接触线用稀土微合金化高强高导Cu-Cr-Zr合金时效析出特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国高速电气化铁路对接触线用材料提出的性能要求,研制和开发了新型接触线用稀土微合金化高强高导Cu-Cr-Zr(-RE)合金材料,并对其时效析出特性进行了研究。采用相对电阻率γ和其变化量?γ作为评价时效过程的参数,基于动态电阻法对合金等温加热和等速(变温)加热时效析出动力学进行了研究。研究表明:随等温时效温度升高,孕育期缩短,?γ的增加速率呈现上升趋势;合金在等速加热时效时,加热速率较小则?γ较大,而加热速率越大则时效过程开始和结束的温度也越高。
     对比研究了几种合金时效析出行为和强化机理,研究发现:固溶态合金进行时效处理时,时效初期显微硬度和导电率均大幅上升,Cu-Cr-Zr合金经480℃×2 h时效后显微硬度和导电率分别为106 HV和72.8%IACS;对固溶态合金施以冷变形后,可为析出相的形核及生长提供有利条件并加速时效析出过程的进行,同时会出现析出和再结晶两个过程,二者交互作用会对时效后组织和性能产生影响,Cu-Cr-Zr合金经固溶-60%变形-480℃×1 h时效后性能为154 HV和83.5%IACS;添加微量RE后,相同时效处理后合金显微硬度比Cu-Cr-Zr合金高出约15~20 HV,而导电率则降低约2%~4%IACS,同时改善了Cu-Cr-Zr合金高温性能,其抗软化温度提高约30~40℃;微观分析表明,合金的时效析出强化,是由在铜基体上析出体心立方晶格的Cr和面心立方CrCu2(Zr,Mg)两种析出相共同作用造成的;研究提出了合金接触线加工工艺,加工后线材力学性能达到:抗拉强度,605.6 MPa;导电率,80.8 %IACS;延伸率,10.2 %。完全满足高速电气化铁路对接触线高强(≥550 MPa)、高导(≥80 %IACS)及延伸率(≥5 %)等方面的要求。在采用矩形梁弯曲试验进行应变分布测试结果的基础上,首次利用勒让德多项式作为裂纹柔度法中的插值函数对合金线材残余应力大小及分布进行了计算。经固溶-时效-变形处理后合金残余应力将发生释放并降低到约-50 MPa~30 MPa范围内。
     在自制电磨损实验机上对合金导线进行了电滑动磨损试验:相同试验条件下,三种Cu-Cr-Zr-RE合金耐磨性均优于Cu-Cr-Zr合金,其中又以Cu-Cr-Zr-Ce合金耐磨性最好;随着载流强度的增加,RE对Cu-Cr-Zr合金耐磨性能的改善作用有所下降;SEM观察和EDS分析均表明,未加电流情况下,合金的滑动磨损形式有粘着磨损、磨粒磨损和疲劳磨损,其中疲劳磨损为其主要磨损形式,而在载流磨损条件下,合金的磨损增加了电烧蚀磨损形式;研究发现在磨损表面下的亚表层中发生了再结晶现象,同时产生一个与磨损表面相垂直的拉应力分量,该应力将促进亚表层中裂纹的形成及扩展、加速合金的磨损过程。首次在本实验条件下,建立了接触线-滑块电磨损的物理模型和数学模型。
According to the properties of contact wire used materials of high-speed electrical railway, a new series trace alloyed Cu-Cr-Zr(-RE) contact wires with high strength and high electrical conductivity were developed and manufactured. The aging precipitation behavior of the alloys was investigated in this paper.
     The relatively electrical resistance ratio, such as theγvalue or the ?γvalue which was defined the change of theγvalue as the parameters, was used to estimate the kinetics of isothermal-heating and iso-speed-heating aging precipitated by using the dynamic resistance method. The results showed that the incubation period was shortened and the increased velocity of the ?γvalue gone up with the increased isothermal-heating aging temperatures. The ?γvalue would be rather higher with the less heating ratio, and the aging beginning and finishing temperatures would rise with the rapid heating ratio in the iso-speed-heating aging process.
