用户名: 密码: 验证码:
带预紧硅泡沫垫层结构的减振系统分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程中某些部(构)件出于特殊的设计需要,采用预紧接触式垫层结构。该种结构通过外层壳体(如圆柱壳)对壳体与部(构)件之间所填充的衬垫材料——垫层施加预紧力来实现对部(构)件的装配,垫层和部(构)件都依靠外层壳体施加在垫层材料的预紧力(法向力)和摩擦力(切向力)保持稳定,因此,该种结构是彼此接触的多个变形体的软连接结构。
     结构在工作环境中,外层壳体受到动态的外加激励,作为结构系统动力学响应的一部分,内层部(构)件和垫层之间、垫层和外层壳体之间的接触状态在不断改变。预紧接触式垫层结构在正常工作环境下垫层要求总处于受压状态,并且这种受压状态应该不低于某一水平,如果接触压力低于某个水平,接触面上的摩擦力也随之减小,处于内层的部(构)件与垫层以及垫层与外层壳体之间的相对滑动(滑移)现象将可能发生;如果接触压力某瞬时为零,内层的部(构)件与垫层以及垫层与外层壳体,将会有瞬时的分离以致碰撞。上述两种情况的出现,工程上出于特定需要,都视为结构失效,结构失效对内外壳结构的稳定性和安全性都有很大的破坏作用,都应避免发生。因而研究内外壳与垫层材料间的接触分离、相对滑动的力学机理以及各种力学参数对两种现象发生的影响有很大的工程意义。
     中间垫层作为结构的核心部件,对于结构在动力环境中的可靠性起到至关重要的作用,垫层材料是一种具有多孔隙的物理特征,宏观上表现为体积可压缩的橡胶类材料,其力学行为是一个包括几何非线性、材料非线性的复杂问题,实际应用过程中,还会遇到应力松弛、蠕变、环境温度影响等粘弹性问题,论文对垫层材料自身的力学特性进行了深入系统的研究。首先在连续介质力学的基本框架内和在热力学宏观定律的基础上,通过结合泡沫硅橡胶材料的物理结构特征,建立了泡沫硅橡胶的两相多孔介质模型;进而基于应变能密度函数可解耦为相对独立的等容变形和体积变形两部分,提出了可压多孔橡胶材料的应变能密度函数,给出了材料的超弹性本构关系,它能够考虑孔隙度对材料变形行为的影响。利用硅橡胶材料的单轴压缩实验进行了材料参数拟合,讨论了多孔硅橡胶的孔隙度和体积变形对压缩性能的影响。
     根据多孔硅橡胶模型给出的其静力问题的控制方程,考虑多孔硅橡胶各向同性超弹性材料,利用完全的Lagrange格式进行有限元的分析,推导了有限变形的增量形式,导出有限元列式,编制了刚度矩阵的计算模块。利用ABAQUS软件良好的开放性和所提供的用户子程序接口,采用FORTRAN语言编制了所提出的垫层材料硅橡胶泡沫的用户材料子程序UMAT,对硅泡沫材料的工程应用和设计具有重要的指导意义。
     针对孔隙度较大的硅橡胶材料在有限变形时的粘弹性行为,从建立描述材料粘弹性特征的松弛型本构关系出发,结合所提出的适合多孔隙、可压硅橡胶材料的非线性弹性行为的本构关系,建立了多孔硅橡胶在有限变形下的粘弹性本构关系,并对有限变形粘弹性的有限元实现进行了说明。利用硅橡胶材料的单轴压缩松弛实验进行了材料参数拟合,讨论了多孔硅橡胶的剪切变形和体积变形对应力松弛的影响。
     基于所提出的适合多孔隙、可压硅橡胶泡沫材料的超弹性和有限变形粘弹性本构关系和所开发的用户材料子程序,应用有限元软件ABAQUS对该结构在多个控制因素组合情况下的静动力学响应进行了数值计算,着重分析了影响结构可靠性的各部件间的接触状态与部分控制因素之间的关系,结果可为工程设计提供依据。
Pre-tightening contacted cushion structures are usually applied in engineering components for some special application purposes. The engineering components are assemblied by applying pre-tightening force on cushion structures——gasket materials filled between outer shells(such as column shell) and components. And, the stability of cushions and components are dependent of the pre-tightening force and friction force applied on cushions by outer shells. Thus, the structures turn out into soft connected structures among several contacted deformation objects.
