磁头/磁盘界面修正Reynolds方程的新模型及其数值模拟分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年,硬盘的数据存储密度越来越大,其主要原因之一就是因为磁头和磁盘之间的间隙(飞行高度)大幅度减小以及复杂滑块设计技术的进步。当磁头与磁盘之间的间隙接近或小于分子平均自由程时,气体的动力学性能就不能直接用连续润滑理论(即连续Reynolds方程)进行描述,而要考虑气体稀薄效应的影响。
     基于广泛应用于计算硬盘磁头/磁盘界面压力分布的修正Reynolds方程的FK模型,本文提出了一种考虑气体稀薄效应修正Reynolds方程的新模型——LFR (Linearized Flow Rate)模型,这种模型是通过一个分段的线性函数拟合FK模型的流率函数而实现的。相对于FK模型,LFR模型的数学表达式比较简单,而且计算出来的压力曲线几乎与FK模型得到的结果重合;更重要的是,LFR模型的计算速度比FK模型的快很多。
     由于Reynolds方程的非线性和滑块形状的复杂性,必须采用数值方法求解Reynolds方程。因此,本文分别详细阐述了有限差分法(FDM)、最小二乘有限差分法(LSFD)、有限体积法(FVM)、无网格局部Peterov-Galerkin法(MLPG)和基于核重构思想的最小二乘配点法的基本理论,并且在不同离散节点的求解域中把这些方法应用到了修正Reynolds方程。计算结果显示:在相同节点数的条件下,MLPG方法的计算速度最慢,但是,这种方法能在较少离散节点数的情况下,得到较高精度的计算结果;LSFD方法的计算速度较快,计算精度也较高,但是,这种方法需要足够多的离散节点,否则,计算不能进行;FDM方法的计算速度最快,但是,这种方法的计算精度是最差的;基于核重构思想的最小二乘配点法能获得很好的计算精度,然而,这种方法的计算速度稍差些,并且在进行计算的时候,要注意精化参数αx的选择;FVM方法的计算速度很快,并且计算的精度也很高,是一种综合性能最佳的数值方法。
     为了进一步检验LFR模型的有效性,分别采用FK模型和LFR模型,对平面倾斜滑块的压力分布进行数值模拟分析。其结果表明,在二维的情况下,LFR模型的计算结果与FK模型相差很小,但其计算速度明显快于FK模型。然后,基于LFR模型,对两轨滑块、三垫滑块以及两个负压滑块的压力分布进行了数值模拟分析,其结果显示:对于同样形状的滑块,在滑块尺寸和飞行参数发生变化时,所得到的压力分布图的形状具有很大差异;对于求解形状复杂的滑块的压力分布,在压力梯度很大(或者滑块形状复杂)区域,必须要采用局部网格加密技术,否则就会导致计算时间过长或计算过程不能进行;随着飞行高度的降低,计算需要越来越多的离散点,并且计算收敛速度越来越慢,计算时间变得更长。
The hard disk drive (HDD) has achieved extraordinary growth in areal density of data storage in the past few years. One of the key factors for this explosive growth in storage capacity is the substantially reduced and tiny spacing (flying height) between the read/write head and recording media and the resulting more complex slider design. When the spacing between the flying head and the rotating disk approximates the molecular mean-free path or less, the gas dynamics cannot be described directly from the continuum transport theory, i.e., continuum Reynolds equation, and the gaseous rarefaction effects must be taken into account in this case.
     Based the FK models of corrected Reynolds that has been used widely in calculating pressure profiles of the interface of head/disk in HDD, a new model of corrected Reynolds considered the gaseous rarefaction effects is proposed, i.e., the model of linearized flow rate (LFR). The implementation of this new model is arrived by using a piecewise linear function to fit the flow rate function of the FK model, and the mathematical formation of the FLR model is simpler more than that of FK model. Moreover, the pressure distribution and the computational speed of FLR model are numerically compared with those of FK model, the results show that the pressure profiles of these two models are almost the same but the computational speed of FLR model is much faster than that of FK model.