     The aging precipitation behavior and the strengthened mechanism of these tested Cu-Cr-Zr(-RE) alloys were studied contrastively. The hardness and electrical conductivity values of the solution treated alloys would rise rapidly at the beginning of the aging process. And the values of hardness and electrical conductivity of the Cu-Cr-Zr alloy are 106 HV and 72.8%IACS after aged at 480℃for 2 h, respectively. The cold deformation could offer advantages for the precipitated phase to nucleate and develop, and could accelerate the precipitated course of the solution treated alloys. After soluted-60% deformed-aged at 480℃for 1 h treatment, the values of the Cu-Cr-Zr alloy would be increased to 154 HV and 83.5%IACS, respectively. With the trace RE addition, the values of the hardness and the soften temperature could increase 15~20 HV and 30~40℃, respectively, while that of the electrical conductivity would dropped about 2%~4%IACS. There are two courses, such as precipitation and recrystallization, would occur in the aging process, and the interaction between these two courses would influence the structures and performances of the aged alloys. The precipitated phases from the Cu matrix, such as Cr phase with the b.c.c pattern and CrCu2 (Zr,Mg) phase with f.c.c pattern, could bring the synergetic effect on aging precipitated strengthen. TheCu-Cr-Zr(-RE) alloy contact wire process technics were put forward. The mechanical properties of the contact wire, such as tensile strength, electrical conductivity and yield strength could achieve 605.6 MPa, 80.8 %IACS and 10.2 %, respectively. These values exceeded completely the requirements (tensile strength≥550 MPa, electrical conductivity≥80 %IACS and elongation≥5 %) for the contact wire which be used in the high-speed electrical railway. According to the strain distribution test data through the rectangle bent beam test, the crack compliance method (CCM) using Legendre polynomials as the interpolation was employed firstly to measure the residual stresses distribution in the alloys wire. The residual stresses would release and the values of these would be dropped into a low level range about -50 MPa to 30 MPa after soluted-aged-deformation treatment.
     The electrical sliding wear resistance tests were performed on the eletrical wear resistance testing machine made by the lab. The wear resistance performances of the three Cu-Cr-Zr-RE alloys were all better than that of the Cu-Cr-Zr alloy under the same experimental condition, and that of the Cu-Cr-Zr-Ce alloy was the best. The effect of RE elements on improving the wear resistance property would be decreased with the increased electrical currents. Using SEM and EDS, the analyzed results showed that the sliding wear mechanism of the Cu-Cr-Zr alloy were made up of adhesive wear, abrasive wear and fatigue wear without current in which fatigue wear was the dominating mechanism. While adhesive wear, abrasive wear, fatigue wear and arc erosion would be the wear forms under currents. The recrystallization occurred in the subsurface in the tested process. Meanwhile, a tensile stress with vertical orientation to the surface was taken place, and this stress would accelerate the formation and propagation of the crack in the subsurface, then the alloys wear would be serious. The electrical sliding wear physical and mathematical model between contact wire and slide block based on this research was presented.
