含低速冲击损伤复合材料层板剩余强度及疲劳性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料层合板由于其比强度、比刚度高,可设计性强,在南南、南南领域已得到的广泛的应用。然而层合板对低速冲击十分敏感,低能量物体的冲击往往在层板内部造成诸如纤维断裂,基体开裂,层间分层等损伤,这些损伤严重影响了结构的承载能力和安全使用寿命。现有的基于“静力覆盖疲劳”的复合材料结构设计思想将复合材料的许用应变值限制在一个较低的水平上,降低了复合材料结构的减重效果。为了提高复合材料的应用水平和效率,需要开展对复合材料低速冲击损伤和冲击后剩余强度、疲劳性能的研究。本文围绕这点,开展的主要研究内容包括:
     (1)针对某典型铺层T300/QY8911复合材料层板开展了8种能量的低速冲击和冲击后压缩试验研究,获得了冲击后层板的损伤规律,讨论了冲击能量和冲击损伤特性及剩余压缩强度之间的关系;分析了含低速冲击损伤层板在压缩载荷下的破坏机理,研究表明:低速冲击造成的损伤对该类层板的剩余压缩强度影响很南,在仅3.75J/mm的冲击能量下,层板剩余压缩强度就下降了65%。含冲击损伤层板的压缩破坏模式与含孔层板类似,孔(损伤区)周围纤维屈曲是主要的失效模式。
     (2)选取了受13.75J能量冲击后的层板进行冲击后压-压疲劳试验研究。详细测量了疲劳加载过程中试件内部的损伤扩展情况,获得了损伤扩展规律。研究发现:含冲击损伤层板压-压疲劳载荷下的损伤扩展过程可分为平稳期和扩展期两个阶段,平稳期约占整个疲劳寿命的前60%,该阶段内损伤扩展较缓慢;而疲劳寿命的后半阶段为扩展期,损伤开始加速扩展,在临近材料破坏时,还会出现明显的整体刚度下降。
     (3)建立了用于预测复合材料层合板在低速冲击作用下损伤演化的有限元分析模型,有限元模型中包含了用于模拟分层损伤的界面单元和用于模拟纤维断裂,纤维挤压,基体开裂,基体挤裂等面内损伤形式的三维实体单元,模型中考虑了面内基体损伤对层间强度的影响。模型使用ABAQUS/Explicit模块和用户材料子程序VUMAT来实现,讨论了主要损伤模式的产生机理和影响低速冲击后层板内部分层面积的主要因素。
     (4)通过损伤导入模块,将冲击损伤模型分析得到的各类损伤导入到压缩破坏模型中,建立了预测含冲击损伤层板在压缩载荷作用下损伤演化和剩余强度的有限元分析方法,实现了从冲击到冲击后压缩的全程分析。
     (5)将冲击损伤等效为一圆形开孔,应用含椭圆形夹杂的杂交应力单元分析含圆孔有限南板的应力分布,采用特征曲线和点应力判据相结合的方式并通过引入损伤扩展规律建立了含低速冲击损伤复合材料层板剩余强度和压-压疲劳寿命预报模型。并详细讨论了相关参数对剩余强度和疲劳寿命的影响。
Composite laminates have been widely applied to the aeronautics and astronautics industrybecause of their high specific strength, high specific stiffness and advantages of designability.However, laminates are susceptible to low-velocity impact which can lead to significant damageincluding matrix cracks, fiber fractures and internal delaminations etc. The internal damage canconsiderably reduce the residual strength and safely service life of composite structures. Theallowable strain of composite laminates was restricted to a low level according to traditional designphilosophy of composite structures based on the concept of “static covering fatigue”, which partlyoffset the advantages of composite laminates. To enhance the application level of composites, researchon the residual strength and fatigue performance of composite laminates after low-velocity impactshould be carried out. On this thesis, the main contents are as follow:
     (1) Impact damage and residual compressive strength after impact tests of T300/QY8911laminates were conducted with eight impact energy levels. The damage characteristic of impactedlaminates was obtained. The relationship between damage area, compressive strength after impact andimpact energy was discussed and the dominant damage mechanism of damaged composites undercompressive loads was also analyzed. The results show that low velocity impact damage has a greateffect on compressive strength; residual compressive strength was reduced by65%when thelaminates were impacted with energy level of3.75J/mm. The damage mechanism of impactedlaminates under compressive load is similar to notched laminates and fiber bending around the hole(or damage region) is the main failure mode.
