TPCK对大鼠晶状体混浊的影响及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白内障是目前世界上影响人类健康的常见病,也位列我国第一位致盲的疾病,其发病机制尚不十分清楚。白内障的发生与多种因素有关,是多种因素综合作用的结果。比如晶状体蛋白的基因突变、晶状体遭受氧化损伤、辐射损伤、老化变性、葡萄糖过度刺激、半乳糖等代谢障碍、脂质过氧化损伤等均可对晶状体的正常功能造成不同程度的损伤,结果导致晶状体发生混浊,影响晶状体对光的透射和折射,从而造成视物不清。
     氧化应激是由活性氧(ROS)诱导的一种与老化密切相关的损伤类型,与老年性白内障的形成有关,被认为是白内障的始发因素。晶状体产生的主要活性氧分子包括超氧负离子、羟自由基和H2O2;内源性产生的活性氧的结构包括NADPH氧化酶,线粒体和过氧化物酶体,两种主要产生内源性活性氧的途径是紫外线和离子辐射。晶状体中通过这些途径产生的ROS分子可以经由抗氧化剂和氧化防御系统中和,因此晶状体中具备这两大修复系统来重塑损伤分子或者减轻损伤程度。硫醇转移酶(thioltransferase, TTase)、硫氧还蛋白(thioredoxin, Trx)和硫氧还蛋白还原酶(thioredoxin reductase, TR)和谷胱甘肽还原酶(glutathione reductase, GR)系统被认为是哺乳动物组织中强有力的蛋白修复系统。近年的研究显示TTase/GR和Trx/TR均存在于晶状体中,对保持晶状体的透明性有重要的作用。
     晶体蛋白是哺乳动物晶状体细胞质中的主要结构蛋白,根据其在电场中的迁移能力主要分为α、β、γ三大类。目前对α晶体蛋白的功能研究比较深入,它的分子伴侣作用已得到世界公认,γ晶体蛋白主要承担维持晶状体正常形态的作用,然而对β晶体蛋白的研究还较少,以往认为其与γ晶体蛋白一样作为晶状体的结构蛋白存在,近年来β晶体蛋白成为研究热点,我们前期研究表明了它对维持晶状体的透明性和屈光度有一定的作用。晶体蛋白中均含有一定数量的半胱氨酸(Cys, αB除外),尤其是β、γ类含量较高,Cys含一游离的巯基(-SH),对于氧化极为敏感;巯基经氧化作用形成二硫键混合物,是晶体蛋白去折叠、聚集增强的主要动因。由此产生一对矛盾:氧化应激会使巯基氧化,而为了保持晶状体的透光性,晶体蛋白必须维持足够量的还原状态的巯基(-SH)。
     晶体蛋白的翻译后修饰(post-translational modifiction, PTM)是白内障发病的主要诱因。晶状体是一种结构极为特殊的器官:透明、缺乏血供,晶体蛋白缺乏转化更新、形成后即伴随终生。使晶体蛋白遭受PTM的可能性远较其它类蛋白大。PTM对晶体蛋白的主要影响是:极易引发晶体蛋白去折叠、改变蛋白原有构象;二硫键形成、晶体蛋白之间非特异交联,蛋白水溶性下降;聚集增强形成高分子量物质(High molecular weight, HMW),当HMW聚集达到1×107Da以上时,即可发生光散射,晶体失去透明性、发生白内障。
     那么如何保持晶体蛋白中-SH未被氧化交联为二硫键,进而阻断后续蛋白分子交联、聚集、沉淀,对维持晶体透光性及防治老年性白内障起着关键的作用
     本课题组前期的研究成果表明了二硫苏糖醇(dithiothreitol, DTT,分子式为C4H10O2S2)具有良好的抗晶状体蛋白变性的作用,DTT是一类化学性质的还原剂,它可以解开蛋白质分子内部及蛋白质分子间的二硫键,作为巯基的保护剂,能够抑制晶状体蛋白的热变性及非特异性聚集沉淀。课题组前期研究显示出在用自行配制的DTT滴眼液第8天后能使硒性白内障小鼠模型晶状体混浊的程度减轻。而且我们研究也显示出DTT对紫外线性白内障大鼠模型具有良好的抑制作用。DTT不仅可以防止蛋白质分子间形成二硫键,并且可以和蛋白质竞争性结合-SH,因此在预防和治疗方面都发挥了一定的作用。前期实验也初步验证了异丙醇对晶体蛋白巯基的烷基化作用,通过封闭部分巯基,抑制了二硫化合物的形成。
     能够对蛋白质的巯基进行烷基化的试剂有很多,我们筛选出了一些化合物,例如叔丁醇(Tert-butyl alcohol, TAB)、2-SH-3-丁醇、N-对甲苯磺基-L苯乙胺酰氯甲基酮、甲苯磺胺氯甲基酮等等,其中叔丁醇对硒性白内障的治疗作用也得到了我们初步的证实。N-对甲苯磺基-L-苯乙胺酰氯甲基酮(N-tosyl-L-phenylalanyl-chloromethylketone, TPCK),研究已经证实能够抑制细胞的凋亡以及抗炎等作用对脑缺血有一定的治疗效果并初步应用于临床。对甲苯磺酰基(Tosyl, Ts)是一个由对甲苯磺酸衍生出的取代基,它是一个亲电子基,常用作醇羟基的保护基;而甲基酮作为烷化剂可以封闭晶体蛋白暴露出的巯基,抑制蛋白之间的聚合,因此可以阻止和延缓晶状体的混浊程度。
     基于前期实验结果,我们首先将离体培养晶状体并模拟氧化应激的环境,加入TPCK干预后,观察TPCK对晶状体混浊程度的抑制作用,检测其中酶含量的变化,观察细胞凋亡的情况,研究TPCK抗氧化损伤的效果,研究其机制。
     此外,泛素-蛋白酶体通路(ubiquitin-proteasome pathway, UPP)是Hershko等发现的一个高效率蛋白质降解系统,目前国内外对于UPP的研究主要集中在肿瘤的发病机制以及治疗学方面,是蛋白质的选择性降解中一项非常重要的机制;研究发现该通路介导的细胞蛋白降解是一个非常复杂而缜密的调控过程,是细胞调控的重要机制,通过降解细胞各通路的抑制因子和(或)激活因子发挥着上调或下调作用。最新有实验研究出晶状体上皮细胞中也含有UPP系统的所有组成部分,大约有40~50%受损的晶体蛋白可以通过UPP进行降解。UPP系统是晶状体中主要的蛋白质质量控制体系,它可以通过选择性地降解受损的晶状体蛋白,还能发挥有条件地降解与细胞内多种生物过程相关的调控蛋白的作用,参与晶状体的发育与分化。近年来,UPP作为细胞内蛋白质非溶解体性降解的主要途径已受到人们的日益重视,但UPP在白内障的研究目前仍处于起步阶段。
     本课题第三部分内容研究UPP对晶状体上皮细胞内受损蛋白质水平的影响,探讨其是否能够清除受损变性的晶体蛋白。我们拟通过原代培养的晶状体上皮细胞,对UPP活性和白内障形成及受损蛋白之间的关系进行初步评估,以期得到抗白内障的作用机理。总之本课题为白内障药物防治的临床前期研究提供可靠的理论实验依据,而且这将对于其它年龄相关性眼部疾病的防治也有重要的参考价值。
     第一部分TPCK对晶状体氧化应激下混浊程度和热稳定性的影响
     目的:探讨TPCK在培养的大鼠离体晶状体中抵抗氧化应激的能力及对晶状体蛋白热稳定性的影响。方法:取完整晶状体用H2O2诱导其氧化损伤,分别在不同的时间点观察完整晶状体在氧化损伤组和用TPCK干预组的混浊程度。检测不同组的晶状体蛋白的热稳定性的变化;结果:未加入TPCK仅用H2O2诱导氧化损伤的晶体混浊程度高于TPCK用药组;晶状体蛋白吸光度值在用TPCK药物组低于氧化损伤组且上升速度缓慢。结论:TPCK能够在一定程度上减轻晶状体氧化应激状态下混浊程度的发生并稳定晶状体蛋白。
     第二部分TPCK对晶状体氧化应激中抗氧化酶和凋亡的影响
     目的:探讨H2O2诱导晶状体氧化损伤用TPCK干预后对抗氧化酶含量的影响及TPCK对细胞凋亡的作用。方法:同第一部分采用晶状体离体培养的方法加入H2O2引起氧化损伤,另加入TPCK干预,对照组晶状体仅用TC-199培养剂。在不同时间点分别取晶状体测定TTase、Trx的变化并观察TUNEL凋亡的情况;另原代培养晶状体上皮细胞(Lens epithelial cells, LES),紫外线诱导凋亡后观察TPCK的影响。结果:氧化应激后第3hr两组的TTase、Trx都有显著的提高,第6hr氧化损伤的晶状体中这两种酶的含量减少,TPCK组的TTase、Trx含量低于正常对照组但明显高于氧化损伤组,差别具有统计学意义;TUNEL凋亡提示,在培养3hr的晶状体上皮细胞中细胞凋亡在H2O2损伤组最多,TPCK组较少;细胞培养晶状体上皮细胞流式凋亡检测显示TPCK组细胞胞亡数少于氧化应激组。结论:TPCK可减少大鼠晶状体的氧化损伤时的程度。