     The outer shells in the pratical case, being excited dynamically, could be treated a portion of dynamical response of whole structure system, their contact states vary from time to time between inner components and cushions or between outer shells and cushions. Pre-tightening contacted cushion structures are required frequently in compression while working in an ordinary working condition, specifically, the compressed level might be not lower some fixed levels. If contact force is lower than the fixed levels, the friction force on contact faces diminishes to some value as relative slip phenomena will be driven. What’s more, inner components and cushions such as cushions and outer shells will separate so as to collide instantaneously when contact force diminishes to zero at some time. Structures are viewed to be failure when the above two conditions mentioned are satisfied for special engineering purposes. Failure of structures will bring much destractive effects on the stability and safety of inner and outer shells structures. These cases should be avoided in practivce. It is of remarkbly significance in engineering that the investigation is taken on the contact and separation among inner and outer shells and cushions, the mechanical mechanism of relative slip and the effects on the above two phenomena from mechanical parameters.
     Middle cushions, being the key component, are critical on the reliability of structures in the dynamical environment. The cushion material is a silicone rubber ascribed to the porous structure characters, macroscopicaly compressible in volume. The mechanical behaviors of cushion material are of geometry nonlinearity and material nonlinearity, and viscoelastic problems such as stress relaxtion, creep and environmental temperature effect in engineering application. Research work in the thesis are taken on the mechanical characters of cushion material in several chapters. Firstly, in light of the continuum mechanics and thermodynamics a bi-phasic porous medium model is established in consideration of physics structure characters of porous silicone rubber material. A strain energy density function of compressible porous rubber material is presented while as the strain energy density function may be separated into two parts of relative independence equivoluminal deformation and volume deformation, and in the latter the void ratio may be taken into account. The parameters are determined through fitting with the uniaxial compression tests of silicone rubber material. The influences of void ratio on volume deformation of porous silicone rubber are then discussed.
     Proceeding from the governing equations of static problem given in porous silicone rubber model, it is attained that an isotropic behavior of hyperelastic porous silicone rubber material, and a complete Lagrange format finite element analysis, the increment format of finite deformation and finite element formulation, and calculation module of stiffness matri is given out. In use of excellent opening interface and user defined subroutine in ABAQUS, the UMAT (user defined material subroutine) of silicone rubber are written with FORTRAN language. It is demonatrated that the analysis may be applied in practical design of silicone rubber materials.
     Viscoelastic behaviors of porous silicone rubber with high porosity at finite deformation are in the thesis dealed with. It proceeds from building up constitutive relations of relaxation function for viscoelastic property combined with constitutive relation developed for much void and nonlinear viscoelasticity of porous compressible silicone rubbers. The viscoelastic constitutive relation under finite deformation of porous compressible silicone rubbers are further developed. The finite element implemention of finite deformation viscoelasticity is investigated. A comparison of theoretical model is carried out with uniaxial compression relaxation experiments of the rubber. The effects of isochoric and volumetric deformation on stress relaxation are then discussed.
     Based on presented hyperelastic and finite deformation viscoelastic constitutive relations for high void ratio and porous compressible silicone rubbers, with use of the user defined material subroutine, the static and dynamic response of the structures are numerically analyzed for different practical cases and controling factors in the framework of finite element code ABAQUS. The points are placed on the influence of contact state and connection in relation with control factors. It is indicated that the results may be applied for engineering design.