     (2) Compress-compress fatigue test of T300/QY8911laminates after13.75J impact was carriedout. Damage propagation in compression-compression fatigue test was measured in detail and thedamage propagation law was obtained. It shows the damage propagation under fatigue load can bedivided into two stages: during the initial60%of fatigue life, damage grows slowly; during the rest offatigue life, damage experiences an accelerated propagation; and the stiffness of laminate willdramatically decline at the stage near final failure.
     (3) A finite element model was established for predicting the damage evolution of compositelaminates under transverse low-velocity impact. The model included cohesive elements whichallowed simulating delaminations between layers and three-dimensional solid elements which couldmodel fiber tensile failure, fiber compress failure, matrix crushing, and matrix cracking etc. inside layers. This model also considered the effects of in-plane damage on interlaminar strength. Model wasexecuted by ABAQUS/Explicit module with material subroutine VUMAT, the mechanism of damageand the main factor of delaminations under low-velocity impact were also discussed.
     (4) The damage data gathered by the impact model above was imported to a compressive finiteelement model using an import process and a finite element analytic method was established topredict residual compressive strength and damage evolution of composite laminates after low-velocityimpact. It is achieved to simulate the whole process from initial low-velocity impact damage to finalcompressive failure of composite laminates.
     (5) The impact damage was considered as a circle hole, and a special finite element including anelliptic inclusion was applied to analyze the stress distribution. Base on the damage propagation rule,characteristic length and point stress criterion were used for predicting the residual strength and thecompression-compression fatigue life of post-impacted laminate. The effects of some parameters onresidual strength and fatigue life were discussed.
引文
1.陈绍杰.复合材料与B7E7“梦想”飞机[J].南南制造技术,2005,1:34-37.
    2.陈绍杰.复合材料与南型飞机[J].新材料产业,2008,1:31-35.
    3.陈普会,沈真,聂宏.复合材料层压板冲击后压缩剩余强度的统计分析与可靠性评估[J].南南学报,2004,25(6):573-576.
    4.杨光松.损伤力学与复合材料损伤[M].北南:国防工业出版社,1995,119-121
    5.沈真.复合材料及其结构的力学进展(第二册)[M].广州:华南理工南学出版社,1992,227-244.
    6. Chen P H, Shen Z, Wang Y. A new method for compression after impact strength prediction ofcomposite laminates [J]. Journal of Composite Materials,2002,36(5):589-610.
    7.沈真.含缺陷复合材料层合板的压缩破坏机理[J].南南学报,1991,12(3):105-113.
    8. Caprino G. Residual Strength Prediction of Impacted CFRP Laminates [J]. Journal of CompositeMaterials,1984,18:508-518.
    9. Peter O, Hartness J T, Cordell T M. On low-velocity impact testing of composite materials [J].Computers and Structures,1988,22:30-52.
    10.张子龙,程小全,益小苏.复合材料冲击损伤及冲击后压缩强度的等效实验方法[J].实验力学,2001,16(3):313-319.
    11.程小全,张子龙,吴学仁.小尺寸试件层合板低速冲击后剩余压缩强度[J].复合材料学报,2002,19(6):8-12.
    12. Choi H Y, Wu H Y, Chang F K. Effect of laminate configuration and impactor’s mass on theinitial impact damage of graphite/epoxy composite plates due to line-loading impact [J]. Journalof Composite Materials,1992,26:804-827.
    13. Choi H Y, Downs R J, Chang F K. A new approach toward understanding damage mechanismsand mechanics of laminated composite due to low-velocity impact:part I-experiments [J].Journal of Composite Materials,1991,25:992-1011
    14.崔志华等.复合材料层压板的疲劳特性[M].北南:南南工业出版社,1996.