     第三部分UPP对晶状体上皮细胞内受损蛋白质水平的影响
     目的:探讨过度表达UPP的限速成分Ubc4对晶状体上皮细胞内受损蛋白质水平的影响。方法:采用原代培养的方法体外培养晶状体上皮细胞,经UPP通路的上调因子miRNA Ubc4转染到传代的晶状体上皮细胞中,检测转染后的细胞对抗环境应激能力的影响。结果:转染Ubc4上调UPP的活性后的晶状体上皮细胞中受损的晶状体蛋白αA1-162(是αA晶状体蛋白的降解片段,容易聚集沉淀;αA晶状体蛋白是一种公认的保护性晶状体蛋白,该蛋白受损遭到降解后其保护作用降低)的含量明显少于未转染细胞中的水平。结论:转染siRNA Ubc4后的晶状体上皮细胞中的αA降解片段(αA1-162)含量减少,有助于防止受损蛋白质的聚集沉淀,进而在晶状体受到氧化应激的损伤时混浊变性具有一定的保护作用。
Cataract is still a main disease of growing blind in our country. And it influencedseriously the health of human all of the world at present which pathogenesis is not yet clear.Cataract is a multi-cause disease such as gene mutation, oxidative stress, radiation, age andso on. That reasons lead to lens opacity and further affect the lens transmission andrefraction of light that manifested in the symptoms is blurred vision.
     Oxidative stress induced by reactive oxygen species (ROS) has long been implicatedin senile cataract formation. ROS molecules are generated in the lens include superoxideanion, hydroxyl radical, and H2O2. Endogenous systems that can generate ROS in the lensinclude NADPH oxidase, mitochondria, and peroxisomes. Two main sources that produceexogenous ROS are UV light and ionic radiation. ROS molecules produced through theseprocesses in the lens are neutralized by antioxidants and oxidation defense systems. Hence,the lens is also equipped with enzyme systems that can repair the damaged molecules1ordegrade the severely damaged ones. Thioredoxin (Trx)/thioredoxin reductase (TR) andthioltransferase (TTase)/glutathione reductase (GR) systems have been identified aspowerful protein repair systems in mammalian tissues. Recent work has shown that bothTTase/GR and Trx/TR systems are present in the lens and play a critical role inmaintaining the lens in a reduced state.
     Lens proteins (crystallins) is the major structural protein components of the vertebrateeye lens, which are all built in the same manner and contains α-, β-, γ-crystallins accordingto migration in the electricfield. α-crystallins are mainly recognized to function aschaperones in the lens, and γ-crystallins basically maintain the lens chape as a structuralprotein, but little is known about β-crystallins. The regular structure and water-solubleingredient point to an important role for lens high refractive index and transparence thatmakes β-crystallins become a central issue in recent years. There are cysteine in crystallinswhich are extremely sensitive to oxidation due to the thiol. Adjacent thiol sufferingoxidation can form disulfide mixture that is the main reason of crystallins unfolding,aggregation. So lens could maintain transparent relying sufficient amount thiol.
     Post-translational modification of crystallins is the chief incentives. CrystallinsPTM is more than other protein because its special struture that transparency, lack of bloodsupply, difficult to update. Crystallins water-soluble decline, aggregation enhanced result in high molecular weight which measure up to1×107Da could come cataract accompaniedby light scattering and opacity.
     Therefor how to keep crystallins free-SH not be cross-linked to disulfide bonds play akey role in maintenance lens transparent and prevention of senile cataract.