引文
[1] Seong Beom Lee. A study of a nonlinear viscoelastic model of elastomeric bushing response[D]. The University of Michigan. 1997:1-4
    [2]王国治.柱壳隔振系统动力特性的研究[J].船舶工程. 2002,5:45-49
    [3]唐振华.航天电子设备抗隔振技术的设计应用[J].振动与冲击. 2002,6:34-38
    [4]龙开芬,王挥蜃.导弹在包装箱托架上的抱紧方式探讨[J].江南航天科技.2006(6):20-22,25
    [5] Ronald J. Schaefer.橡胶的动态性能(1)[J].橡胶参考资料.1995,25(7):47-49
    [6] Gent, A.N., Thomas, A. G. Force-deflection relations for a model air spring [J]. Rubber Chemistry and Technology. 1974, 47(2): 384-395
    [7] RUSCH K.C. Load-compression behavior of flexible foams[J]. Rubber Chem. Technol. 1970, 43(4): 58-70
    [8] Ruan, D.; Lu, G.; Chen, F.L. Static compressive study of metallic cellular solids: Aluminium honeycombs and foams[C]. American Society of Mechanical Engineers, Aerospace Division (Publication) AD. Adaptive Structures and Material Systems. 2001, V64: 387-394
    [9] Throne, J. L.; Progelhof, R. C. Impact stress-strain behavior of low-density closed-cell foam[C]. Annual Technical Conference - Society of Plastics Engineers. 1985, p 438-441
    [10] Bigg, Donald M.; Preston, Joseph R.; Brenner, Douglas. Experimental technique for predicting foam process and physical properties[J]. Polymer Engineering and Science. 1976, 16(10): 706-711
    [11] Ramon, O.; Mizrahi, S.; Miltz, J. Mechanical properties and behavior of open cell foams used as cushioning materials[J]. Polymer Engineering and Science. 1990, 30(4): 197-201
    [12]卢子兴,李怀祥,田常津.聚氨酯泡沫塑料胞体结构特性的确定[J].高分子材料科学与工程. 1995(11): 86- 91
    [13]卢子兴,田常津,韩铭宝,王仁.聚氨酯泡沫塑料冲击力学性能的实验研究[J].高分子材料科学与工程, 1995(11): 77-81
    [14]卢子兴,黄筑平,王仁.泡沫塑料杨氏模量所满足的微分方程和一些近似解的讨论[J].工程力学,1995(12):28-35
    [15]卢子兴,黄筑平,王仁.基于三相球模型确定泡沫塑料有效模量[J].固体力学学报,1996(17):95-101
    [16] Lu Zixing, Wang Ren, et al. Acta Mechanica Solida Sinica[J], S. Issue, 1995(8): 535-539
    [17]胡时胜,刘剑飞,王悟.硬质聚氨酯泡沫塑料本构关系的确定[J].力学学报,1998(30):151-155
    [18]胡文军,张凯,陈晓丽,郭积华.中子辐射对硅橡胶泡沫材料性能的影响[J].橡胶工业,1999(46):266-268
    [19]胡文军,陈宏,张凯,陈晓丽.孔隙度对开孔硅橡胶泡沫材料性能的影响[J].橡胶工业,1998(45):647- 650
    [20] Schwaber, David M. Impact behavior of polymeric foams: A Review[C]. Proceedings of the National Conference on Fluid Power, Annual Meeting, 1974, 2: 231-249
    [21] Nagy, Andrew; Ko, William L.; Lindholm, Ulric S. Mechanical behavior of foamed materials under dynamic compression[J]. Journal of Cellular Plastics, 1974, 10(3):127-134
    [22] Lorna J. Gibsion, Michael F. Ashby. Cellular solids Structure and properties[M]. Cambridge. Cambridge University Press, 1997
    [23] W. E. Warren, A. M. Kraynik. The nonliner elastics behavior of open cell Foams[J]. J of Applied Mechanics. 1991(58): 376-381
    [24] Malvern, L.E. Introduction to Mechanics of a Continuous Medium[M]. Prentice-Hall, Englewood Cliffs, NJ. 1969.
    [25]沈一丁.橡胶弹性分子理论的新进展[J].高分子材料科学与工程, 1989(4):1-7
    [26] Truesdell, C. Noll, W. The none-linear field theories of mechanics[M]. In: Handbuch der Physik. III/3. Springer-Verlag,Berlin. 1965
    [27] Mooney, M. A theory of elastic deformations[J]. Journal of Applied Physics. 1940, 37: 1981-2004
    [28] Rivlin R S. Large elastic deformations of isotropic materials. I. Fundamental concepts[J]. Phil Trans Soc, 1948, 240: 459-490
    [29] M. Zidi. Torsion and telescopic shearing of a compressible hyperelastic tube[J]. Mechanics Research Communication, 1999, 26: 245-252
    [30] Ogden, R. W.; Isherwood, D. A. Solution of some finite plane strain problems for compressible elastic solids[J]. Quarterly Journal of Mechanics and Applied mathematics, 1978(31):219-249.