引文
[1]S. H. Kin, D. N. Lee. Annealing behavior of alumina dispersion-strengthened copper strips under different conditions [J]. Metallurgical and materials transactions, 2002, 33A(6):1605~1616
    [2]Yong-Jai Kwon, Makoto Kobashi, Takao Choh, et al. Fabrication of TiC/Cu composites by combustion synthesis in Cu-Ti-C system [J]. J Japan inst met, 2001, 65(4):273~278
    [3]T. S. Srivatsan, N. Narendra, J. D. Troxell. Tensile deformation and fracture behavior of an oxide dispersion strengthened copper alloy [J]. Materials & Design, 2000, 21(3):191~198
    [4]Jongsang Lee, J. Y. Jung, Eon-Sik Lee, et al. Microstructure and properties of titanium boride dispersed Cu alloys fabricated by spray forming [J]. Materials Science and Engineering A, 2000, 277(2):274~283
    [5]冯金柱. 世界电气化铁路的发展[J]. 电气化铁道, 2001, (4):1~7
    [6]秦家铭. 我国电气化铁路的发展及展望——纪念全国电气化铁路突破一万公里[J]. 铁道工程学报, 1998, (3):1~6
    [7]侯唯一. 我国电气化铁路的建设历程[J]. 电气化铁道, 2001, (3):1~3
    [8]丁雨田, 李来军, 许广济, 等. 接触线材料的现状及研究热点[J]. 电线电缆, 2004, (2):3~9
    [9]黄崇祺. 轮轨高速电气化铁路接触网用接触线(电车线)的发展、选型和国产化[J]. 机电产品开发与创新, 1999, (2):1~3
    [10]刘世程. 高速电气化铁路用接触导线的现状与发展趋势[A]. 铁路金属材料及热处理第四届年会论文集[C], 辽宁大连, 1993. 81~89
    [11]温宏权, 毛协民, 徐匡迪, 等. 铜电车线材料的研究进展[J]. 材料导报, 1998, 12(1):25~28
    [12]刘宝锟. 高速铁路牵引供电技术研究——高速接触网接触线的选择[M]. 北京:中国铁道出版社, 1995. 6~8
    [13]陈树川, 陈凌冰. 材料物理性能[M]. 上海:上海交通大学出版社, 1999. 40~65
    [14]刘来宁. 对接触线技术发展水平及部分特性的探讨[A]. 中国电子学会光电线缆学术交流会论文集[C], 江苏江阴, 1996. 83~98
    [15]黄崇祺. 轮轨高速电气化铁路接触网用接触线的研究[J]. 中国铁道科学, 2001, 22(1):1~5
    [16]张 强. 中、高速电气化铁路接触线的选择[J]. 铁道机车车辆, 1997, (4):21~27
    [17]彭立明, 毛协民, 丁文江. 自生复合 Cu-Cr 合金综合性能的热稳定性[J]. 中国有色金属学报, 2002, 12(2):309~314
    [18]张家涛. 高性能 Cu-Cr(-Zr-Mg)自生复合材料研究及其应用[D]. 昆明:昆明理工大学, 2001
    [19]张家涛, 陈敬超, 甘国友, 等. Cu-Cr 自生复合材料研究进展[J]. 昆明理工大学学报, 2002, 27(3):130~133
    [20]Rishi P. Singh, Alan Lawley, Sam Friedman. Microstructure and properties of spray cast Cu-Cr alloys [J]. Materials Science and Engineering A, 1991, 145(2):243~255
    [21]刘 平, 康布熙, 曹兴国, 等. 快速凝固 Cu-Cr-Zr-Mg 合金的时效析出与再结晶[J]. 中国有色金属学报, 1999, 9(2):241~246
    [22]P. Liu, B. X. Kang, X. G. Cao, et al. Interaction of Precipitation and Recrystallization in a rapidly Solidified Cu-Cr-Zr-Mg Alloy [J]. Acta Metallurgica Sinica, 1999, 12(3):273~277
    [23]Huang Fuxiang, Ma Jusheng, Ning Honglong. Analysis of phases in a Cu-Cr-Zr alloy [J]. Scripta Materialia, 2003, 48(1):97~102
    [24]I. S. Batra, G. K. Dey, U. D. Kulkarni, et al. Precipitation in a Cu-Cr-Zr Alloy [J]. Materials Science and Engineering A, 2003, 356(1):32~36