     Preliminary research results in our laboratory show that anti-lenses degeneration ofDTT(C4H10O2S2)is well. It is a chemical reductant that can untie disulfide linkage withinthe protein molecular and intermolecular. It also can inhibit the thermal denaturation oflens protein and non-specificity aggregation as sulfhydryl protective agent. Studies havebeen proved the nucleus plaque of selenite induced rat nuclear cataract after using DTT issignificant less than control group. Our data shows that DTT has obvious inhibitory actionon ultraviolet cataract. DTT can ont only prevent the formation of disulfide bonds betweenprotein molecules but also combine competitively-SH with protein, that can play a role inthe prevention and treatment. Our experiments validated the alkylation of isopropanol oncrystallins thiol so that inhibit the disulfide.
     Many reagent can take alkylation effect of protein thiol such as tert-butyl alcohol,2-SH-3-butanol and TPCK. Study have been shown that TPCK can inhibit cell apoptosisand anti-inflammtory therefor that have a certain therapeutic effect on cerebral ischemia.Tosyl is a substituent derived from p-toluenesulfonic acid which used as protection ofalcoholic hydroxyl. And methyl as an alkylating can be closed exposed crystallins thiol,inhibit aggregation between proteins, and so it can prevent or delay lens opacity.
     Thence we cultured lens in vitro and sumulate the environment of oxidative stress.Use TPCK to observe the inhibition of lens opacity, detect enzyme changes and checkapoptosis in order to research effect of TPCK on lens oxidative damage, study itsmechanism.
     Ubiquitin-proteasome pathway (UPP) is a efficient protein degradation systemdiscovered by Hershko et al. which is related with the pathogenesis and treatment of cancerthat turn into hot content for domestic and foreign academic. Recent study found that UPPis a very complex and careful regulation system of protein degradation which play up-ordown-regulated role by degradation activator or inhibitor factor. Lens epithelial cellscontain all parts of UPP and about40-50%damaged cytosolic protein degradated by UPP.UPP is one of the proteolytic system that selectively degrade modified or damaged proteins which is related to regulation of biological process inside the cells participating lensdifferentiation. Recent years UPP become research hotspot as a important non-lysosomalpathway of intracellular protein degradation but the study about relationship with cataractis still initial stage.
     This work the last one parts will assess the relationship of cataract and damagedprotein and UPP by means of cultured primary LEC based on latest research results inorder to understand the mechanism of anti-cataract drug and offer clinical evidence. It alsoprovide important theoretical value for other age-related eye disease prevention.
     Part I The effect of TPCK on lens turbidity and thermal stability under oxidativestress
     Objective: To investigate the role of TPCK in resistance to oxidative stress andthermal stability in rat lens culture. Method: Intact lenses were cultured in TC-199andthen observe opacity between the oxidative damage group and TPCK group at differenttime points. Detect thermal stability changes of crystallins protein in different groups.Result: The lens in H2O2oxidative damage not acceded TPCK more turbid than the TPCKgroup and the lens homogenates absorbance value lower than TPCK group and thecurvature result is the same trend. Conclusion: TPCK can mitigate lens turbidity underoxidative stress to a certain extent and satbilize the lens protein.
     Part II The influence of TPCK on lens antioxidant enzymes and apoptosis
     Objective: To investigate effects of TPCK in antioxidant enzymes and apoptosis inoxidative damaged lens. Method: Cultured rat lens in vitro same as the first part toresearch TTase and Trx contents at different time points and observe apoptosis. Thenculture lens epithelial cells to detect apoptosis after ultraviolet induced. Result: Theactivity of TTase and Trx significant improved after3hours but all reduced rapidly after6hours. The two enzymes in TPCK group are more than the oxidative damaged group butless than the control group. TUNEL results show that lens epithelial cells number is morein the H2O2oxidative damage group than TPCK group and flow cytometry apoptosis provethat apoptosis cells is obviously lower in the TPCK groups. Conclusion: TPCK can reducethe degree of oxidative damage in rat lens.
     Part III The function of UPP on damaged protein in lens epithelial cells
     Objective: To investigate effects of overexpressed Ubc4for impaired lens protein inlens epithelial cells. Method: Using cultured rat lens epithelial cells same as the first partto evaluate the ability of cells against environmental oxidative stress after transfectedup-regulation factor siRNA Ubc4. Result: The damaged αA1-162crystallin (is a degradationfragment which is easily precipitated of αA crystallin which is a protective protein in lensthat may reduce the role after suffering damage) level significantly reduced aftertransfected siRNA Ubc4which can up-regulate UPP activity compared withnon-transfected cells. Conclusion: The content of αA crystallin degradation fragment(αA1-162crystallin) after transfected siRNA Ubc4to lens epithelial cells which can preventdamaged lens protein from aggregation and precipitation and then this will play aprotective effect in lens under oxidative damage.
引文
[1] Bloemendal H, Jong W, Jaenicke R, Lubsen N H, Slingsby C, Tardieu A. Progress on thefunction and structure of serine protease inhibitor [J]. Prog Biophys Mol Biol,2004,86:407-485.
    [2] Quillen DA. Common causes of vision loss in elderly patients [J]. Am Fam Physician,1999,60(1):99-108.
    [3] Sun W R, Zhang X H, Zhang S J, Zhou Z Y. Oxidative damage and enzyme histochemistrychanges in senile cataract [J]. US Chin J Ophthalmol,2000,1:1-3.
    [4] Heys KR, Cram SL, Truscott RJ. Massive increase in the stiffness of the human lens nucleuswith age: the basis for presbyopia?[J]. Mol Vis,2004,10:956-963.
    [5] Dowhan W. Molecular basis for membrane phospholipid diversity: why are there so many lipids?[J]. Annu Rev Biochem,1997,66:199-232.
    [6] Zhen-Yu H, Rong Z, Pei-Hong S, Bo W, Cheng-Jian J. Progress on the function and structure ofserine protease inhibitor [J]. Genomics and Applied Biology,2011,30(45):1290-1298.
    [7]YAN Hong, HU I Yan-Nian. Ageing lens and development of tataract [J].Fourth Mil Med Univ,2005,26(2):97-100.
    [8]Gamer B,Roberg K,Q ian M,et al. Distribution of ferritin and redox-actinve transition metals innormal and cataractous human lenses [J].Exp Eye Res,2000,71(6):599-604.
    [9] Heys KR, Friedrich MG, Truscott RJ. Presbypoia and heat: changes associated with aging of thehuman lens suggest a functional role for the small heat shock protein, alpha-crystallin, inmaintaining lens flexibility [J].Aging Cell,2007;6(6):807-815.
