助行康复机器人控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体步行是在神经系统和运动系统共同作用下达到的协调自主运动,是保证人类独立生活的必备条件。神经系统或运动系统出现问题,会导致人体行走障碍甚至失去步行能力,严重影响正常生活。脑血管病是神经系统最常见的疾病之一,现代研究证实,脑卒中患者神经功能损伤后,通过康复训练可使中枢神经系统完成结构重组和功能代偿,恢复肢体运动功能。人体运动系统会随着年龄的增大逐渐衰退,老年人将产生不同程度的运动机能障碍,需要提供腿部助力或身体支撑才能实现正常行走。助行康复机器人可以根据使用者的不同步行能力等级,对其提供相应的行走训练模式,实现助行康复训练的智能化,并为临床康复医生提供客观、准确的治疗和评价参数,保证训练的效率和强度。开发助行康复机器人,帮助偏瘫患者树立重新行走的信心,提高老年人独立生活的质量,具有重要的研究意义。
     本文是在国家高技术发展计划(863计划)项目:多功能助行康复机器人(2008AA040203)的资助下,针对如何利用助行康复机器人,帮助偏瘫、截瘫等肢体残疾患者及体弱老年人提供康复训练和助行服务的问题,在人体步态信息检测及分析、助行康复训练人机系统运动规划、机器人被动协调控制策略、机器人助力协调控制策略等方面进行了较深入的理论分析和实验研究。
     综述了国内外助行康复机器人及相关领域的研究现状,在对现有康复机器人的工作原理、机械结构、康复策略分析和比较的基础上,依据人体步行运动机理,提出了一种基于双曲柄机构实现行走步态控制的助行康复机器人机构方案,设计了机器人的控制方案。该机器人可针对使用者的不同步行能力等级提供相应的行走训练策略,帮助脑卒中患者重新获得步行功能,为体弱老年人提供行走助力。
     设计了人体步态信息测量系统,对正常人平地行走的步态信息进行了测量。研究了身体重心的前进速度与下肢关节角度、角速度的运动特征关系,建立了人体步态信息的数学模型。根据人体生理学运动信息,对双曲柄助行机构进行了尺寸优化;提出了一种适用于双曲柄助行机构的步态规划模型,实现了对支撑期和摆动期步态的合理控制。基于身体重心运动信息建立了移动单元速度规划模型,规划模型符合人体重心运动规律。利用MATLAB软件进行了仿真分析,验证了助行康复训练运动规划符合正常行走步态特征,机器人可以帮助使用者在不同步速下实现连续稳定的行走。
     基于运动规划模型对机器人系统进行了控制策略的研究。提出了一种助行康复机器人被动协调控制策略,用于对步行能力低于3级的使用者进行被动行走训练。分别对两个运动单元进行了伺服控制研究。利用动力学矩阵数学模型和拉格朗日方法分别建立了助行单元动力学模型、人体下肢动力学模型及人机系统动力学模型;设计了助行单元鲁棒控制器和移动单元交叉耦合鲁棒控制器;利用Lyapunov方法进行了控制系统的稳定性分析。对各运动单元的控制特性和机器人系统的协调控制特性进行了仿真研究。
     提出了一种机器人助力协调控制策略,用于对步行能力高于3级的使用者进行助力行走训练。分别对移动单元力伺服控制、减重单元力伺服控制及人机系统助力协调控制进行了研究。建立了移动单元动力学模型及人机系统动力学模型,通过分析系统特性设计了前馈–反馈复合控制器;针对两轮受力不均导致的移动单元转弯现象,设计了模糊控制器对驱动力矩进行调整,实现控制机器人整体的协调运动。设计了基于使用者的加速度进行恒质量减重的力闭环控制器,保证使用者助力行走过程中下肢承受动态载荷。进行了各运动单元力控制及机器人系统助力行走协调控制的仿真研究。
     研制了助行康复机器人实验样机,介绍了实验系统各部分的构成及功能。利用dSPACE平台进行了相关的实验研究,包括移动单元并行控制实验、移动单元交叉耦合控制实验、助行单元功能及鲁棒控制实验、机器人协调控制实验及真人使用实验。实验研究验证了机器人机构的合理性,控制系统的稳定性及各种控制策略的可行性,机器人可以对真人实现辅助行走训练功能。
Human walking is a coordination and voluntary movement in the control of nervoussystem and motor system. It is essential to ensure independent living conditions for mankind.Nervous system or motion system problems will lead to walking obstacles and even loss ofhuman walking ability, which seriously affects the normal life. Cerebrovascular disease is oneof the most common neurological diseases. Modern studies confirm that, throughrehabilitation training, stroke patients with neurological injury can complete the restructuringof the central nervous system and functional compensation, motion function can also restore.As the human motion system will gradually decline with increasing age, older people willhave different degrees of movement dysfunction, which needs body support or legspower-assisted to help achieve normal walking. Walking assistance rehabilitation robot canprovide appropriate training mode to users according to the users’ different levels of ability,which will realize the rehabilitation walking intelligent. The robot can also provide objective,accurate treatment and evaluation parameters for clinical rehabilitation physicians to ensurethe training efficiency and strength. The development of walking assistance rehabilitationrobot has important significance on helping stroke patients re-establish the confidence to walkand improving the quality of the elderly to live independently.