     Due to the non-linearity of Reynolds equation and the complex shape of head slider, numerical methods are used to solve the equations of these two models. Therefore, finite difference method (FDM), least square finite difference (LSFD) method, finite volume method (FVM), meshless local Peterov-Galerkin method (MLPG), and least-square collocation meshless method based reproducing kernel particle idea, are stated detailedly and employed to solve the FLR model of corrected Reynolds equation for different number of discretized nodes, respectively. The resulting pressure distributions and computational speeds are obtained. The pressure profile with a small relative error value can be obtained in the case of the definitive area with a few discretized nodes by using MLPG method, but the computational speed of this method is slow comparing with other several numerical methods. The computational speed and accuracy of LSFD are relatively good in the condition of the definitive area with enough amounts of discretized nodes, unless the computational process is not proceeding. The FDM possesses the fastest computational speed but the accuracy of it is also the worst. The least-square collocation meshless method based reproducing kernel particle idea has a good accuracy with a relatively slow computational speed, noting that the refining parameter should be selected carefully. The FVM is the best numerical method with a fast computational speed and a high accuracy.
     To more closely test availability of the LFR model, the pressure distributions of the FK model and the LFR model are numerically obtained for the plane inclined slider in two-dimesional case. The computational time of two models in this case are also compared. The numerical reslults show that the pressure distributions of two models have little difference but the computational time of LFR model is less than that of FK model. Than, based on the LFR model, the two-dimensional pressure distributions of several typical positive pressure slider and two negative pressure slider with complex geometry shapes and great pressure gradients are obtained numerically. Some interesting results are found. For the slider having the same geometry shape, under the changing of its sizes and parameters of flying, it may possess entirely different pressure profiles. To obtain the pressure distributions of slider with complex geometry shape and great pressure gradients, it will result in a long computational time or even the failure of computational proceed, unless techniques of the local refining nodes must be implemented. With the reducing of flying height, more numbers of discretized nodes are used to obtain the pressure profiles of the interface of head/disk.
引文
[1]周剑平,李化飙,顾有松等.高密度记录磁头系统的结果和工作原理[J].磁性材料及器件,2000,31(6):25-28
    [2]吴彦华,孙磊厚,陈扬枝,朱文坚.磁头/磁盘系统静态性能研究[J].现代制造工程,2009,7:15-18
    [3]Devendra. S. C., Sanford A B., Leek D. Air Bearing Considerations for Constant Fly Height Applications[J].IEEE Transactions of Magnetics,1994,30(2):417-423
    [4]Ramesh K., Roger B., Huang H. Understanding Head/Disk Stiction by Bearing Area Analysis of the Head[J]. IEEE Transactions of Magnetics,1996,32(5):3663-3665
    [5]Yoneoka S., Katayama M., Ohwe T., et al.A Negative Pressure Microhead Slider for Ultra low Spacing With Uniform Flying Height[J]. IEEE Transactions of Magnetics,1991, 27(6):5085-5087
    [6]Ono K. Dynamic Characteristics of Air-Lubricated Slider Bearings for Noncontact Magnetic Recording[J]. ASME Jounral of Lubrication Technology,1975,97:250-260
    [7]Wang R.H., Nayak V., Payne R. Challenges of the Head-Disk Interface for Near Contactand Contact Recording[J]. IEEE Transactions of Magnetics,1999,35(5):2466-2468
