-92.
    [94] G. Gary Wang,Definition and Review of Virtual Prototyping [J].Journal of Computing and Information Science in Engineering, 2002,2:235-236.
    [95] Haug, E. J., Cremer, J., Papelis, Y., Solis, D., Ranganthan, R. Virtual Proving Ground Simulation for Vehicle Design [J]. Proceedings of the 1998 ASME Design Technical Conference and Design Automation Conference,DETC98/DAC-5626, Atlanta, Georgia, September ,1998,13–16.
    [96] Levent U. Gokdere, Khalid Benlyazid, Roger A. Dougal,Enrico Santi, Charles W. Brice. A virtual prototype for a hybrid electric vehicle [J].Mechatronics,2002,12(4):575-593.
    [97] Montazeri-Gh, M. Soleymani, M., Mehrabi, N. Application of Virtual Prototyping for Optimization of Fuzzy-Based Active Suspension System [J]. Proceeding of the 5th International Symposium on Mechatronics and Its Applications (ISMA08), Amman, Jordan, May 27-29, 2008.1-6.
    [98] Xiaoxia Xu, Yu Ning, Yingchun Han. Virtual Design and Simulation in New Produt Development of Automobile Sunroof [J]. Computer-Aided Industrial Design and Conceptual Design, 2008. CAID/CD 2008. 9th International Conference on. 22-25 Nov. 2008:354– 358.
    [99] J.维藤伯格著,谢传峰译.多刚体系统动力学[M].北京:北京航空学院出版社,1986.
    [100]陆佑方.柔性多体系统动力学[M].北京:高等教育出版社,1989.
    [101]宋传学,袁鸿,蔡章林.基于多体系统动力学的悬架虚拟样机库[J].吉林大学学报工学版,2008,38(5):1001-1005.
    [102] K Hussain,SH Yang,A Day. A study of commercial vehicle brake judder transmission using multi-body dynamic analysis[C]. Proc IMechE,2007,221:311-318.
    [103] Dzmitry Tretsiak,Valentin Ivanov. Investigation on Hysteresis Losses into Disc Brake Gear for Heavy Vehicles [C]. SAE Paper 2006-01-3212.
    [104]马星国,尤小梅,闻邦椿.基于虚拟样机技术的曲轴多体动力学仿真[J].振动与冲击,2008,27(9):155-158.
    [105] Yong Yang,Weiqun Ren,Liping Chen,Ming Jiang,Yuliang Yang. Study on Ride Comfort of Tractor With Tandem Suspension Based on Multi-body System Dynamics[J]. AppliedMathematical Modelling,2009,33 (1):11-33.
    [106]宁晓斌,孟彬,王磊.重型汽车制动器虚拟样机的建模与应用[J].系统仿真学报:2006,18(8):2187-2189.
    [107]管欣,申军烽,管仁梅,詹军.鼓式制动器多柔性体ADAMS建模与仿真[J].汽车技术,2007,(10):6-9.
    [108]王宣锋,黄朝胜,应国增,王博.实验构建鼓式制动器的摩擦模型[J].汽车技术,2007,(10):43-46.
    [109]刘书,刘晶波,方鄂华.动接触问题及其数值模拟的研究进展[J].工程力学,1999,16(6):14-28.
    [110]陈万吉,胡志强.三维摩擦接触问题算法精度和收敛性研究[J].大连理工大学学报,2003,43(5):541-547.
    [111]黄承义,顾玉明,郑际嘉.应用有限元混合法分析两弹性接触体的动力响应(理论部分)[J].海事工程学院学报,1994,66:17-23.
    [112] T.Anderson.The Boundary Element Applied Two-dimensional Contact Problem[J].In:C.A.Brebbia.New Development in Boundary Element Methods.CML Publications,1980,247-263.
    [113]陈国庆,陈万吉.接触问题的非线性互补-接触柔度法[J].计算机结构力学及其应用,1996,13(4):385-392.
    [114]李学文,徐孜孜.三维摩擦接触问题的一种混合迭代法[J].北京理工大学学报,2005,25(2):98-102.
    [115]孙苏明,钟万勰.摩擦接触弹塑性分析的数学规划法[J].力学学报,1991,23(3):323-331.
    [116]陈国庆,陈万吉,冯恩民.摩擦接触问题数学规划法的收敛和算法的改进[J].计算结构力学及其应用,1994,11(4):374-379.
    [117]沙德松,孙焕纯,徐守泽.弹性摩擦接触问题的边界元-线性互补解法[J].应用数学和力学,1990,11(12):1035-1041.