     The research work comes from a project funded by National High Technology Researchand Development Program (863Program), which is “Research on Multi-walkingrehabilitation robot (2008AA040203)”. The main objective is to provide rehabilitationtraining and walking services to hemiplegia, paraplegia physically disabled patients and frailelderly. The detailed theoretical analysis and experimental research are carried out includingthe detection and analysis of human gait, man-machine system rehabilitation motion planning,coordination control strategy of robot passive training and coordination control strategy ofrobot power-assisted training.
     Research status of walking assistance rehabilitation robot and related fields areoverviewed at home and abroad. Based on analyzing and comparing the existed rehabilitationrobots’ machines, working principles and control strategies, a kind of machine scheme ofwalking assistance rehabilitation robot is proposed and the robot’s control scheme is designed.The robot can provide appropriate walking training strategies to users according to theirwalking ability, and it can help stroke patients regain walking function and provide walkingpower to the frail elderly.
     Gait information measurement system is designed to measure the normal ground walkinggait information. The characteristics of the body gravity center’s speed, the lower limb joints’angle and angular velocity are analyzed. Mathematical model of human gait information is set up. The structure size optimization of walking assistance mechanism is finished according tohuman physiology motion information. A gait planning model is proposed for double-crankwalking assistance mechanism, which can control the stance phase and swing phase of gaitreasonably. A speed planning model of mobile platform is established based on the bodyweight movement information and the model is fit for the gravity of human body centermotion characteristics. The simulation analysis is carried out by using MATLAB software.The results show that motion planning fits for characteristics the normal walking gait, and therobot can help the person to achieve a continuous and steady walking.
     Based on the mathematical model of human gait information, the passive coordinationcontrol strategy is proposed for people whose walking ability is under the3level. Theclosed-loop control strategies of the two units were studied. Dynamic models of walkingassistance unit, human lower limbs and man-machine are established using dynamic matrixmathematical model and Lagrange method. Walking assistance unit robust controller andmobile platform cross-coupling synchronization controller are designed. Using Lyapunovmethod, stability analysis of robot control system is made. The simulation study of each unit’scharacteristics and coordination of robot system are finished.
     The power-assisted coordination control strategy is proposed for people whose walkingability is over the3level. The force closed-loop control strategies of mobile platform, thebody support mechanism, and man-machine system are studied. Dynamic models of mobileplatform and man-machine system are established. Feedforward and feedback controller isdesigned according to the analysis of the system’s characteristics. Fuzzy controller is designedfor phenomenon of the mobile platform turn which is caused by the uneven force of the twowheels. Constant quality body weight supported force controller based on the user’sacceleration is proposed, which will help the user bear the mutative loads. The fuzzycontroller can realize the coordinated control of the robot. Simulation of each unit forcecontrol and robot power-assisted coordinated control are researched.
     Experimental prototype of walking assistance rehabilitation robot is developed. Thecomponents and function of experimental system are described. Base on the dSPACEreal-time system, experimental study is completed which mainly include the mobile platformparallel control, mobile platform cross-coupling synchronization control, the walkingassistance unit function and robust control, the robot coordination control, the real use ofexperiment and so on. The experimental research verifies the rationality of walking assistancerobot model, the stability of robot control system and the feasibility of various controlstrategies. The robot can achieve the real walking training fucntion.