    [8]Matsuda R., Fukui S. Asymptotic Analysis of Ultra-Thin Gas Squeeze Film Lubrication for In finitely Large Squeeze Number (E xtension of Pan's Theory to the Molecular Gas Film Lubrication Equation) [J]. Jounral of Tribology,1995,117(1):9-15
    [9]Pan C.H.T On Asymptotic Analysis of Gaseous Squeeze-Film Bearings[J]. Jounralof Lubrication Technology,1967,89:245-253
    [10]Fukui S., Kaneko R. Analysis of Ultra-Thin Gas Film Lubrication Based on Linearized Boltzmann Equation:First Report-Derivation of a Generalized Lubrication Equation Including Thermal Creep Flow[J]. Journal of Tribology,1988,110(2):253-261
    [11]Bhushan B., Tonder K. Roughness-Induced Shear-and Squeeze-Film Effect in Magnetic Recording-Part1:Analysis[J]. Jounral of Tribology,1989,111:220-227
    [12]Bhushan B., Tonder K. Roughness-Induced Shear- and Squeeze-Film Efect in Magnetic Recording-Part 2:Applications[J]. Jounral of Tribology,1989,111:228-237
    [13]Li W.L., Weng C.I., Hwang C.C. Effects of Roughness Orientations on Thin Film Lubrication of Magnetic Recording System[J]. Journal of P hysics D:Applied Physics,1995, 1011-1021
    [14]Li W.L. Ultra-Thin Gas Squeeze Film Characteristics for Infinitely Large Squeeze Number[J]. Journal of Tribology,1998,120(4):750-757
    [15]Zhu L.Y., Bogy D.B. Head-Disk Spacing Fluctuation due to Disk Topography in Magnetic Recording Hard Disk Files.Tribology and Mechnics of M agnetic Storage Systems,STLE Special Publication,No.SP-26:160-167
    [16]Burgdorfer A. The influence of the molecular mean free path on the performance of hydrodynamic gas lubricated bearings [J]. ASME Journal of Basic Engineering,1959,81:94-100.
    [17]Gans R.F. Lubrication theory at arbitrary Knudsen number. ASME J. Tribol,1985,107: 431-433.
    [18]Fukui S., Kaneko R. A Database for Interpolation of Poiseuille Flow Rates for High Knudsen Number Lubrication Problems[J]. Jounral of Tribology,1990,112 (1):78-83
    [19]Peng Y.Q., Lu X.C., Luo J.B. Nanoscale Effect on Ultrathin Gas Film Lubrication in Hard Disk Drive. Journal of Tribology,2004,126:347-352
    [20]Eddie Y.K., Liu N.Y., A Multicoefficient Slip-Corrected Reynolds Equation for Micro-Thin Film Gas Lubrication. International Journal of Rotating Machinery,2005,2:105-111
    [21]Mitsuya Y. Molecular Mean Free Path Efects in Gas Lubricated Slider Beaings An Application of the Finite Element Solution[J]. Bulletin of the JSME,1979,22(167):863-870
    [22]Akkok M., Hardie C.E., Gero L.R. et al. A Comparison of Three Numerical Methods Used to Solve the High Bearings Number Reynolds Equation[J]. Tribology and Mechanics of Magnetic Storage Systems,1986,111:72-78
    [23]Zhu Y.L., Liu B., Li Y.H., et al. Slider-Disk Interaction and Its Effect on the Flying Performance of Slider[J]. IEEE Transactions of Magnetics,1999,35(5):2403-2405
    [24]Kuria I.M., Raad P.E.. An Implicit Multidomain Spectral Collocation Method for the Simulation of Gas Bearing B etween Textured Surfaces[J]. Journal of Tribology,1996, 118(4):783-793
    [25]Ruiz O.J., Bogy D.B. A Comparison of Slider Bearing Simulations Using Different Models[J]. IEEE Transactions on Magnetics,1988,24 (6):2754-2756
    [26]Michael H.W., Patrick R.L. Frank E.Talke. An Efficient Finite Element-BasedAir Bearing Simulator for Pivoted Slider Bearings Using Bi-Conjugate Gradient Algorithms[J]. Tirbology Transactions,1996,39(1):130-138
    [27]Hu Y., Bogy D.B. Solution of the Rarefied Gas Lubrication Equation Using an Additive Correction Based Multigrid Control Volume Method[J]. Journal of Tribology,1998,120:280-288
    [28]Francis J.A., Alejandro L.G., Berni J.A. Direct Simulation Monte Carlo for Thin-Film Bearings[J].Phys.Fluids,1994,6(12):3854-3860
    [29]Kogure K., Fukui S., Mitsuya Y., Kaneko R. Design of Negative Pressure Slider for Magnetic Recording Disks[J]. Transaction of the ASME,1983,105:496-502.