    15. Moura M D, Marques A T. Prediction of low velocity impact damage in carbon-epoxy laminates[J]. Composite: Part A,2002,33:361-368.
    16. Moura M D, Goncalves J P. Modelling the interaction between matrix cracking and delaminationin carbon-epoxy laminates under low velocity impact [J]. Composites Science and Technology,2004,64:1021-1027.
    17.李晨锋,程建钢,胡宁,等.模拟长纤维增强树脂层合板冲击损伤的数值方法[J].力学学报,2002,34(6):989-996.
    18. Yang S H, Sun C T, Indentation law for composite laminate [C]. ASTM, STP787,1983:425-449.
    19. Tan T M, Sun C T. Use of statical indentation laws in the impact analysis of laminated compositeplate [J]. Journal of Applied Mechanics,1985,52:6-12.
    20.徐颖,温卫东,崔海坡.复合材料层合板低速冲击逐渐累积损伤预测方法[J].材料科学与工程学报,2006,24(1):77-81.
    21.温卫东,徐颖,崔海坡.低速冲击下复合材料层合板损伤分析[J].材料工程,2007,7:6-11.
    22. Mohamed A, Rachid B. The contact behavior laminated composites and rigid impactors [J].Composites Structures,1998,43:165-178.
    23.李微,叶南麒,章怡宁,等.复合材料层状结构低速冲击的接触—冲击分析[J].机械科学与技术,1996,15(1):6-10.
    24. Aymerich F, Dore F, Priolo P. Prediction of impact-induced delamination in cross-ply compositelaminates using cohesive interface elements [J]. Composites Science and Technology,2008,68:2383-2390.
    25. Aymerich F, Dore F, Priolo P. Simulation of multiple delaminations in impacted cross-plylaminates using a finite element model based on cohesive interface elements [J]. CompositesScience and Technology,2009,69:1699-1709.
    26. Hou J P, Petrinic N, Ruiz C. A delamination criterion for laminated composites underlow-velocity impact [J]. Composites Science and Technology,2001,61:2069-2074.
    27. Collombet F, Lalbin X, Bonini J, et al. Damage criteria for the study of impacted compositelaminates [J]. Composites Science and Technology,1998,58(5):679-686.
    28. Collombet F, Lalbin X, Lataillade J L. Impact behavior of laminated composites: Physical basisfor finite element analysis [J]. Composites Science and Technology,1998,58(3-4):463-478.
    29. Collombet F, Bonini J, Lataillade J L. Three-dimensional modelling of low velocity impactdamage in composite laminates [J]. International Journal for Numerical Methods in Engineering,1996,39(9):1491-1516.
    30. Zheng S, Sun C T. A double-plate finite-element model for the impact-induced delaminationproblem [J]. Composites Science and Technology.1995,53:111-118.
    31. Zou Z, Reid S R, Li S, et al. Application of a delamination model to laminated compositestructures [J]. Composite Structures,2002,56:375-38.
    32.陈普会.复合材料层压板机加筋板的损伤容限研究[D].南南,南南南南南南南学,1999.
    33.程小全,寇长河,郦正能.低速冲击后复合材料层合板的压缩破坏行为[J].复合材料学报,2001,18(1):115-119.
    34. Chen Puhui, Shen Zhen, Wang Junyang. A new method for compression after impact strengthprediction of composite laminates [J]. Journal of Composite Materials,2002,36(5):589-610.
    35. Chen Puhui, Shen Zhen, Wang Junyang. Strength prediction of notched composite laminates [J].Composites Science and Technology,2001,61(9):1311-1321.
    36. Soutis C, Curtis P T. Prediction of the post-impact compressive strength of CFRP laminatedcomposites [J]. Composites Science and Technology,1996,56:677-684.
    37. Soutis C, Smith F C, Matthews F L. Predicting the compressive engineering performance ofcarbon fibre-reinforced plastics [J]. Composites: Part A,2000,31:531-536.