    [25]D. M. Zhao, Q. M. Dong, P. Liu, et al. Structure and strength of the age hardened Cu-Ni-Si alloy [J]. Materials Chemistry And Physics, 2003, 79(1):81~86
    [26]章伯垠, 朱寿康, 毛云辉, 等. 有色金属科学技术[M]. 北京:冶金工业出版社, 1990. 319~328
    [27]申玉田, 崔春翔, 孟凡斌, 等. 高强度高导电率 Cu-Al2O3 复合材料的制备[J]. 金属学报, 1999, 35(8): 888~892
    [28]小山正登, 古柴富, 下田哲行. 无酸素铜のベ_ス铜合金の制造とその应用[J]. 伸铜技术研究会志, 1999, 38:38~44
    [29]二冢炼成. リードフレーム铜合金について[J]. 伸铜技术研究会志, 1997, 36:25~31
    [30]二冢炼成. コネクターリードフレーム用铜素材の现状と将来[J]. 伸铜技术研究会志, 1993, 32: 1~7
    [31]阪本光雄. 超 LSI 用バツケジーの动向とリードフレーム铜合金课题[J]. 伸铜技术研究会志, 1990, 29:1~12
    [32]山根寿已. 高强度高传导性铜合金设计の基础[J]. 伸铜技术研究会志, 1990, 29:13~17
    [33]岩坂光富, 中岛和隆, 大山繁, 等. 合金设计法による新高强度铜基合金の开发[J]. 伸铜技术研究会志, 1985, 24:126~132
    [34]Masamichi Miki, Yoshikiyo Ogino. Effect of quenching temperature on the inter-granular and cellular precipitation in Cu-1.5%Be binary alloy [J]. Materials transaction JIM, 1995, 36(9):1118~1123
    [35]Taku Sakai, Hiromi Miura, Naokuni Muranmatsu. Effect of small additions of Co on dynamic recrystalli- zation of Cu-Be alloys [J]. Materials transaction JIM, 1995, 36(8):1023~1030
    [36]何启基. 金属的力学性能[M]. 北京:冶金工业出版社, 1982. 193~197
    [37]包永千. 金属学基础[M]. 北京:冶金工业出版社, 1986. 328~334
    [38]崛茂德, 藤谷涉, 董志力, 等. Cu-Cr-Zr 合金の加工热处理[J]. 伸铜技术研究会志, 1990, 29:160~168
    [39]刘 平, 康布熙, 曹兴国, 等. 快速凝固 Cu-Cr 合金时效析出的共格强化效应[J]. 金属学报, 1999, 35(6):561~564
    [40]贾淑果, 刘 平, 康布熙, 等. 高强高导 Cu-0.1Ag-0.11Cr 合金的强化机制[J]. 中国有色金属学报, 2004, 14(7):1144~1148
    [41]廖素三, 尹志民, 蒋 牵, 等. 热处理对 Cu-Cr(-Zr)合金力学性能和导电性能的影响 [J]. 中国有色金属学报, 2000, 10(5):684~687
    [42]宫藤久元, 细川功, 津野理一. リードフレーム用强化铜合金KFC-SHおよび KLF194-SHTの特性[J]. 伸铜技术研究会志, 1990, 29:225~232
    [43]董志力, 唐祥云, 崛茂德, 等. Cu-Zr 和 Cu-Zr-Si 合金的时效特性及冷变形对时效析出的影响[J]. 金属学报, 1989, 25(6):A462~465
    [44]M. Motohisa. Development trends in new copper alloy for lead-frame [J]. Journal of the Japan Copper and Brass Research Association, 1990, 29:18~21
    [45]刘 平, 曹兴国, 康布熙, 等. 快速凝固 Cu-Cr 合金导电性分析[J]. 洛阳工学院学报, 1998, 19(4): 1~5
    [46]刘 平, 曹兴国, 康布熙, 等. 快速凝固 Cu-Cr-Zr-Mg 合金时效析出与再结晶的交互作用及其对性能的影响[J]. 功能材料, 2000, 31(2):167~169
    [47]赵冬梅, 董企铭, 刘 平, 等. 高强高导铜合金合金化机理[J]. 中国有色金属学报, 2001, 11(s2): 21~24
    [48]赵冬梅, 董企铭, 刘 平, 等. 探索高强高导铜合金最佳成分的尝试. 功能材料[J], 2001, 32(6): 609~611
    [49]宫藤久元. リードフレーム用新铜合金の开发动向. 伸铜技术研究会志[J], 1990, 29:18~21
    [50]W. B. Pearson. A Handbood of Lattice Spacings and Mineral Structure of Metals and Alloys [M]. Oxford: Pergamon Burges Press, 1964. 531~535
    [51]宋学孟. 金属物理性能分析[M]. 北京:机械工业出版社, 1981. 24~27
    [52]陈子勇, 陈玉勇, 舒 群, 等. 铸态 Al-4.5Cu/TiB2 复合材料组织和性能的研究[J]. 复合材料学报, 2000, 17(1):76~80
    [53]王笑天. 材料金属学[M]. 北京:机械工业出版社, 1987. 146~148