    [30]Suarez G. C, Bogy, D.B., and Talke, F.E., Use of an Upwind Finite Element Scheme for Air Bearing Calculations[J]. ASLESP,1984,16:90-96.
    [31]Kubo M., Ohtsubo Y, Kawashima N., Marumo H. Finite Element Solution for the Rarefied Gas Lubrication Problem[J]. ASME J. Tribol.1988,,110:35-341.
    [32]Nguyen S.H. p-Version Finite Element Analysis of Gas Bearing of Finite Width[J]. ASME J. Tribol.,1991,113:417-420.
    [33]Crone R.M., Jhon.M.S., Bhushan B., Karis T.E. Modeling the Flying Characteristics of a Rough Magnetic Head Over a Rough Rigid-Disk Surface[J]. ASME J. Tribol.,1991,113:739-749.
    [34]Robert M.P. Optimization of Self-Acting Gas Bearing for Maximum Static Stiffness," ASME J. Tribol.,1990,57:758-761.
    [35]Cha, E., Bogy, D.B. A numerical Scheme for Static and Dynamic Simulation of Subambient Pressure Shaped Rail Sliders[J]. Transaction of the ASME,1995,117:36-46.
    [36]Lu S. Numerical Simulation of Slider Air Bearings[D]. Department of Mechanical Engineering,1997,University of California, Berkeley.
    [37]Wu L., Bogy, D.B. Use of an Upwind Finite Volume Method to Solve the Air Bearing Problem of Hard Disk Drives[J]. Computation Mechanics,2000,26:592-600.
    [38]Shi B.J., Shu D.W., Gu B., Lu GX., et al. Static and Dynamic Analysis of Bearing Slider for Small form Factor Drives[J]. International Journal of Modern Physics B,2008, 22(9,10 & 11):1391-1396
    [39]Luo J., Shu D.W. Shi B.J., Gu B. The Pulse Width Effect on the Shock Response of the Hard Disk Drive[J]. International Journal of Impact Engineering,2007,34:1324-1349
    [40]Shi B.J., Li H.Q., Shu D.W., Zhang Y.M. Nonlinear Air-Bearing Slider Modeling for Hard Disk Drives with Ultra-Low Flying Heights [J]. Communications in Numerical Methods in Engineering,2009,25:1041-1054
    [41]傅仙罗,张红英.轻负荷磁头气动力分析[J].计算机学报,1992,6:401-407
    [42]彭美化,毛明志,郑国强.计算机磁头飞行过程的仿真研究[J].计算机仿真,2004,7(21):68-71
    [43]阮海林,王玉娟,段传林,陈云飞.基于多重网格控制体方法的皮米磁头气膜压强求解[J].传感技术学报,2006,19(5):2260-2263
    [44]黄平,吴彦华,牛荣军.影响磁头超薄气膜飞行稳定特性因素的数值分析[J].华南理工大学学报(自然科学版,2007,35(12):28-33.
    [45]黄平,许兰贵,孟永钢,温诗铸.求解磁头/磁盘超薄气膜润滑性能的有效有限差分算法[J].机械工程学报[J],2007,43(3):43-48
    [46]牛荣军,黄平,孟永刚等.磁头/磁盘系统气体稀薄效应的影响和数值分析[J].润滑与密封,2006,179(7):24-27.