    [10]Simpanya MF, Ansari RR, Suh KI. Aggregation of lens crystallins in an in vivo hyperbaricoxygen guinea pig model of nuclear cataract: Dynamic light-scattering and HPLC analysis [J].Invest Ophthalmol Vis Sci,2005,46(12):4641-4651.
    [11]Meyer M, Schreck R, Baeuerle PA. H2O2and antioxidants have opposite effects on activationof NR-kappa B and AP-1in intact cells: AP-1as secondary antioxidant responsive factor [J].EMBO,1993,12:2005-2015.
    [12]Sen CK, Packer L. Antioxidant and redox regulation of gene transcription [J]. FASEB,1996,10:709-720.
    [13]Pinkus R, Weiner LM, Daniel V. Role of oxidants and antioxidants in the induction of AP-1,NF-kappaB, and glutathione S-transferase gene expression [J]. Biol Chem,1996,271:13422-13429.
    [14]Grant CM, Collinson LP, Roe JH, Dawes IW. Yeast glutathione reductase is required forprotection against oxidative stress and is a target gene for Yap-1transcriptional regulation [J]. MolMicrobiol,1996,21:171-179.
    [15]Kuge S, Jones N. YAP1dependent activation of TRX2is essential for the response ofSaccharomyces cerevisiae to oxidative stress by hydroperoxides[J]. EMBO,1994,13:655-664.
    [16]Morgan BA, Banks GR, Toone WM, Raitt D. Kuge S. Johnston LH. The Skn7respnse regulatorcontrols gene expression in the oxidative stress response of the budding yeast Saccharomycescerevisiae [J]. EMBO,1997,16:1035-1044.
    [17]Li DW, Spector A. Hydrogen peroxide-induced expression of the proto-oncogenes, c-jun, c-fosand c-myc in rabbit lens epithelial cells [J]. Mol Cell Biochem,1997,173:59-69.
    [18]Li WC, Wang GM, Wang RR, Spector A. The redox active components H2O2andN-acetyl-L-cysteine regulate expression of c-jun and c-fos in lens system [J]. Exp Eye Res,1994,59:179-190.
    [19]Xing K, Lou MF. The possible physiological function of thioltransferase in cells [J]. FASEB,2003,17:2088-2090.
    [20]Fernando MR, Nanri H, Yoshitake S, Nagata-Kuno K, Minakami S. Thioredoxin regeneratesproteins inactivated by oxidative stress in endothelial cells [J]. Eur J Biochem,1992,209:917-922.
    [21]Yoshitake S, Nanri H, Yoshitake S, Fernando MR, Minakami S. Possible differences in theregenerative roles played by thioltransferase and thioredoxin for oxidatively damaged proteins [J].Biochem(Tokyo),1994,116:42-46.
    [22]Chae H, Robison K, Poole L, Church G, Storz G, Rhee S. Cloning and sequencing ofthio-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specificantioxidant define a large family of antioxidant enzymes [J]. Proc Natl Acad Sci USA,1994,91:7071-7072.
    [23]Ganea E, Harding JJ. Glutathione-related enzymes and the eye [J]. Curr Eye Res,2006,31(1):1-11.
    [24]Yogorova S, Yegorov O, Lou MF. Thioredoxin induced antioxidant gene expression in humanlens [J]. Exp Eye Res,2006,83(4):783-792.
    [1] Lou MF. Redox regulation in the lens [J]. Prog Retin Eye Res,200322:657-682.
    [2] M. McNamara, R.C. Augusteyn. The effects of hydrogen peroxide on lens proteins:A possiblemodel for nuclear cataract [J]. Exp Eye Res,1984;38(1):45-56.
    [3] Lou MF. Thiol regulation in the lens [J]. Ocul Pharmacol Ther,2000,16:137-148.
    [4] Wagner BJ, Margolis JW, Garland D, Roseman JE. Bovine lens neutral proteinase preferentiallyhydrolyses oxidatively modified glutamine synthase [J]. Exp Eye Res,1986,43:1141-1143.
    [5] Jahngen-Hodge J, Cry D, Laxman E, Taylor A. Ubiquitin and ubiquitin conjugates in humanlens [J]. Exp Eye Res,1992,55:897-902.
    [6] Holmgren A. Thioredoxin and glutaredoxin systems [J]. Biol Chem,1989,264:13963-13966.
    [7] Yoshitake S, Nanri H, Fernando MR, Minakami S. Possible differences in the regenerative rolesplayed by thioltransferase and thioredoxin for oxidatively damaged proteins [J]. Biochem(Tokyo),1994,116:42-46.
    [8] Fernando MR, Nanri H, Yoshitake S, Nagata-Kuno K, Minakami S. Thioredoxin regeneratesproteins inactivated by oxidative stress in endothelial cells.[J].Eur J Biochem,1992,209:917-922.
    [9] Raghavachari N, Lou MF. Evidence for the presence of thioltransferferase in the lens [J]. ExpEye Res,1996,63:433-441.
    [10]Yoshitake S, Liu A, Lou MF. Human lens thioredoxin: molecular cloning and functionalcharacterization [J]. Invest OphthalmolVis Sci,2003,44:3263-3271.
    [11]Holmgren A. Glutathione-dependent synthesis of deoxyribo nucleotides: characterization of theenzymatic mechanism of Escherichia coli glutaredoxin [J]. Biol Chem,1979,254:3272-3278.
    [12]Moon S, Rohan Fernando M, Lou MF. Induction of thioltransferase and thioredoxin/thioredoxinreductase systems in cultured porcine lenses under oxidative stress [J]. Invest Ophthalmol Vis Sci,2005,46:3783-3789.
    [13]孙明,赵玉梅,徐超. N-甲苯磺基-L-苯乙胺酰氯甲基酮抗脑缺血作用[J].中风与神经疾病杂志,2002,2(19):70-72.
    [14]丁建光,李含玉,曾令柏,王家翠,杨策尧.晶状体上皮细胞凋亡与过氧化氢诱导白内障形成研究[J].中华实验眼科杂志,2001,3:202-204.
    [15]William CH, Arscott DL, Muller S. Thioredoxin reductase: two modes of catalysis have evovled[J]. Eur J Biochem,2000,267:6110-6119.
    [16]Wang G-M, Raghavachari N, Lou MF. Relationship of protein-glutathione mixed disulfide andthioltransferase in H2O2-induced cataract in cultured pig lens [J].Exp Eye Res,1997,64:693-700.
    [17]Xing KY, Lou MF. Effect of H2O2on human lens epithelial cells and the possible mechanism foroxidative damage repair by thioltransferase [J]. Exp Eye Res,2002,74:113-122.