    [31] Ogden, R. W. Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubberlike solids[J]. Proc, R. Soc. London, Ser. A. 1972(328): 567-583.
    [32] Yeoh O. H. Characterization of elastic properties of carbon black filled rubber vulcanizates[J]. Rubber Chemical and Technology, 1990(63): 792~805
    [33] Blatz, P. J.; Ko, W. L. Application of finite elastic theory to the deformation of rubbery material[J]. Transaction of the Society of Rheology. 1962, 6: 223-251
    [34] Robert A.Brockmain. On the use of the blatz-ko constitutive model in nonlinear finite element[J]. Computers & structures, 1986(24): 607-611
    [35] J. S. Chen, K. Satyamurthy, L.R. Hirschfelt. Consistent finite element procedures for nonlinear rubber elasticity with a hither order strain energy function[J]. Computers & structures, 1994(50): 715-727
    [36] Murnaghan, F.D. Finite deformations of an elastic solid[J]. American Journal of Mathematics ,1937(59):235-260.
    [37] S. Doll, K.Schweizerhof. On the developments of Volumetric strain energy functions[J]. J of Applied Mechanics, 2000(67): 17-21
    [38] Liu, C. H. and Mang, H. A., A critical asscssment of volumetric strain energy functions for hyperelasticity at large strains[J]. Z. Angew. Math. Mech, , 1996(S5):305-306.
    [39] Yeoh O. H. Some forms of the strain energy function for rubber[J]. Rubber Chemical and Technology, 1993(66):754~771
    [40] Meineoke E A, Clark R C. Mechanical Properties of Polymeric Foams[J]. Tech Pub Com Int, Westport 1973
    [41] J. S. Zaroulis, M. C. Boyce. Temperature, strain rate, and strain state dependence of the evolution in mechanical beheaviour and structure of poly with finite strain deformation[J]. Polymer, 1997(38): 1303-1315
    [42] Simo. J. C. A framework for finite strain elastoplasticity based on maximum plastic dissipation and the munipliconive composition: part I. continuum formulation[J], Comput. Methods Appl. Mech. Eng. 1988(66): 199-219.
    [43] Valanis , K. C.; Landel, R.F. The strain-energy function of a hyperelastic material in terms of the extension ratios[J], J. Appl. Phys. 1967(38):2997-3002.
    [44]范家齐.增量原理有限元分析非线性橡胶类材料[J].固体力学学报, 1989(10): 351-358
    [45]史守峡,杨嘉陵.平面应变不可压缩橡胶圆柱的大变形[J].固体力学学报, 1999, (20): 290-296
    [46]危银涛、杨挺青、杜星文.橡胶类材料大变形本构关系及其有限元方法[J].固体力学学报, 1999(20):281-289
    [47] Jiun-Shyan Chen, Chunhul Pan. A pressure projection method for nearly incompressible rubber hyperelastic, Part I: theory[J]. J of Applied Mechanics, 1996(63): 862-868
    [48] Sussman, T. and Bathe, K.J., A finitc element formulation for non-linear incompressible elastic and inelastic analysis[J]. Comput.struct. 1987: (26)357-409.
    [49] Chang, T. Y.; Saleeb, A. F.; Li, G. Large strain analysis of rubber-like materials based on a perturbed lagrangian varitional principle[J]. Comput. Mech., 1991(8): 221-233.
    [50] Simo, J, C.; Taylor, R. L. and Pfiser, K. S. Variational and projection methods for volume constraint in finite deformation elasto-plasticity[J], Comput. Methods Appl. Mech. Eng., 1985(51):177-208.
    [51] Simo, J. C. Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory[J], Cimput. Mech. Eng., 1999: 61-112.