    [47]吴建康,陈海霞.计算机磁头/磁盘超薄气膜润滑压强的算子分裂算法[J].摩擦学学报,2003,23(5):402-405.
    [48]陈惠敏,谭晓兰,常涛.磁头滑块压强分布的一种数值求解方法[J].润滑与密封,2009,34(5):47-53.
    [49]史宝军,袁明武,宋世军.流体力学问题基于核重构思想的最小二乘配点法[J].工程力学,2006,23(4):17-21+38.
    [50]史宝军,袁明武,孙树立,陈斌.基于核重构思想的配点型无网格方法的研究[J].计算力学学报,2004,21(1):97-103.
    [51]史宝军,袁明武,李君.基于核重构思想的最小二乘配点型无网格方法[J].力学学报,2003,35(6):697-706.
    [52]Tower B., Second Report on Friction Experiments (Experiments on the Oil Pressure in Bearing), Proc.Inst.,Mech.Eng.,1885,58-70
    [53]Reynolds O. On the Theory of Lubrication and its Application to Mr.Beauchamp Tower's Experiments Including an Experiment Determination of the Viscosity of Olive Oil[J]. Philosophical Transactions of the Royal Society London,1886,177:157-234
    [54]Hsia Y., Domoto G. An Experimental Investigation of Molecular Rarefaction Effects in Gas Lubricated Bearing at Ultra-Low Clearances. Transactions of the ASME, Journal of Lubrication Technology,1983,105:120-130
    [55]Mitsuya Y. Modified Reynolds Equation for Ultra-Thin Film Gas Lubrication Using 1.5-Order Slip-Flow Model and Considering Surface Accommodation Coefficient. Journal of Tribology, 1993,115:289-294
    [56]Hwang C.C., Fung R.F., Yang R.F., Weng C.I, Li W.L. A New Modified Reynolds Equation for Ultrathin Film Gas Lubrication. IEEE Transaction on Magnetics,1996,32(2):344-347
    [57]季加东,杨廷毅,史宝军,李芳芬.硬盘中纳米间隙气膜润滑修正雷诺方程的新模型[J].青岛科技大学学报,2009,30:58-61
    [58]Shu C。, Ding H., Yeo K.S., Xu D. Development of Least-Square-Based Two-Dimensional Finite-Difference Schemes and Their Application to Simulate Natural Convention in a Cavity[J]. Computers & Fluids.,2004,33:137-154
    [59]李人宪.有限体积法基础[M].北京:国防工业出版社,2005
    [60]张雄,刘岩.无网格法[M].北京:清华大学出版社,2004
    [61]史宝军.无网格方法理论与应用研究及其可视化技术[D].北京:北京大学,2003
    [62]Lucy L.B. A Numerical Approach to the Testing of the Fission Hypothesis [J]. The Astron J, 1977,8(12):1013-1024
    [63]Gingold R.A., Moraghan J.J. Smoothed Particle Hydrodynamics:Theory and Applications to Non-Spherical Stars[J]. Mon Not Roy Astrou Soc,1977,18:375-389
    [64]Atluri S.N. and Zhu T., A New Meshless Local Petrov-Galerkin (MLPG) Approach in Computational Mechanics[J]. Computational Mechanics,1998, (22)117-127.
    [65]Batra R.C., Porfiri M, Spinello D, Free and Forced Vibrations of a Segmented Bar by a Meshless Local Petrov-Galerkin (MLPG) Formulation [J]. Computational Mechanics,2006, (41):473-491
    [66]Han Z.D. and Atluri S.N., Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving 3D Problems in Elasto-Statics[J]. CMES:Computer Modeling in Engineering & Sciences, 2004,.6(2):169-188
    [67]Atluri S.N. and Zhu T., The Meshless Local Petrov-Galerkin (MLPG) Approach for Solving Problems in Elastostatics[J]. Comput. Mech,2000,25:169-179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700