    [18]Wells WW, Wu DP, Yang YF, Rocque PA. Mammalian thioltransferase (glutaredoxin) andprotein disulfide isomerase have dehydroascorbate reductase avtivity [J]. Biol Chem,1990,265:15361-15364.
    [19]Fernando MR, Satake M, Monnier V, Lou MF. Thioltransferase mediated ascorbate recycling inhuman lens epithelial cells [J]. Invset Ophthalmol Vis Sci,2004,45:230-237.
    [20]Stark DW, Chock PB, Mieyal JJ. Glutathione-thiyl radical scavenging and transferase propertiesof human glutaredoxin (thioltransferase): potential role in redox signal transduction [J]. Bio Chem,2003,278:14607-14613.
    [21]Holmgren A. Enzymatic reduction-oxidation of protein disulfides by thioredoxin [J]. MethodsEnzymol,1984,107:295-300.
    [22]Berken K, Gromer S, Schirmer RH, Muller S. Thioredoxin reductase as a pathophysiologicalfactor and drug target [J]. Eur J Biochem,2000,267:6118-6125.
    [23]Mustacichi D, Powis G. Thioredoxin reductase [J]. Biochem,2000,346:1-8.
    [24]Berggren M, Gallegos A, Gasdaska JR, Gasdaska PY, Warneke J, Powis G. Thioredoxin andthioredoxin reductase gene expression in human tumors and cell lines, and the effects of serumstimulation and hypoxia [J]. Anticancer Res,1996,16:3459-3466.
    [25]Spector A. Oxidative stressinduced cataract: Mechanism of action [J]. FASEB,1995,9(12):1173-1179.
    [26]Raghavachari N, Kryzan K, Xing K-Y, Lou MF. Regulation of thioltransferase expression inhuman lens epithelial cells [J]. Invest Ophthalmol Vis Sci,2001,42:1002-1008.
    [27]Kryzan K, Lou MF. Human thioltransferase (TTase) gene is controlled by AP-1and mediatedthrough redox signaling [J]. Invest Ophthalmol Vis Sci,2002,43:1876-1883.
    [28]Raghavachari N, Lou MF. Evidence for the presence of thioltransferase in the lens [J]. Exp EyeRes,1996,63:433-441.
    [29]Reddy PG, Bhuyan DK, Bhuyan KC. Lens-specific regulation of the thioredoxin-1gene, but notthioredoxin-2upon in vivo photochemical oxidative stress in the Emory mouse [J]. BiochemBiophys Res Commun,1999,265:345-349.
    [30]Xing K, Lou MF. The possible physiological function of thioltransferase in cells [J]. FASEB,2003,17:2088-2090.
    [31]Fernando MR, Nanri H, Yoshitake S, Nagata-Kuno K, Minakami S. Thioredoxin regeneratesproteins inactivated by oxidative stress in endothelial cells [J]. Eur J Biochem,1992,209:917-922.
    [32]Chae H, Robison K, Poole L, Church G, Storz G, Rhee S. Cloning and sequencing ofthiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specificantioxidant define a large family of antioxidant enzymes [J]. Proc Natl Acad Sci USA,1994,91:7017-7021.
    [33]Li WC, Kuazak JR, Dunn K. Lens epithelial cell apoptosis appears to be a common cellular basisfor noncongenital cataract development in human and animals [J]. Cell Biol,1995,130:169-181.
    [34]Orlowski RZ, Dees EC. The role of the ubiquitination-proteasome pathway in breast cancer:applying drugs that affect the ubiquitin-proteasome pathway to the therapy of breast cancer [J].Breast Cancer Res,2003,5:5-7.
    [35]Xinyu Zbang, Edward J. Dudek, Bingfen Liu, Linlin Ding, Alexandre F.Fernandes, Jack J.Liang,Josepb Horwitz, Allen Taylor, Fu Sbang. Degradation of C-terminal truncatedαA-crystallins by theubiquitin-proteasome pathway [J]. Invest Ophthalmol Vis Sci,2007,48:4200-4208.
    [1] Hershko A, Ciechanover A, Varshavsky A. The ubiquitin system [J].Nature Med,2000,10:1073-1081.
    [2] LIU Qian, XU Wei-guo. Ubiquitin-proteasome system and their implication to the muscleatrophy in chronic obstructive pulmory disease [J]. Int J Respi,2010;30(19):1180-1183.
    [3] Skach WR. Defects in processing and trafficking of the cystic fibrosis transmembraceconductance regulator [J]. Kidney Int,2000,57(3):825-831.
    [4] Rui L, Yuan M, Frantz D. SOCS-1and SOCS-3block insulin signaling by ubiquitin mediateddegradation of IRS1and IRS2[J]. Biol Chem,2002,277(44):42394-42398.
    [5] Scheffner M, Huibregtse JM. The HV-16E6and E6-AP complex function as a ubiquitin-proteinligase in the ubiquitination of P53[J]. Cell,1993,75(3):495-505.
    [6] Pereira P, Shang F, G irao H, Taylor A. Lens fibers have a fully functional ubiquitin-proteasomepathway [J].Exp Eye Res,2003;76:623-631.
    [7] G irao H, Pereira P, Taylor A, Shang F. Subcellular redistribution of components of theubiquitin-proteasome pathway during lens differentiation and maturation [J].Invest Ophthalmol VisSci,2005;46:1386-1392.
    [8] Medeleine Zetterberg, Xinyu Zhang, Allen Taylor, Bingfen Liu, Jack J.Liang, Fu Shang.Glutathiolation enhances the degradation of γC-crystallin in lens and reticulocyte lysates, partiallyvia the ubiquitin-proteasome pathway [J]. Invest Ophthalmol Vis Sci,2006,47(8):3467-3472.
    [9] Qian W, Shichi H. Cataract formation by a semiquinone metabolite of acetaminophen in mice:possible involvemental of ca(2+)and calpain activation [J]. Exp Eye Res,2000,71:567-574.
    [10]Nakamura Y, Fukiage C, Shih M. Contribution of calpain lp82-induced proteolysis toexperimental cataractogenesis in mice.[J]. Invest Ophthalmol Vis Sci,2000,41:1460-1466.
    [11]Azuma M, Sheater TR. Involvement of calpain in diamide induced cataract in cultured lenses [J].FEBS Lett,1992,307:313-317.
    [12]Sakamoto-Mizutani K, Fukiage C, Tamada Y, Azuma M, Sheater TR. Contribution of ubiquitouscalpains to cataractogenesis in the spontaneous diabetic wbn/kob rat [J]. Exp Eye Res,2002,75:611-617.