    [52] Simo, J.C. and Taylor, R. L. Fanalty function formulations for incompressible nonlinear elastostatics[J] . Comput. Methods Appl. Mech. Eng., 1982(35): 107-188.
    [53] Miehe, C.A. spects of the formulation and finite element implementation of large strain isotropic elasticity, Int, J. Number. Methords Eng[J]. 1994(37): 1981-2004.
    [54] Kaliske, M.; Rothert, H. On the finite element implementation of rubber-like materials at finite strains[J]. Eng. Comput.,1997(14):216-232.
    [55] Farhad Tabaddor. Rubber elasticity models for finite element analysis[J]. Computers & structures, 1987(26):33-40
    [56] Liu, C. H.; Hofstetter, G. and Mang, H. A. 3D finite element analysis of rubber-like materials at finite suains[J], Eng, Comput, 1994(328):111-128.
    [57] P.A.Kakavas. Prediction of the nonlinear poisson function using large volumetric strain estimated from a finite hyperelastic material law. Polymer engineering and science[J]. 2000(40):1330-1333
    [58] Malkus, D. S. Finite element methods for constrained problems in elasticity[J]. International Journal for Numerical Methods in Engineering, 1980(18): 701-725.
    [59] Scharnhorst, T., and Pian, T. H. H. Finite element analysis of rubberlike materials by a mixed model[J]. International Journal for Numerical Methods in Engineering, 1978(12): 665-676.
    [60] Simo, J. C. Taylor, R. L. and Pister, K. S. Varitional and projection methods for volume constraint in finite deformation elasto-plasticity[J]. Computer Methods in Applied Mechanics and Engineering, 1985(51): 177-208.
    [61] Sussman, T. S., and Bathe, K. J. A finite element formulation for incompressible elastic and inelastic analysis[J]. Computer &Structures, 1987(26):357-409
    [62] Podio-Guidugli, P.; Tomassetti, G. Universal deformations for a class of compressible isotropic hyperelastic materials[J].J of elasticity, 1998(52): 159–166
    [63] Rivlin, R.S. The solution of problems in second-order elasticity theory[J]. Journal of Rational Mechanics and Analysis,1952.(2): 53-81.
    [64] Ogden,R.W. Non-linear Elastic Deformations.Ellis Horwood[M]. Chichester, Great Britain, 1984
    [65] Lindsay, K.A.The second-order deformation of an incompressible isotropic slab under torsion[J].Quarterly Journal of Mechanics and Applied mathematics ,1992(45):529-544.
    [66] Haughton,D.M ,Linsday,K,A. The second-order deformation of finite compressible isotropic elastic annulus subjected to circular shearing[J]. Acta Mechanica 1996(104):125-141
    [67] Murnaghan, F. D. Finite Deformation ogden Elastic Solid[M], John Wiley and Sons, New York, 1951,.
    [68] Hoger,A. Redidual Stress in an elastic body:a theory for small strains and arbitrary rotations[J].Journal of Elasticity, 1993(31):1-24.