    38. Hawyes V J, Curtis P T, Soutis C. Effect of impact damage on the composite laminates [J].Composites: Part A,2001,32:1263-1270.
    39. Soutis C, Fleck N A, Smith P A. Failure prediction technique for compression loaded carbonfibre-epoxy laminate with open holes [J]. Journal of Composite Materials,1991,25(11):1476-1498.
    40.童谷生,孙良新,刘英卫等.复合材料层压板低能量冲击后剩余抗压强度的工程估算[J].机械工程材料,2008,28(3):19-21.
    41. Nuismer R J, Whitney. Uniaxial failure of composite laminates containing stress concertrations[C]. ASTM STP593,1975.
    42. Nuismer R J. Application of the average stress failure criterion: part I tension [J]. Journal ofComposite Materials,1978,12(7):238-249.
    43. Nuismer R J, Labor J D. Application of the average stress failure criterion: part II compression[J]. Journal of Composite Materials,1979,13(2):49-60.
    44. Kutlu Z, Chang F K. Modelling compression failure of laminated composites containing multiplethrough-the-width delaminations [J]. Journal of Composite Materials,1992,26(3):350-386.
    45. Kutlu Z, Chang F K. Composite panels containing multiple through-the-width delaminations andsubjected to compression. Part I: analysis [J]. Composite Structures,1995,31(4):273–296.
    46. Kutlu Z, Chang F K. Composite panels containing multiple through-the-width delaminations andsubjected to compression. Part II: experiments and verification [J]. Composite Structures,1995,31(4):297–314.
    47. Gottesman T, Girshovich S, Drukker E, et al. Residual strength of impacted composite: Analysisand Test [J]. Journal of Composites Technology&Research,1994,16(3):244-255.
    48. Moura M D, Goncalves J P, Marques A T, et al. Modeling compression failure after low velocityimpact on laminated composites using interface elements [J]. Journal of Composite Materials,1997,31(15):1462-1479.
    49. Riccio A, Scaramuzzino F, Perugini P. Embedded delamination growth in composite panelsunder compressive load [J]. Composites: Part B,2001,32:209-218.
    50. Xiong Y, Poon C. A prediction method for the compressive strength of impact damagedcomposite laminates [J]. Composite Structures,1995,30(4):357-367.
    51.燕瑛,曾东.复合材料层板低速冲击剩余强度研究[J].南南学报,2003,24(2):137-139.
    52.林智育,许希武.含任意椭圆核各向异性办杂交应力有限元[J].固体力学学报,2006,27(2):181-185.
    53.林智育,许希武.复合材料层板低速冲击后剩余压缩强度[J].复合材料学报,2008,25(1):140-146.
    54. Yamada S E, Sun CT. Analysis of laminate strength and its distribution [J]. Journal of CompositeMaterials,1978,12(July):275-284.
    55.程小全,郦正能.复合材料层合板低速冲击后压缩的损伤累积模型[J].应用数学与力学,2005,26(5):569-576.
    56.崔海坡,温卫东,崔海涛.复合材料层合板的低能冲击损伤及剩余拉伸强度研究[J].宇南学报,2005,26(6):784-788.
    57.崔海坡,温卫东,崔海涛.复合材料层合板冲击损伤及剩余强度分析方法[J].固体力学学报,2006,27(3):237-242.
    58.崔海坡,温卫东,崔海涛.层合复合材料板的低速冲击损伤及剩余压缩强度研究[J].机械科学与技术,2006,25(9):1013-1017.
    59. Hou J P, Petrinic N, Ruiz C, et al. Prediction of impact damage in composite plates [J].Composites Science and Technology,2000,60:273-281.
    60. Tserpes K I, Labeas G, Papanikos P, et al. Strength prediction of bolted joints in graphite/epoxycomposite laminates [J]. Composites: Part B,2002,33:521-529.
    61. Camanho P P, Matthews F L. p、Progressive damage model for mechanically fastened joints incomposites [J]. Journal of Composite Materials,1999,33:2248-2280.