    [13]Tamada Y, Fukiage C, Mizutani K. Calpain inhibitor, sja6017, reduces the rate of formation ofselenite cataract in rats [J]. Curr Eye Res,2001,22:280-285.
    [14]Takeuchi N, Ouchida A, Kamei A. C-terminal truncation of alpha-crystallin in hereditarycataractous rat lens [J]. Biol Pharm Bull,.2004,27:308-314.
    [15]Robertson LJ, Morton JD, Yamaguchi M. Calpain may contribute to hereditary cataractformation in sheep [J]. Invest Ophthalmol Vis Sci,2005,46:4634-4640.
    [16]Biswas S, Harris F, Dennison S, Singh J, Phoenix DA. Calpains: targets of cataract prevention?[J].Trends Mol Med,2004,10:78-84.
    [17]Shih M, David LL, Lampi KJ. Proteolysis by m-calpain enhances in vitro light scattering bycrystallins from human and bovine lenses [J]. Curr Eye Res,2001,22:458-469.
    [18]Sheater TR, Shih M, Mizuno T, David LL. Crystallins from rat lens are especially susceptible tocalpain-induced light scattering compared to other species [J]. Curr Eye Res,1996,15:860-868.
    [19]David LL, Sheater TR, Shih M. Sequence analysis of lens beta-crystallins suggests involvementof calpain in cataract formation [J]. Biol Chem,1993,268:1937-1940.
    [20]Kelly MJ, David LL,Iwasaki N, Wright J, Sheater TR. A-crystallin chaperone activity is reducedby calpain II in vitro and in selenite cataract [J]. Biol Chem,1993,268:18844-18894.
    [21]Thampi P, Abraham EC. Influence of the c-terminal residues on oligomerization of alphacrystallin [J]. Biol Chem,2003,42:11857-11864.
    [22]Taylor A, Daims M, Lee J, Surgenor T. Identinal and quantification of leucine aminopeptidase inaged normal and cataractous human lenses and ability of bovine lens lap to cleave bovine crystallins[J]. Curr Eye Res,1982,2:47-56.
    [23]Taylor A. Aminopeptidases: towards a mechanism of action [J]. Trends Bio Chem,1993,18:167-172.
    [24]Taylor A, Sandord D, Nowell T. Structure and function of bovine lens aminopeptidase andcomparison with homologous aminopeptidase [J]. Aminopeptidases,1996,6:21-59.
    [25]Swaminathan S, Chandrasekher G, Venkataraman A, Pattabiraman TN. Proteases and proteaseinhibitory activities in normal mammalian lenses and human cataractous lenses [J]. Biochem MedMetab Biol,1986,35:184-190.
    [26]Srivastava OP, Ortwerth BJ. The effects of aging and cataract formation on the trypsin inhibitoractivity of human lens [J]. Exp Eye Res,1989,48:25-36.
    [27]Shang F, Gong X, McAvoy JW. Ubiquitin-dependent pathway is up-regulated in differentiatinglens cells [J]. Exp Eye Res,1999,68:179-192.
    [28]Shang F, Gong X, Palmer HJ, Nowell TR, Taylor A. Age-related decline in ubiquitinconjugation in response to oxidative stress in the lens [J]. Exp Eye Res,1997,64:21-30.
    [29]Shang F, Nowell TR, Taylor A. Removal of oxidatively damaged protein from lens cells by theubiquitin-proteasome pathway [J]. Exp Eye Res,2001,73:229-238.
    [30]Pereira P, Shang F, Girao H, Taylor A. Lens fibers have a fully funtional ubiquitin-proteasomepathway [J]. Exp Eye Res,2003,76:623-631.
    [31]Shang F, Taylor A. Oxidative stress and recovery from oxidative stress are associated withaltered ubiquitin conjugating and proteolytic activities in bovine lens epithelial cells [J]. BiochemJ,1995,307:297-303.
    [32]Huang LL, Shang F, Nowell TR Jr, Taylor A. Degradation of differentially oxidizedα-crystallins in bovine lens epithelial cells [J]. Exp Eye Res,1995,61:45-54.
    [33] Marques C, Guo W, Pereira P. The triage of damaged proteins: degradation by theubiquitin-proteasome pathway or repair by molecular chaperones [J]. FASEB,2006,20:741-743.
    [34]Shang F, Taylor A. Funtion of the ubiquitin protolytic pathway in the eye [J]. Exp Eye Res,2004,78:1-14.
    [35]Zetterberg M, Zhang X, Taylor A. Glutathiolation enhances the degradation of γC-crystallin inlens and reticulocyte lysates, partially via the ubiquitin-proteasome pathway [J]. Invest OphthalmolVis Sci,2006,47:3467-3473.
    [36]Marques C, Pereira P, Taylor A. Ubiquitin-depent lysosomal degradation of the HNE-modifiedproteins in lens epithelial cells [J]. FASEB J,2004,18:1424-1426.
    [37] Lou MF. Redox regulation in the lens [J].Progress in Retinal and Eye Research,2003,22(5):657-682.
    [38]Schey KL, Little M, Fowler JG. Characterization of human lens major intrinsic protein structure[J]. Invest Ophthalmol Vis Sci,2000,41(1):175-183.
    [39]Horwitz J. Alpha crystallin can function as a molecular chaperone [J]. Natl Acad Sci,.1992,89:10449-10453.
    [40]Thampi P, Hassan A, Smith JB, Abraham EC. Enhanced c-terminal truncation of αA-andαB-crystallins in diabetic lenses [J]. Invest Ophthalmol Vis Sci,2002,43:3265-3237.
    [41]Dudek EJ, Shang F, Valverde P, Liu Q, Hobbs M, Taylor A. Selectivity of the ubiquitin pathwayfor oxidatively modified proteins: relevance to protein precipitation diseases [J]. Faseb J,2005,19:1707-1709.
    [42]Nakamura T, Pichel JG, Williams-Simons L. An apoptotic defect in lens differentiation causedby human p53is rescued by a mutant allele [J]. Pro Natl Acad Sci,1995,92(13):6142-6146.
    [43]严宏,惠延年.晶状体的老化和白内障形成[J].第四军医大学学报,2005,26(2):97-101.
    [44]Harding JJ. Viewing molecular mechanisms of ageing through a lens [J].Ageing Res Rev,2002,1(3):465-479.
    [1] Hershko A, Ciechanover A, Varshavsky A. The ubiquitin system [J]. Nature Med,2000,10:1073-1081.