    [69] Timothy J.Van Dyke, Anne Hoger. A comparison of second-order constitutive theories for hyperelastic materials[J]. Int.J.Solids and Structures, 2000(37):5873-5917
    [70] Y.C.Gao, Tianjie Gao. Mechanical behavior of two kinds of rubber materials[J]. Int.J.Solids and Structures, 1999(36) : 5545–5558
    [71] I. M.沃德著.固体高聚物的力学性能[M].科学出版社1980
    [72] Oldroyd J G. On the formulation of rheological equations of state[J]. Proc. Royal. Soc., A 200 (1950): 523-541
    [73] Truesdell C. The mechanical foundations of elasticity and fluid dynamis[J]. J. Rat. Mech. and Analysis, 1 (1952): 125-300; and 2 (1953): 593-616
    [74] Green A E, Rivlin R S. The mechanics of nonlinear materials with memory[J]. Part I. Arch. Ration. Mech. Anal., 1957(1): 1-21
    [75] Pipkin A C. Small finite deformations of viscoelastic solids[J]. Rev. Mod. Phys, 1964(36):1034-1041
    [76] Lockett F J, Stafford R O. On special constitutive relations in nonlinear viscoelasticity[J]. Int. J. Eng. Sci., 1969(7):917-930
    [77] Findley W N, Lai J S, Onaran K. Creep and relaxation of nonlinear viscoelastic materials[J]. North-Holland Pub. Co.1976
    [78] Findley W N, Onaran K. Incompressible and linearly compressible viscoelastic creep and relaxation[J]. Trans. ASME, J. Appl. Mech., 1974 (41-E): 243-248
    [79] A.S. Wineman. Yieldlike response of compressible nonlinear viscoelastic solid[J]. Inc.J.Rheol, 1995(39):401-423
    [80] Drozdov, A.D. Accretion of viscoelastic bodies at finite strains[J]. Mechanics Research Communications, 1994, 21(4): 329-334
    [81] Drozdov, A.D.; Kalamkarov, A.L. Constitutive model for nonlinear viscoelastic behavior of polymers[J]. Polymer Engineering and Science, 1996, 36(14): 1907-1919
    [82] Berstein B,Kearsley E A, Zapas L J. A study of street relaxation with finite strain[J]. Trans. Soc. Rheol.1963(7):391-409
    [83] Lianis G. Constitutive equations of viscoelastic solids under finite deformation[J]. Purdue Univ. Report. A & ES 63-11,1963
    [84] Leaderman H. Large longitudinal elastic deformation of rubberlike network polymers. Trans[J]. Soc. Rheol. 1962 (6): 361-382
    [85] Leaderman H. Elastic and creep properties of filamentous materials and other high polymers[J]. Textile Foundation, Washington, D, C. 1943
    [86] Findley W N, Lai J S Y. A modified suparposition principle applied to creep of nonlinear viscoelastic material under abrupt change in state of combined stress[J]. Trans. Soc. Rheol., 1967(11): 361-380
    [87] Pipkin A C, Rogers T G. A nonlinear integral representation for viscoelastic behavior[J]. J. Mech. Phys. Solids, 1968 (16): 59-72
    [88] Valanis K C. A theory of viscoplasticity without a yield surface[J]. Archives of Mech., 1997(4): 517-533
    [89] Coleman B D, Noll W. Foundations of linear viscoelasticity[J]. Rev. Mod. Phys. 1961(33): 239-249
    [90] Chang W V, Bloch R, Tschoegl N W. On the theory of the viscoelastic behavior of soft polymers in moderately large deformations[J]. Rheol. Acta., 1976 (15): 367-378
    [91] Chang W V, Bloch R, Tschoegl N W. Time-dependent response of soft polymers in moderately large deformations[J]. Proc. Nat. Acad. Sci. USA, Appl. Phys. Sci., 1976(73): 981-983
    [92] Christensen R M. Theory of viscoelasticity[M]. Academic Press, New York 1982
    [93] Christensen R M. A nonlinear theory of viscoelasticity for application to elastomers[J]. J. Appl. Mech., 1980 (47): 295-310
    [94] Knauss, W. G.; Emri, I. Volume Change and the Nonlineary Thermo-viscoelastic Constitution of Polymers[J]. Polymer Engineering and Science, 1987, 27(1): 86-100
    [95] Wineman, A.S. Waldron Jr, W. K. Normal stress effects induced during circular shear of a compressible non-linear elastic cylinder[J]. International Journal of Non-Linear Mechanics, 1995(30):323-339.