    62. Shen Zhen, Clerico M, Chen Puhui, et al. Static and fatigue behavior of impacted AS4/PEEKthermoplastic composite under compress load [J]. Chinese Journal of Aeronautics,2000,13(1):14-18.
    63. Milan M, Thomas H, Greg P C, et al. Effect of loading parameters on the fatigue behavior ofimpact damaged composite laminates [J]. Composites Science and Technology,1999,59(14):2059-2078.
    64. Chen A S, Almond D P, Harris B. Impact damage growth in composites under fatigue conditionsmonitored by acoustography [J]. International Journal of Fatigue,2002,24(2-4):257–261.
    65. Melin L G, Schon J. Buckling behavior and delamination growth in impacted compositespecimens under fatigue load: an experimental study [J]. Composites Science and Technology,2001,61(13):1841–1852.
    66. Melin L G, Schon J, Nyman T. Fatigue testing and buckling characteristics of impactedcomposite specimens [J]. International Journal of Fatigue,2002,24:263–272.
    67. Bergmann H W, Prinz R. Fatigue life estimation of graphite/epoxy laminates under considerationof delamination growth [J]. International Journal for Numerical Methods in Engineering,1989,27(2):323-341.
    68. Dahlen C, Springer G S. Delamination growth in composites under cyclic loads [J]. Journal ofComposite Materials,1994,28:732-781.
    69. Bucinell R.G. Development of a stochastic free edge delamination model for laminatedcomposite materials subjected to constant amplitude fatigue loading [J]. Journal of CompositeMaterials,1998,32:1138-1156.
    70. Ramkumar R L, Whitcomb J D. Characterization of mode I and mixed-mode delaminationgrowth in T300/5208graphite/epoxy [C]. ASTM, STP87,1985:315-335.
    71. Russell A J, Street K N. Predicting interlaminar fatigue crack growth rates in compressivelyloaded laminates [C]. ASTM, STP1012,1989:162-178.
    72. Butler R, Almond D P, Hunt G W, et al. Compressive fatigue limit of impact damaged compositelaminates [J]. Composites: Part A,2007,38:1211-1215.
    73. Beheshty M H, Harris B. Post-impact fatigue behaviour of CFRP and the growth of low-velocityimpact damage during fatigue [C]. In: International Conference on Fatigue of Composites (ICFC1),1997:355-362.
    74. Beheshty M H, Harris B. A constant-life model of fatigue behaviour for carbon-fibre composites:the effect of impact damage [J]. Composites Science and Technology,1998,58(1):9-18.
    75. Beheshty M H, Harris B, Adam T. An empirical fatigue-life model for high-performance fibrecomposites with and without impact damage [J]. Composites: Part A,1999,30(8):971-987.
    76. Ki-Weon Kang, Jung-Kyu Kim. Fatigue life prediction of impacted carbon/epoxy laminatesunder constant amplitude loading [J]. Composites: Part A,2004,35(5):529-535.
    77. Ki-Weon Kang, Jung-Kyu Kim, Yong-Su Kim, et al. Fatigue behavior of impacted carbon/epoxylaminates under2-stage block loading [J]. Key Engineering Materials,2006:306-308.
    78. Broutman L J,Sahu S A. New theory to predict cumulative fatigue damage in fiber glassreinforced plastics [C]. ASTM STP1972,497:170-88.
    79. Attia O, Kinloch A J. Matthews F L. The prediction of fatigue damage growth inimpact-damaged composite skin/stringer structures; Part I: theoretical modeling studies [J].Composites Science and Technology,2003,63(10):1463-1472.
    80. Freitas M D, Silva A, Reis L. Numerical evaluation of failure mechanisms on compositespecimens subjected to impact loading [J]. Composites: Part B,2000,31(3):199-207.
    81. Freitas M D, Carvalho R D. Residual strength of a damaged laminated CFRP under compressivefatigue stresses [J]. Composites Science and Technology,2006,66:373-378.