    [2] Orlowski RZ, Dees EC. The role of the ubiquitination-proteasome pathway in breastcancer: applying drugs that affect the ubiquitin-proteasome pathway to the therapy ofbreast cancer [J]. Breast Cancer Res,2003,5:5-7.
    [3] Ciechanover A, Orian A, Schwartz AL. Ubiquitin-protolysis: biological regulation viadestruction [J]. Bioessays,2000,22(5):442-451.
    [4] Pelzer C, Kassner I, Matentzoglu K. UBE1L2, A novel E1enzyme specific for ubiquitin[J]. J Biol Chem,2007,282(5):23010-23014.
    [5] van Wijk SJ, Timmer HT. The family of ubiquitin-conjugating enzymes (E2): decidingbetween life and death of protein [J]. FASEB,2010,24:981-993.
    [6] Melikova MS, Filatova MM, Kornilova ES. Cbl-a polyfunctional regulator of cellularprocesses [J]. Tsitologiia,2003,45(11):1134-1148.
    [7] Fang S, Lorick KL, Jensen JD. RINGER finger ubiquitin protein ligases: Implicationsfor tumorigenesis metastasis and for molecular targets in cancer [J]. Semin Cancer Biol,2003,13(1):5-14.
    [8] Petroski MD, Dehshaies RJ. Function and regulation of cullin-RING ubiquitin ligases[J]. Nat Rev Mol Cell Biol,.2005,6(1):9-20.
    [9] Daizo K, Masahiko A, Akioshi K. Arkadia amplifies TGF-β superfamily signalingthrough degradation of Smad [J]. EMBO,2003,302(24):6458-6470.
    [10]LI Xiao-zhao, LIU Fu-you. Ubiquitin-proteasome pathway having an influence onSmad signaling pathway [J]. Int J Patholo CM,2006,26(2):181-184.
    [11]Ohi MD, Vander kool CW, Rosenberg JA. Structural insights into the U-box a domainassociated with multiubiquitination [J].Nature Struct Biol,2003,10(4):250-255.
    [12]Kornitzer D, Ciechanover A. Model of regulation of ubiquitin-mediated proteindegradation [J]. Cell Physiol,2000,182(1):1-11.
    [13]LIU Qian, XU Wei-guo. Ubiquitin-proteasome system and their implication to themuscle atrophy in chronic obsturctive pulmory disease [J]. Int J Respir,2010,30(19):1180-1183.
    [14]A Dams J. The proteasome: a suitable antineoplastic target [J]. Nat Rev Cancer,2004,4(5):349-360.
    [15]Stewart D, Ghosh A, Matlashewski G. Involvement of nuclear export in humanpapillomavirus type18E6-mediated ubiquitination and degradation of P53[J]. J Virol,2005,79(14):8773-8783.
    [16]Traidej M, Chen L, Yu D. The roles of E6-AP and MDM2in P53regulation in humanpapillomavirus-positive cervical cancer cells [J]. Antisense Nucleic Acid Drug Dev,2000,10(1):17-27.
    [17]Quesada V, Diaz-Perales A, Gutierrez-Fernandez A. Cloning and enzymatic analysis of22novel human ubiquitin-specific proteases [J]. Biochem Biophys Res Commun,2003,314:54-62.
    [18]Urso ML, Scrimgeour AG, Chen YW. Analysis of human skeletal muscle after48himmobilization reveals alterations in mRNA and protein for extracellular matrixcomponents [J]. Appl Physiol,2006,101:1136-1148.
    [19]LIU Qian, XU Wei-guo. Ubiquitin-proteasome system and their implication to themuscle atrophy in chronic obstructive pulmory disease [J]. Int J Respir,2010,30(10):1180-1183.
    [20]LIU Yuan-jie, CHEN Guo-qing, LU Chen, ZHOU Hong-ying, MEI Yan, YANGHui-jun. Expression of ubiquitin-protesome system in retina of alloxan-induced diabetic rat[J]. Chin J Anatomy,2010,30(10):1180-1183.
    [21]Scheffner M, Huibregtse JM, Vierstra RD. The HPV-16E6and E6-AP complexfunctions as a ubiquitin-protein ligase in the ubiquitination of P53[J]. Cell,1993,75(3):495-505.
    [22]CHEN Jing-bo. UPP and metabolic abnormalities with II type diabetes and vascularcomplications [J]. Prac Med,2008,24(3):488-490.
    [23]ZHANG Xin-yu, Edward J.Dudek, LIU Bing-fen, DING Lin-lin, AlexandreF.Fernandes, Jack J.Liang, Josepb Horwitz, Allen Taylor, Fu Sbang. DegradationofC-terminal truncated αA-crystallins by the ubiquitin-proteasome pathway [J]. InvestOphthalmol Vis Sci,2007,48(9):4200-4208.
    [24]Pereira P, Shang F, Girao H, Taylor A. Lens fibers have a fully functionalubiquitin-proteasome pathway [J].Exp Eye Res,2003,76:623-631.
    [25]Girao H, Pereira P, Taylor A, Shang F. Subcellular redistribution of components of theubiquitin-proteasome pathway during lens differentiation and maturation [J]. InvestOphthalmol Vis Sci,2005,46:1386-1392.
    [26]Dudek EJ, Shang F, Valverde P, Liu Q, Hobbs M, Taylor A. Seletivity of the ubiquitinpathway for oxidatively modified proteins: relevance to protein precipitation diseases [J].Faseb J,2005,19:1707-1709.
    [27]Marques C, Pereira P, Taylor A, Liang JN, Reddy VN, Szweda LI, Shang F.Ubiquitin-dependent lysosomal degradation of the HNE-modified proteins in lensepithelial cells [J]. Faseb J,2004,18:1424-1426.
    [28]Zetterberg M, Zhang X, Taylor A, Liu B, Liang JJ, Shang F. Glutathiolation enhancesthe degradation of γC crystallin in lens and reticulocyte lysates, partially via theubiquitin-proteasome pathway [J].Invest Ophthalmol Vis Sci,2006,47:3467-3473.
    [29]Tsirigotis M, Zhang M, Chiu RK, Wouters BG, Gray DA. Sensitivity of mammaliancells expressing mutant ubiquitin to protein damaging agents [J]. Biol Chem,2001,11:11-15.
    [30]Zetterberg M, Petersen A, Sjostrand J, Karlsson J. Proteasome activity in human lensnuclei and correlation with age, gender and severity of cataract [J]. Curr Eye Res,2003,27:45-53.