    [54]青木纯久, 叶 娟. 析出强化铜合金(PHC)在接触导线上的应用[J]. 国外机车车辆工艺, 2000, (4): 9~12
    [55]叶权华, 刘 平, 刘 勇, 等. 高强高导 Cu-Cr-Zr 系合金的研究现状[J]. 河南科技大学学报(自然科学版), 2005, 26(5):1~4
    [56]齐卫笑, 涂江平, 杨友志, 等. 时效处理对低溶质 Cu-Cr-Zr 合金力学和电滑动磨损性能的影响[J]. 摩擦学学报, 2001, 21(6):405~409
    [57]Da Hai He, Rafael R. Manory, Norm Grady. Wear of railway contact wires against current collector materials. Wear [J], 1998, 215(2):146~155
    [58]Da Hai He, Rafael Manory, Harry Sinkis. A sliding wear tester for overhead wires and current collectors in light rail systems [J]. Wear, 2000, 239(1):10~20
    [59]Liu Yong, Liu Ping, Su Juan-hua, et al. Aging Behavior of Cu-Cr-Zr-Ce Alloy [J]. Transactions of Materials and Heat Treatment, 2004, 25(5):612~614
    [60]刘 勇, 刘 平, 李 伟, 等. Cu-Cr-Zr-Y 合金时效析出行为研究[J]. 功能材料, 2005, 36(3):377-379
    [61]J. P. Tu, W. X. Qi, F. Liu. Effect of aging treatment on the electrical sliding wear behavior of Cu-Cr-Zr alloy [J]. Wear, 2001, 249(11):1021~1027
    [62]Mihara K, Takeuchi T, Suzuki H G. Effect of Zr on aging characteristics and strength of Cu-Cr in situ-composite [J]. J Japan inst met, 1998, 62(3):238~245
    [63]M. Merola, A. Orsini, E. Visca, et al. Influence of the manufacturing heat cycles on the CuCrZr properties [J]. Journal of Nuclear Materials, 2002, 307-311(1):677~680
    [64]J. B. Correia, H. A. Davies, C. M. Sellars. Strengthening in rapidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloys [J]. Acta Materialia, 1997, 45(1):177~190
    [65]杜 挺. 稀土元素在金属材料中的一些物理化学作用[J]. 金属学报, 1997, 33(1):69~77
    [66]刘技文. 稀土对铜铬锆合金性能的影响[J]. 金属热处理, 1994, 19(1):24~26
    [67]仲伟深, 付大军, 孙跃军. 稀土对电气化铁路电车线纯铜性能的影响[J]. 铸造, 2001, 50(2):81~83
    [68]L. K. Tan, Y. Li, S.C. Ng, et al. Structures, properties and responses to heat treatment of Cu-Y alloys prepared by mechanical alloying [J]. Journal of Alloys and Compounds, 1998, 278(2):201~208
    [69]徐光宪. 稀土[M]. 北京:冶金工业出版社, 1995. 24~28
    [70]Ming Xie, Jianliang Liu, An Shi, et al. Investigation on the Cu-Cr-RE alloys by rapid solidification [J]. Materials Science and Engineering A, 2001, 305(5):529~533
    [71]谢春生, 周 键, 任 合, 等. 稀土铬锆铜合金强化工艺研究[J]. 金属热处理, 2001, 26(6):12~14
    [72]廖乐杰, 何福忠. 稀土在铜及铜合金中的作用及其应用效果[J]. 特种铸造及有色合金, 1997, (2): 52~53
    [73]曾 明, 魏晓伟. 微量稀土对高强度铸造铝铜合金组织与性能的影响[J]. 新技术新工艺, 1996, (3): 30~31
    [74]曾秋莲, 章爱生, 魏秀琴, 等. 微量稀土和硼在铜及其合金中的作用[J]. 特种铸造及有色合金, 2002, (3):55~57
    [75]李 伟, 刘 平, 刘 勇, 等. 微量稀土元素对 Cu-Cr-Zr 合金接触线抗软化性能的影响[J]. 金属热处理, 2005, 30(2):38~40
    [76]李 伟, 刘 平, 苏娟华, 等. 时效与形变对 Cu-Cr-Zr 合金性能的影响[J]. 特种铸造及有色合金, 2004, (6):25~26
    [77]郑子樵, 李红英. 稀土功能材料[M]. 北京:化学工业出版社, 2003. 455~457