    [96] Frost, Nancy E.; McGrath, Paul B. Effects of environments on aging of polymer materials[C]. Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Annual Report, 1998, 2: 690-693
    [97]张思进,陆启韶.碰摩转子系统的非光滑分析[J].力学学报. 2000,17(1):43-49
    [98]阎绍泽,贾书惠等.含间隙的变拓扑多体系统动力学建模分析[J].中国机械工程. 2000,11(6):621-626
    [99]金栋平,胡海岩.碰撞振动及其典型现象[J].力学进展. 1999,29(2):155-164
    [100]蒋立俊、申仲翰、孙京燕.内外圆柱壳与衬垫间的相对滑动[J].电子科技大学学报. 2002,31(3):294-298
    [101]沈怀荣、郝松林.泡沫塑料衬垫的粘弹性有限元分析[J].国防科技大学学报. 1996,18(2):14-19
    [102]赵振东、雷雨成.汽车悬架橡胶衬套刚度的优化设计[J].机械科学与技术. 2006,25(2):168-170
    [103] Reddy J.N.; Roy S. Finite element models of viscoelasticity and diffusion in adhesively bonded joints[J]. Int J Num Meth Eng, 1988, 26: 2531-2546
    [104] Achenbach J D. Dynamic response of a long case-bonded viscoelastic cylinder[J]. AIAA J. 1965,3(4)
    [105] Huang J C, Huang C C. Free vibration of viscoelastic Timshenko beams[J]. J Appl Mech. 1971,6:515-521
    [106]范成业,庄茁,黄克智.超弹性材料过盈配合的解析解和数值解[J].工程力学. 2003,20(4):15-18
    [107]邹雨,庄茁,黄克智.超弹性材料过盈配合的轴对称平面应力解答[J].工程力学. 2004,21(6):72-75,83
    [108]牛莉莎,郁向东.非线性弹性材料在多层圆柱结构中接触预紧作用的模拟[J].机械强度. 2002,24(1):128-132
    [109]郭然,施惠基.多层圆柱结构接触预紧力失效分析[J].工程力学. 2003,20(4):192-198
    [110] Krishnaswamy,S Beatty, MF, The mullins effect in compressible solids[J]. Int. J. Eng. Sci 1983(38):1397-1414
    [111] Rubin, M.B.; Vorobiev, O.Y.; Glenn, L.A. Mechanical and numerical modeling of a porous elastic-viscoplastic material with tensile failure[J], Int.J.Solids Struct,2000 (37):841-1877
    [112]魏陪君,张双寅,吴永礼.粘弹性力学的对应原理及其数值反演方法[J].力学进展,1999(29):317–330
    [113]杨挺青.非线性粘弹性理论中的单积分型本构关系[J].力学进展. 1988,18(1):52-60
    [114] Lcckett F J. Nonlinear viscoelastic solids[M]. Academic Press, London 1972
    [115] Rabotnov Y N. Elements of hereditary solid mechanics[M]. MIR Publishers, Moscow 1980
    [116] Ferry J D. Viscoelastic properties of polymers[M]. 3rd Ed., John Wiley, New York 1980
    [117] McGuirt C W, Lianis, G. Constitutive equations for viscoelastic solids under finite uniaxial & biaxial deformation[J]. Trans.Soc.Pheol., 1970 (14): 117-134
    [118] McGuirt C W, Lianis G, Experimental investigation of non-linear, non-isothermal viscoelasticitity[J]. Int. J. Eng. Sci., 1969 (7): 579-599
    [119] Schapery R A. A theory of nonlinear thermovisco-elasticity based on irrexersible thermodynamics[M]. Proc. 5th U. S. Nat. Congr. Appl. Mech., ASME,1966:511-530
    [120] Schapery R A. On a thermodynamic constitutive theory and its application to various nonlinear materials[J]. Proc. IUTAM Symp., East Kilbryee,1968: 259-285
    [121] Schapery R A. On the characterization of nonlinear viscoelastic materials[J]. Polym. Eng. Sci. 1969(9): 295-310
    [122] Stafford R C. On mathematical forms for the material functions in nonlinear viscoelasticity[J]. J. Mech. Phys. Solids, 1969(17): 339-358
    [123] Phillips M. A generalized strain measure in a single-integral constitutive equation[J]. Trans. Soc. Rheol., 1976(20): 185-194
    [124] AlekseyD.Drozodov.A constitutive model in finite visoelastoplasticity of rubber polymers[J]. Mechanics Research Communication, 1999(26):39-44
    [125] Aleksey D.Drozodov. A constitutive model for nonlinear visoelastic media[J]. Int.J.Solids and Structures, 1997(34):2685-2707
    [126] Doll, K.Schweizerhof. On the developments of Volumetric strain energy functions[J]. J of Applied Mechanics, 2000(67):17-21