    [31]Zhou X, Zhou J, Fernandes AF, Sparrow JR, Pereira P, Taylor A, Shang F. Theproteasome is a target of oxidative damage in cultured human retina pigment epithelialcells [J]. Invest Ophthalmol Vis Sci,2008,49:3622-3630.
    [32]Azuma M, David LL, Shearer TR. Cysteine protease inhibitor e64reduces the rate offormation of selenite cataract in the whole animal [J]. Curr Eye Res,1991,10:657-666.
    [33]Azuma M, Fukiage C, David LL, Shearer TR. Activation of calpain lens: a neview andproposed mechanism [J]. Exp Eye Res,1997,64:529-538.
    [34]Qian W, Shichi H. Cataract formation by a semiquinone metabolite of acetaminophenin mice: possible involvement of ca(2+) and calpain activation [J]. Exp Eye Res,2000,71:567-574.
    [35]Nakamura Y, Fukiage C, Shih M. Contribution of calpain lp82-induced proteolysis toexperimental cataractogenesis in mice [J].Invest Ophthalmol Vis Sci,2000,41:1460-1466.
    [36]David LL, Dickey BM, Shearer TR. Origin of urea soluble protein in the selenitecataract: role of β-crystallin proteolysis and caloain ii.[J].Invest Ophthalmol Vis Sci,1987,28:1148-1156.
    [37]Yoshida H, Murachi T, Tsukahara I. Degradation of actin and vimentin by calpain II, aca2+-dependent cysteine proteinase, in bovine lens [J].FEBS Lett,1984,170:259-262.
    [38]Shih M, David LL, Lampi KJ. Proteolysis by m-calpain enhances in vitro lightscattering by crystallins from human and bovine lenses [J].Curr Eye Res,2001,22:458-469.
    [39]Kelley MJ, David LL, Iwasaki N, Wright J, Shearer TR. A-crystallin chaperoneactivity is reduced by calpain II in vitro and in selenite cataract [J].Biol Chem,1993,268:18844-18849.
    [40]Pereira P, Shang F, Girao H, Taylor A. Lens fibers have a fully functionalubiquitin-proteasome pathway [J]. Exp Eye Res,2003,76:623-631.
    [1] CHEN Xu,YUAN Fei.Comparison of visual acuity after array IOLs and1CU IOLsimplantation [J]. Clinical medical journal of China,2005,12(6):1089-1090.
    [2] Marian S. Macsai, MD, Lissa Padnick-Silver.Visual outcomes after accommodatingintraocular lenses implantation [J]. Cataract refract surg,2006,32:628-633.
    [3] Cumming JS, Slade SG, Chayet A. Clinical evaluation of the model AT-45siliconeaccommodating intraocular lenses; results of feasibility andthe initial phase of a Food andDrug Administration clinical trial; theAT-45Study Group [M]. Ophthalmology,2001,108:2005-2009.
    [4]陆勤康,杨亚波,王惠云.可调节人工晶状体眼早期视觉质量的临床研究[J].浙江中医学院学报,2005,29(5)11-17.
    [5] Alio′JL,Tavolato M,De la Hoz F. Near vision restoration with refractive lensesexchange and pseudoaccommodating and multifocal refractive and diffractive intraocularlenses; comparative clinical study [J]. Cataract Refract Surg,2004,30:2494-2503.
    [6] Hoffman RS, Fine IH, Packer M. Refractive lenses exchange as a refractive surgerymodality [M]. Ophthalmol,2004,15:22-28.
    [7] Cumming JS, Slade SG, Chayet A. Clinical evaluation of the model AT-45siliconeaccommodating intraocular lenses; results of feasibility and the initial phase of a Food andDrug Administration clinical trial; the AT-45Study Group.[M]Ophthalmology,2001,108:2005-2009.
    [8] Stachs O, Schneider H, Stave J, Guthoff R. Pote+-ntially accommodating intraocularlenses-an in vitro and in vivo study using threedimensionalhigh-frequency ultrasound [J].Refract surg,2005,21:37-45.
    [9] Marchini G, Pedrotti E, Sartori P, Tosi R. Ultrasound biomicroscopic changes duringaccommodation in eyes with accommodating intraocular lenses; pilot study and hypothesisfor the mechanism of accommodation[J]. Cataract refract surg,2004,30:2476-2482.
    [10]ZHU Si-quan, TAN Xu-hua, WANG Yang. Preliminary clinical study ofaccommodative intraocular lenses ICU [J]. Pract ophtalmol,2005,8(23):797-800.
    [11]ZHU Ya-nan,YAO Ke. Advances of accommodating intraocular lenses [J].Int RevOphthalmol,2009,33(5):323-327.
    [12]姚克[M]复杂病例白内障手术学,2004,255-256.
    [13]Missotten T, Verhamme T, Blanckaert J. Optical formula to predict outcomes afterimplantation of accommodating intraocular lenses [J].Cataract refract Surg,2004,30:2084-2087.
    [14]Alessio G, Boscia F. Capsular block syndrome after implantation of an accommodatingintraocular lenses [J]. Cataract refract surg,2008,34(4):703-706.
    [15]赵刚平.可调节人工晶状体的发展趋势[J].中华眼科,2009,2(23):279-281.
    [16]WANG Qin-mei. The clinical follow-up of Tetraflex [J]. Recent Advanves inOphthalmol,2008,23(4):321-322.
    [17]李筱荣.福来视拟调节人工晶状体临床应用的研究[J].中华眼科杂志,2006,2:128-129.
    [18]McLoed SD, Portney V, Ting A. A dual optic accommodating foldable lenses [J]. BrJ Ophthalmol,2003,87(9):1083-1085.
    [19]McDonald JP, Croft MA, Vinje E, Glasser A, Heatley GA, Kaufman P, Sarfarazi FM.Sarfarazi elliptical accommodating intraocular lenses (EAIOL) in rhesus monkey eyes invitro and in vivo [J]. Invest Ophthamol Vis Sci,2003,44:256-257.
    [20]Werner L, Pandey SK, Izak AM.Capsular bag opacification after experimentalimplantation of a new accommodating intraocular lenses in rabbit eyes [J]. Cataractrefract surg,2004,30:1114-1123.
    [21]ZHANG Bai-ke, ZHANG Feng-yan. Research progress of accommodative chamberintraocularlens [J].Clin Med,2007,27(10):84-85.
    [22]Menapace R, Findl O, Kriechbaum K, Leydolt-Koeppl CH. Accommodatingintraocular lenses: a critical review of present and future concepts [J]. Graefe’s Arch ClinExp Ophthalmol,2007,245(4):473-489.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700