引文
[1]许志生,刘元标,李建华.脑卒中后偏瘫患者步行能力及其影响因素分析.中华物理医学与康复杂志.2006,28(7):490-493页
    [2]王桂茂,齐瑞,严隽陶.中风偏瘫步态的生物力学及其运动学特征分析.中国组织工程研究与临床康复.2007,11(40):8169-8172页
    [3] http://baike.baidu.com/view/762889.htm
    [4]杨雅琴,张通.正常步态和偏瘫步态的特点及对比.中国康复理论与实践.2003,9(10):608-609页
    [5]何静杰.脑卒中偏瘫的社区康复.中国康复理论与实践.2002,8:67-69页
    [6]徐国崇,李俐俐.偏瘫康复的理论与实践——偏瘫康复的理论基础.现代康复.2001,5(6),10-16页
    [7]戴红.运用促进技术对中枢性瘫痪进行训练的原理和处理原则.中国康复医学杂志.1994,9(6):273-277页
    [8]孟军.神经促通技术对老年急性脑卒中下肢功能的影响.中国实用医药.2010,5(15):248-249页
    [9]孟兆祥,李厥宝,倪朝民.运动疗法在脑卒中偏瘫康复中的应用.中国临床康复.2003,7(7):1159页
    [10]张叶蓁.老年人助行产品无障碍设计.江南大学硕士学位论文.2007:11-13页
    [11]赵芳,周兴龙.老年人站立及行走稳定性的生物力学研究.北京体育大学学报.2003,26(2):188-191页
    [12]赵芳,周兴龙,张振清,刘学贞等.中老年人步态指标与衰老关系的研究.体育科学.1998,18(6):78-81页
    [13]伍勰,陆爱云,庞军.健康老年人常速行走的步态分析.上海体育学院学报.2000,24(2):52-55,64页
    [14] http://news.sina.com.cn/c/2006-02-23/16388285179s.shtml
    [15]杜巨豹,宋为群,王茂斌.减重步行训练在卒中后偏瘫康复中的应用.中国脑血管病杂志.2006,3(8):361-364页
    [16]龚燕菲,周萧,蔡涵,孙晓敏.双侧肢体功能训练对脑卒中偏瘫康复疗效的影响.2008年浙江省物理医学与康复学术年会暨中枢神经功能损伤康复新进展学习班论文汇编.2008:80-82页
    [17] Da Cunha IT Jr, Lim PA, Qureshy H. Gait outcomes after acute stroke rehabilitationwith supported treadmill ambulation training: A randomized controlled pilot study.Archives of Physical Medicine and Rehabilitation.2002,83(9):1258-1265P
    [18] Hebert JS. Ambulatory KAFOs: A Physiatry Perspective. AmAca OrthocistsProstbctists.2006,18(3):169-174P
    [19]叶晓琴,季林红,谢雁鸣等.康复训练机器人与传统中医康复方法相结合的探讨.中国康复医学杂志.2010,25(8):781-784页
    [20] http://world.honda.com/news/2009/c090414Walking-Assist-Devices/
    [21] http://world.honda.com/news/2010/c100512Bodyweight-Support-Assist-Device/index.html
    [22] http://corporate.honda.com/innovation/walk-assist
    [23] Hiroaki Kawamoto, Tomohiro Hayashi, Takeru Sakurai, et al. Development of SingleLeg Version of HAL for Hemiplegia.31st Annual International Conference of the IEEEEMBS Minneapolis, Minnesota, USA,2009. United States: IEEE Computer Society,5038-5043P
    [24] Atsushi Tsukahara, Yasuhisa Hasegawa, Yoshiyuki Sankai. Standing-Up MotionSupport for Paraplegic Patient with Robot Suit HAL.2009IEEE11th InternationalConference on Rehabilitation Robotics, Kyoto International Conference Center, Japan,2009. United States: IEEE Computer Society,211-217P
    [25] Kawamota H, Kanbe S, Sankai Y. Power Assist Method for HAL-3EstimatingOperator’s Intention Based on Motion Information. Proceedings of the2003IEEEInternational Workshop on Robot and Human Interactive Communication, Millbrace,California, USA,2003. United States: Inst. of Elec. and Elec. Eng.,67-72P
    [26] Kawamota H, Sankai Y. Power Assist Method Based on Phase Sequence Driven byInteraction between Human and Robot Suit. Proceedings of the2004IEEE InternationalWorkshop on Robot and Human Interactive Communication, Kurashiki, Okayama,Japan,2004. United States: Inst. of Elec. and Elec. Eng.,491-496P