    [118]刘永健,姚振汉.三维接触边界元法的一种误差直接估计[J].清华大学学报(自然科学版),2003,43(11):1499-1502.
    [119]朱昌铭,金永杰.有摩擦弹性接触问题边界元分析的一种新方法[J].工程力学,1991,8(4):2-9.
    [120]杜学武.求解约束优化问题的增广拉格朗日函数法[D].上海:上海大学,2005.
    [121]彼得.艾伯哈特,胡斌.现代接触动力学[M].南京:东南大学出版社,2002.
    [122] Paris P, Erdogan F. A Critical Analysis of Crack Propagation Laws[J].ASME Transactions,Journal of Basic Engineering,Series D,1963,85D(4):528~ 534.
    [123]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [124]朱伯芳.有限单元法原理与应用[M].北京:中国水利出版社,1998.
    [125]李亮,宋健,李永,郭振宇.制动器热分析的快速有限元仿真模型研究[J].系统仿真学报, 2005,17(12):2869-2877.
    [126]庄茁.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009.
    [127]庄茁,张帆,岑松.ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2005.
    [128]吕振华,亓昌.蹄-鼓式制动器热弹性耦合有限元分析[J].机械强度,2003,25(4):401-407.
    [129] R. Limpert.Brake Design and Safety Second Edition[J].Society of Automotive Engineers, USA,1999.
    [130] Masashi Daimaruya, Hidetoshi Kobayashi, Khairul Fua. Thermoelasto-plastic stresses and thermal distortions in a brake drum[J]. Journal of Thermal Stresses,1997, 20:345 ~361.
    [131]王涛,朱坚文.摩擦制动器[M].广州:华南理工大学出版社, 1992:1-80
    [132] S. P. Jung, K. J. Jun, T. W. Park, and J. H. Yoon. Development of The Brake System Design Program for A Vehicle[J]. International Journal of Automotive Technology, 2008, 9(1): 45-51.
    [133] Jung, I. and Lee, S. Development of Automotive Braking Performance Analysis Program Considering Dynamic Characteristics[J]. Trans. Korean Society of Automotive Engineers, 2004,12(2): 175-181.
    [134] W. M. Zhuang, F. C. Lan, D. N. Yu, and D. P. Chen. Study on Auto Body Parametric FE Model & Its Application[J].Chinese Journal of Mechanical Engineering, 2004, 40(7): 145-149.
    [135] J. F. Sun, G. L. Wang, and H. O. Zhang. Elasto-plastic Contact Problem of Laying Wire Rope Using FE Analysis[J].Int. J Adv Manuf Technol, 2005, 26:17–22.
    [136] Pradip Dube and P. R. Sajanpawar. Study of Perforated Mufflers of Circular and Elliptical Cross Sections Using Parametric Technique and Finite Element Methodology[C].SAE, World Congress Detroit, Michigan. April 16-19,2007-01-0895.
    [137] R. C. Liu, L. Q. Xue, S. Y. Ma, H. B. Tang, Q. Z. Wang, and C. Y. Deng. Research on Crankshaft FEA System of Parametric 3D Integral Model[J].Transactions of the CSAE, 2004, 20(6): 27-30.
    [138]石博强,申焱华,宁晓斌,李跃娟.ADAMS基础与工程范例教程[M].北京:中国铁道出版社,2007.
    [139] J. Shao, Z. F. Xiang, and P. Wang.Secondary Development Technology of ANSYS Based on VB[J].Journal of Chongqing Vocational& Technical Institute, 2006, 2: 144-145.
    [140] Tao Zhang.Ansys Second Development Method and Application in Transient Thermal Simulation[C].IEEE,International Conference on Computer Science and Software Engineering,2008,643-645.
    [141] Mohammad Haghpanahi,Reza Mapar.Development of a Parametric Finite Element Model of Lower Cervical Spine in Sagital Plane[C].Proceeding of the 28 th IEEE,New York City,USA,Aug 30-Sept3,2006,1739-1741.
    [142]李厚佳,卢平,刘佐民.基于VC与APDL接口的气门参数化建模与有限元分析系统[J].武汉理工大学学报(交通科学与工程版),2007,31(2):325-328.
    [143] Haghpanahi, M., and Mapar, R.,“Development of A Parametric Finite Element Modelof Lower Cervical Spine in Sagital Plane,”IEEE EMBS Conference’s proceeding, pp. 1739-1741, August 30-Sept.3,2006 [EMBS Annual International Conference New York City, USA, Aug 30-Sept 3, 2006].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700