    82.徐颖,温卫东,崔海涛.复合材料层合板冲击后压-压疲劳寿命预测方法[J].复合材料学报,2007,24(2):159-167.
    83.徐颖,温卫东,崔海涛.复合材料层合板疲劳逐渐累积损伤寿命预测方法[J].南南动力学报,2007,22(4):602-607.
    84.徐颖,温卫东,崔海坡.含冲击损伤复合材料层合板疲劳试验研究[J].宇南材料工艺,2007,2:73-80.
    85. NASA RP21142. Standard Tests for Toughened Resin Composite [S].1985.
    86.中国南南工业总公司. HB6739-93.碳纤维复合材料层合板冲击后压缩试验方法[S].北南,中国南南工业总公司第三〇一研究所,1993.
    87. Suppliers of Advanced Composite Materials Association SRM2288, Test Method forCompression after Impact Properties of Oriented Fiber Resin Composites [S].1998.
    88. Boeing Specification Support Standard BSS7620, Advanced Composite Compression Tests [S].1982.
    89. Curtis P T. RAETR88012[S](Royal Aerospace Establishment, UK).1988。
    90. Prichard J C and Hogg P J. The role of impact damage in post-impact compression testing.Composites,1990,21(6):503-510.
    91. Kimpara I, Kageyama K, Suzuki T et al. Simplified and unified approach to characterization ofcompressive residual strength of impact-damaged CFRP laminates [M].//J K Kim and T X Yueds, Impact Response and Dynamic Failure of Composites and Laminate Materials, Part I,Trans-tech Publications,1998,19-33.
    92.柴亚南,沈真,李顺和.复合材料层压板疲劳特性的试验研究[J].南南学报,1991,12(12):643-646.
    93.矫桂琼,卢智先,潘文戈,等.分层缺陷对复合材料层压板疲劳性能的影响[J].机械强度,1998,20(2):142-144.
    94. Choi H Y, Chang F K. A model for predicting damage in graphite/epoxy laminated compositesresulting from low-velocity point impact [J]. Journal of Composite Materials,1992,26:2134-2169.
    95.程起有,童小燕,姚磊江,等.层合板低速冲击损伤的数值模拟[J].机械科学与技术,2008,27(11):1311-1314.
    96. Masaaki Nishikawa, Tomonaga Okabe, Nobuo Takeda. Numerical simulation of inerlaminardamage propagation in CFRP cross-ply laminates under transverse loading [J]. InternationalJournal of Solids and Structures,2007,44:3101-3113.
    97. Shahid I, Chang F K, Shah B M. Impact Damage Resistance and Damage Tolerance ofComposite with Progressive Damage [R]. AIAA296214032CP, California: Stanford University,1996,776-775.
    98.张彦,朱平,来新民,等.低速冲击作用下碳纤维复合材料铺层板的损伤分析[J].复合材料学报,2006,23(2):150-157.
    99.张彦,来新民,朱平,等.复合材料铺层板低速冲击作用下损伤的有限元分析[J].上海交通南学学报,2006,40(8):1348-1353.
    100.宋亚新,沙德松.撞击损伤过程的有限元分析[J].同济南学学报,1998,26(3):255-259.
    101.张博平,李亚智.低速冲击下复合材料层合板的三维损伤[J].机械强度,2007,29(5):840-842.
    102.张华山,黄争鸣.复合材料层合板低速冲击承载能力的细观力学有限元模型[J].玻璃钢/复合材料,2008,5:12-17.
    103. Guinarda S, Allixb O, Guedra-Degeorgesa D, et al. A3D damage analysis of low-velocityimpacts on laminated composites [J]. Composites Science and Technology,2002,62:585-596.
    104. Donadon M V, Iannucci L, Falzon B G, et al. A progressive failure model for compositelaminates subjected to low velocity impact damage [J]. Computers&Structures,2008,26:1232-1252.
    105. Zhao G P, Cho C D. Damage initiation and propagation in composite shells subjected to impact[J]. Composite Structures,2007,78:91-100.