    [127] z.p.Huang. A constitutive theory in thermo-viscolasticity at finite deformation[J]. Mechanics Research Communication, 1999(26):679-686
    [128] Tanaka F, Edwards S F. Viscoelastic properties of physically cross-linked networks[J], Transient network theory. Macromolecules, 1992(25): 1516-1523
    [129] Rubin, M.B.; Vorobiev, O.Y. Glenn,LA. Mechanical and numerical modeling of a porous elastic-viscoplastic material with tensile failure[J], Int.J.Solids Struct,2000(37):1841-1877
    [130] Arif, AFM Pervez, T; Mughal, MP. Performance of a finite element procedure for hyperelastic-viscoplastic large deformation problems[J]. Finite Elem. Anal. Des, 2000(34):89-112
    [131] Septanika, E.G.; Ernst, L.J. Application of the network alteration theory for modeling the time-dependent constitutive behaviour of rubbers. Part I. General theory[J]. Mech. Mater.Vol, 1998(30):253-263
    [132] Puso, M.A.; Weiss, J.A. Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation[J]. J. Biomech. Eng.-Trans. 1998 (120):62-70
    [133] Holzapfel G A, Simo J C. A new viscoelastic constitutive model for continuous media atfinite thermomechanical changes[J]. Int J Solids Struct, 1996 (33): 3019-3034
    [134]约翰.J.阿克洛尼斯著.李仲伯等译聚合物粘弹性引论[M].宇航出版社1990
    [135] Acbenbach J D. Dynamic response of a viscoelastic cylinder with ablating inner surface [J]. J Appl Mech. 1966,6:275-281
    [136] A.C.爱林根著.许慧已等译混合物理论[M].南京.江苏科学技术出版社1983
    [137] Bowen R M. Theory of mixtures[M]. in A.C.Erigen(ed.):Continuum Physics Vol III Academic. Press New York San Francisco London, 1976
    [138] Eringen A C. Continuum physics[M], Vol. II. Academic 1975
    [139] Bowen R M. Incompressible porous media by use of the theory of mixtures[J]. Int J Engng Sci,1980(18): 19-45
    [140] Bowen R M. Compressible porous media by use of the theory of mixtures[J]. Int J Engng Sci, 1982(20): 19-45
    [141] Truedell C. Rotional Thermodynamics[M]. Sec Ed. Springger - Verlag , New York, Berlin, Heidelberg, Tokio, 1984
    [142] Truedell C, Toupin R A. The classical field theories[M]. in Fl u gge(ed.): Hnadbuch der physik Band III/1 Springger-Verlag Berlin Gu ttingen Heidelberg, 1960
    [143] M u ller L. A thermodynamic theory of mixtures of fluids[J]. Arch Rationed Mech Anal, 1968(28): 1-139
    [144] Passman S L, Nunziato J W, Walsh E K. A theory of multiphase mixtures[M]. In C Truesdell(ed.): Rational Thermodynamics. SecEd. Springger-Verlag, New York, Berlin, Heideberg, Tokio, 1984
    [145] Adey, Robert A.; Brebbia, Carlos. A.efficient method for solution of viscoelastic problems[J]. ASCE J Eng Mech Div, 1973, 99(EM6): 1119-1127
    [146] KUSAMA, TAKASHI; MITSUI, YASUSHI. Boundary element method applied to linear viscoelastic analysis[J] . APPL MATH MODELLING, 1982, 6(4): 285-290
    [147]沈亚鹏,李录贤.粘弹性准静态,动态问题的数值解法.力学进展,1994,24(2):265-272
    [148] Gaul, L.; Schanz, M.; Fiedler, C. Viscoelastic formulations of BEM in time and frequency domain[J]. Engineering Analysis with Boundary Elements, 1992, 10(2):137-141
    [149] Suire, G.; Cederbaum, G. Periodic and chaotic behavior of viscoelastic nonlinear (elastica) bars under harmonic excitations. International Journal of Mechanical Sciences, 1995, 37(7): 753
    [150]冯登泰.接触力学的发展概况[J].力学进展. 1987,17(4):431-446
    [151]胡海岩.预紧弹性约束对系统主共振的影响[J].应用力学学报. 1997,14(4):92~96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700