    [78]李 伟, 刘 平, 苏娟华, 等. Cu-Cr-Zr-Ce合金时效特性的研究[J]. 热加工工艺, 2004, (6):3~5
    [79]刘 勇, 刘 平, 田保红, 等. 微量RE对接触线用铜合金时效析出特性和软化温度的影响[J]. 中国稀土学报, 2005, 23(4):482~485
    [80]刘 勇, 刘 平, 董企铭, 等. Cu-Cr-Zr-Ce-Y 合金时效析出特性和受电磨损行为研究[J]. 材料热处理学报, 2005, 26(5):92~96
    [81]W. X.. Qi, J. P. Tu, F. Liu, et al. Microstructure and tribological behavior of a peak aged Cu-Cr-Zr alloy [J]. Materials Science and Engineering A, 2003, 343(1):89~96
    [82]刘 勇, 刘 平, 李 伟, 等. Cu-Cr-Zr-Ce 合金时效行为和电滑动磨损性能研究[J]. 摩擦学学报, 2005, 25(3):265~269
    [83]A. Bouchoucha, S. Chekroud, D. Paulmier. Influence of the electrical sliding speed on friction and wear processes in an electrical contact copper–stainless steel [J]. Applied Surface Science, 2004, 223(4): 330~342
    [84]F. A. Sadykov, N. P. Barykin, I. R. Aslanyan. Wear of copper and its alloys with submicrocrystalline structure [J]. Wear, 1999, 225-229(1):649~655
    [85]Hiroki Nagasawa, Koji Kato. Wear mechanism of copper alloy wire sliding against iron-base strip under electric current [J]. Wear, 1998, 216(2):179~183
    [86]M. Kestursatya, J. K. Kim, P. K. Rohatgi. Wear performance of copper graphite composite and a leaded copper alloy [J]. Materials Science and Engineering A, 2003, 339(1):150~158
    [87]李建明. 磨损金属学[M]. 北京:冶金工业出版社, 1990. 165~167
    [88]Shunichi Kubo, Koji Kato. Effect of arc discharge on wear rate of Cu-impregnated carbon strip in unlubricated sliding against Cu trolley under electric current [J]. Wear, 1998, 216(2):172~178
    [89]王成彪, 符党替, 温诗铸. 铸铁滑动摩擦副表面温度对其磨损机制的影响[J]. 摩擦学学报, 1997, 17(4):295~301
    [90]高 文, 何安莉, 汤道坤, 等. Au基合金电位器材料耐磨特性与显微组织关系的研究[J]. 摩擦学学报, 1997, 17(3):199~205
    [91]N. Saka, J. J. Pamies-Teixeira, N. P. Suh. Wear of two-phase metals [J]. Wear, 1977, 44(1):77~86
    [92]A. Datta, W. A. Soffa. The structure and properties of age hardened Cu-Ti alloys [J]. Acta metallurgica, 1976, 24(11):987~1001
    [93]K. Kapoor, D. Lahiri, I.S. Batra, et al. X-ray diffraction line profile analysis for defect study in Cu-1 wt.% Cr-0.1 wt.% Zr alloy [J]. Materials Characterization, 2005, 54(2):131~140
    [94]A. W. Thompson, W. A. Backofen. The effect of grain size on fatigue [J]. Acta metallurgica, 1971, 19(7): 597~606
    [95]David E. Laughlin, John W. Cahn. Spinodal decomposition in age hardening copper-titanium alloys [J]. Acta metallurgica, 1975, 23(3):329~339
    [96]雷静果, 刘 平, 赵冬梅, 等. 用电导率研究 Cu-Ni-Si-Cr 合金时效早期相变动力学[J]. 材料热处理学报, 2003, 24(4):22~26
    [97]王艳辉, 汪明朴, 洪 斌. Cu-15Ni-8Sn-0.4Si 合金时效过程研究[J]. 机械工程材料, 2003, 27(11): 15~17