    106. Tiberkak R, Bachene M, Rechak S, et al. Damage prediction in composite plates subjected to lowvelocity impact [J]. Composite Structures,2008,83:73-82.
    107. Heimbs S, Heller S, Middendorf P, et al. Low velocity impact on CFRP plates with compressivepreload: Test and modeling [J]. International Journal of Impact Engineering,2009,36(11-12):1182-1193.
    108. Shiuh-Chuan Her, Yu-Cheng Liang. The finite element analysis of composite laminates and shellstructures subjected to low velocity impact [J]. Composite Structures,2004,66:277-285.
    109. Zuleyha A, Ramazan K, Buket O. The response of laminated composite plates underlow-velocity impact loading [J]. Composite Structures,2003,59:119-127.
    110. Li C F, Hub N, Yin Y J, et al. Low-velocity impact-induced damage of continuousfiber-reinforced composite laminates. Part I. An FEM numerical model [J]. Composites: Part A,2002,33:1055-1062.
    111. Wang Lipeng, Yan Ying, Wu Dafang. Low-velocity Impact Damage Analysis of CompositeLaminates Using Self-adapting Delamination Element Method [J]. Chinese Journal ofAeronautics,2008,21:313-319.
    112. Christophe B, Bruno C, Matthieu B, et al. Low velocity impact modelling in laminate compositepanels with discrete interface elements [J]. International Journal of Solids and Structures,2009,46:2809-2821.
    113. Chang F, Chang K. A progressive damage model for laminated composites containing stressconcentrations [J]. Journal of Composite Materials,1987,21:834-55.
    114. Hashin Z. Fatigue failure criteria for unidirectional fiber composites [J]. Journal of AppliedMechanics,1981,47(4):329-334.
    115. Tsai S W, Wu E M. A general theory of strength for anisotropic materials [J]. Journal ofComposite Materials,1971,5:58-80.
    116.沈观林.复合材料力学[M].北南:清华南学出版社,1994.
    117. Ahmad S, Irons B M, Zienkiewicz O C. Analysis of Thick and Thin Shell Structures by CurvedFinite Elements [J]. International Journal for Numerical Methods in Engineering,1970,2:419-51.
    118. Beer G. An isoparametric Joint/Interface Element for Finite Element Analysis [J]. InternationalJournal for Numerical Methods in Engineering,1985,21:585-600.
    119. Cui W, Wisnom M R. A Combined Stress-Based and Fracture Mechanics-Based Model forPredicting Delamination in Composites [J]. Composites,1993,24(6):467-74.
    120.任浩雷,刘元镛,矫桂琼.含预置分层损伤复合材料层合板在压缩载荷下破坏过程和剩余强度的模拟[J].工程力学,2002,19(6):110-114.
    121.任浩雷.含低速冲击损伤复合材料层合板在压缩载荷下破坏过程和剩余强度模拟[D].西安,西北工业南学,2001.
    122. Abaqus6.8HTML documentation [DK]. Getting Started with Abaqus: KeywordsEdition/13. Quasi-Static Analysis with Abaqus/Explicit.
    123.矫桂琼,贾普荣,潘文戈等.分层缺陷对复合材料层合板强度影响的试验研究[C].第八届全国复合材料会议,南南,1994.
    124. Xiaoguang Zheng&Xiwu Xu. Stress analysis of finite composite laminate with ellipticalinclusion [J]. Computers&Structures,1999,70:357-361.
    125. Xu XW. Stress concentration of finite composite laminate with elliptical holes [J]. Computers&Structures,1995,57(1):29-34.
    126.列赫尼茨集.各向异性板[M].胡海昌,译.北南:科学出版社,1963.
    127. P. Hong, T.H.H. Pian, and S.J. Lasry. A hybrid-element approach to crack problems in planeelasticity [J]. International Journal for Numerical Methods in Engineering,1973,7(3):297-308.
    128.丁锡洪,顾慧芝.变分原理与有限单元法[M].南南:南南南南南南南学飞行器系,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700