    [98]李娜娜, 宋练鹏, 尹志民. 固溶-时效处理对 Cu-Co-Cr-Si 合金组织和性能的影响[J]. 金属热处理, 2004, 29(2):14~17
    [99]张凌蜂, 刘 平, 康布熙, 等. Cu-3.2Ni-0.75Si-0.30Zn合金时效过程的动力学分析[J]. 中国有色金属学报, 2003, 13(3):717~721
    [100]戚正风. 固态金属中的扩散与相变[M]. 北京:机械工业出版社, 1998. 10~12
    [101]Frank S. Ham. Theory of diffusion-limited precipitation [J]. Journal of Physics and Chemistry of Solids,1958, 6(4):335~351
    [102]徐祖耀. 金属材料热力学[M]. 北京:科学出版社, 1981. 264~268
    [103]殷景华, 王雅珍, 鞠 刚. 功能材料概论[M]. 哈尔滨:哈尔滨工业出版社, 2002. 23~25
    [104]宋学孟. 金属物理性能分析[M]. 北京:机械工业出版社, 1998. 24~27
    [105]P. 哈森. 物理金属学[M]. 北京:科学出版社, 2001. 121~147
    [106]胡庚祥, 蔡 徇. 材料科学基础[M]. 上海:上海交通大学出版社, 2000. 180~189
    [107]王顺兴, 刘 勇. 实用热处理模拟技术[M]. 北京:机械工业出版社, 2002. 145~148
    [108]方善锋, 汪明朴, 程建奕, 等. 高强高导Cu-Cr-Zr系合金材料的研究进展[J]. 材料导报, 2003, 17(9): 21~24
    [109]M. Fenn, A. K. Petford-Long, P. E. Donovan. Electrical resistivity of Cu and Nb thin films and multilayers [J]. Journal of Magnetism and Magnetic Materials, 1999, 198-199(1):231~232
    [110]M. A. Morris, M. Leboeuf, D. G. Morris. Recrystallization mechanisms in a Cu-Cr-Zr alloy with a bimodal distribution of particles [J]. Materials Science and Engineering A, 1994, 188(1-2):255~265
    [111]M K Banerjee, S Datta. Effect of cold work and trace rear-earth additions on the aging behavior of Al-Cr alloys [J]. Materials Characterization, 2000, 44(3):277~284
    [112]Juan-hua Su, Qi-ming Dong, Ping Liu, et al. Research on aging precipitation in a Cu-Cr-Zr-Mg alloy [J]. Materials Science and Engineering A, 2005, 392(1-2):422~426
    [113]I. S. Batra, G. K. Dey, U. D. Kulkarni, et al. Microstructure and properties of a Cu-Cr-Zr alloy [J]. Journal of Nuclear Materials, 2001, 299(2):91~100
    [114]雷静果, 刘 平, 赵冬梅, 等. Cu-Ni-Si-Cr 合金的时效析出与再结晶[J]. 特种铸造及有色合金, 2003, (5):59~61
    [115]行如意, 苏娟华, 康布熙, 等. Cu-0.3Cr-0.15Zr 合金时效时的析出相[J]. 河南科技大学学报(自然科学版), 2004, 25(4):1~4
    [116]P. Fenici, D. J. Boerman, G. P, et al. Tartaglia. Effect of fast-neutron irradiation on tensile properties of precipitation-hardened Cu-Cr-Zr alloy [J]. Journal of Nuclear Materials, 1994, 212-215(1):399-403
    [117]P. Liu, B. X. Kang, X. G. Cao, et al. Aging precipitation and recrystallization of solidified Cu-Cr-Zr-Mg alloy [J]. Materials Science and Engineering A, 1999, 265:262~267
    [118]刘 平, 曹兴国, 康布熙, 等. 快速凝固 Cu-Cr-Zr-Mg 合金时效析出与再结晶的交互作用及其对性能的影响[J]. 功能材料, 2000, 31(2):167-169
    [119]肖纪美. 合金相与相变[M]. 北京:冶金工业出版社, 1987. 250
    [120]胡庚祥. 金属学[M]. 上海:上海科技出版社, 1980. 318
    [121]刘 勇, 刘 平, 田保红, 等. 变形量对接触线用 Cu-Cr-Zr-Y 合金时效特性和力学性能的影响[J]. 中国有色金属学报, 2006, 16(3):417~421
    [122]Michael B. Prime. Cross-sectional mapping of residual stress by measuring the surface contour after a cut [J]. Journal of engineering material and technology, 2001, 123(8):162~168
    [123]Michael B. Prime. Michael R. Hill. Residual stress, stress relief, and inhomogeneity in aluminum plate [J]. Scripta Materialia, 2002, 46(1):77~82
    [124]木内学. 板?棒?管材の残留应力、理论と测定[J]. 伸铜技术研究会志, 2000, 39:30~36
    [125]三谷洋二. 铜及び铜合金条のスリットみ测定方法[J]. 伸铜技术研究会志, 2000, 39:37~46
    [126]路俊攀. 铜及铜合金板带材分条变形测量方法探讨[J]. 理化检验?物理分册, 2004, 40(3):132~134
    [127]Michael B. Prime, Thomas Gn?upel-Herold, John A. Baumann, et al. Residual stress measurements in a thick, dissimilar aluminum alloy friction stir weld [J]. Acta Materialia, 2006, 54(15):4013~4021
    [128]王秋成, 柯映林, 章巧芳. 7075 铝合金板材残余应力深度梯度的评估[J]. 航空学报, 2003, 24(4): 336~338
    [129]黄崇祺. 轮轨高速电气化铁路接触网用接触线的研究[J]. 中国铁道科学, 2001, 22(1):1~5
    [130]H. Nagasawa, K. Kato. Wear mechanism of Cu-Cr-Zr alloy sliding against iron-base strip under electric current [A]. Proceeding International Tribology Conference [C]. Yokohama, Japan, 1995. 343~348
    [131]M. Appello, P. Fenici. Solution heat treatment of a Cu-Cr-Zr alloy [J]. Materials Science and Engineering A, 1988, 102(1):69~75
    [132]C. Dubois, M. A. Morris. Influence of the threshold stress on the creep properties of a Cu-Cr-Zr alloy containing dispersoid particles [J]. Scripta Metallurgica et Materialia, 1994, 30(7):827~832
    [133]A. Vinogradov, V. Patlan, Y. Suzuki, et al. Structure and properties of ultra-fine grain Cu-Cr-Zr alloy produced by equal-channel angular pressing [J]. Acta Materialia, 2002, 50(7):1639-1651
    [134]H. Zhao, G. C. Barber, J. Liu. Friction and wear in high speed sliding with and without electrical current [J]. Wear, 2001, 249(5-6):409~414
    [135]蔡泽高, 刘以宽, 王承忠, 等. 金属磨损与断裂[M]. 上海:上海交通大学出版社, 1985. 28~31
    [136]孙家枢. 金属的磨损[M]. 北京:冶金工业出版社, 1992. 199~200
    [137]K. J. Zeng, M. H?m?l?inen, K. Lilius. Phase relationships in Cu-rich corner of the Cu-Cr-Zr phase diagram [J]. Scripta Metallurgica et Materialia, 1995, 32(12):2009~2014
    [138]刘 勇, 刘 平, 田保红, 等. Cu-Cr-Zr 合金电滑动磨损微观形貌分析[J]. 金属热处理, 2006, 31(3): 85~87
    [139]《金属机械性能》编写组. 金属机械性能[M]. 北京:机械工业出版社, 1982. 234
    [140]刘家浚. 材料磨损原理及其耐磨性[M]. 北京:清华大学出版社, 1993. 92~143
    [141]J. R. Fleming, N. P. Suh. Mechanics of crack propagation delamination wear [J]. Wear, 1977, 44(1): 39~56
    [142]N. P. Suh. Tribophysics [M]. Prentice-Hall, INC., Englewood Cliffs, New Jersey, 1986. 200~209
    [143]王 润. 金属材料物理性能[M]. 北京:冶金工业出版社, 1993. 119~171

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700