    [27] Takahiko Nakamura, Kazunari Saito, ZhiDong Wang, et al. Control of Model-basedWearable Anti-Gravity Muscles Support System for Standing up Motion. Proceedingsof the2005IEEE/ASME International Conference on Advanced IntelligentMechatronics, Monterey, California, USA,2005. United States: Inst. of Elec. and Elec.Eng.,564-569P
    [28] Takahikio Nakamura, Kazunari Saito, Kazuhiro Kosuge. Control of Wearable WalkingSupport System Based on Human-Model and GRF. Proceedings of the2005IEEEInternational Conference on Robotics and Automation, Barcelona, Spain,2005. UnitedStates: Inst. of Elec. and Elec. Eng.,4394-4399P
    [29] Takahiko Nakamura, Kazunari Saito, ZhiDong Wang, et al. Realizing a Posture-basedWearable Antigravity Muscles Support System for Lower Extremities. Proceedings ofthe2005IEEE9th International Conference on Rehabilitation Robotics, Chicago, IL,USA,2005. United United States: Inst. of Elec. and Elec. Eng.,273-276P
    [30] Hiroshi Kobayashi, Takeo Karato, Toshiaki Tsuji. Development of an Active Walker asa New Orthosis. Proceedings of the2007IEEE International Conference onMechatronics and Automation, Harbin, China,2007. United States: Inst. of Elec. andElec. Eng. Computer Society,186-191P
    [31] Hiroshi Kobayashi, Takeo Karato, So Nakayama. Emergence of Gait by an ActiveWalker. Proceedings of the2007IEEE International Conference on Robotics andBiomimetics, Sanya, China,2007. United States: Inst. of Elec. and Elec. Eng. ComputerSociety,1035-1040P
    [32] Takao Watanabe, Eiichi Ohki, Takeshi Ando, et al. Fundamental study of force controlmethod for pelvis-supporting body weight support system. Proceedings of the2008IEEE International Conference on Robotics and Biomimetics, Bangkok, Thailand,2009.United States: IEEE Computer Society,1403-1408P
    [33] Takao Watanabe, Eiichi Ohki, Yo Kobayashi, et al. Leg-dependent Force Control forBody Weight Support by Gait Cycle Estimation from Pelvic Movement.2010IEEEInternational Conference on Robotics and Automation, Anchorage, Alaska, USA,2010.United States: Institute of Electrical and Electronics Engineers Inc.,2235-2240P
    [34] Hirokazu Yusa, Eiichirou Tanaka, Tadaaki Ikehara, et al. Development of a WalkingAssistance Apparatus using a Spatial Parallel Link Mechanism and Evaluation ofMuscle Activity.19th IEEE International Symposium on Robot and Human InteractiveCommunication, Principe di Piemonte-Viareggio, Italy,2010. United States: Institute ofElectrical and Electronics Engineers Inc.,151-158P
    [35] Zoss A, Kazerooni H, Chu A. On the mechanical design of the Berkeley LowerExtremity Exoskeleton (BLEEX).2005IEEE/RSJ International Conference onIntelligent Robots and Systems, Edmonton, Alberta, Canada,2005. United States: IEEEComputer Society,3465–3472P
    [36] Chu A, Kazerooni H, Zoss A. On the Biomimetic Design of the Berkeley LowerExtremity Exoskeleton (BLEEX). Proceedings of the2005IEEE InternationalConference on Robotics and Automation, Barcelona, Spain,2005. United States: Inst.of Elec. and Elec. Eng.,4345-4352P
    [37] Kazerooni H, Racine J L, et al. On the Control of the Berkeley Lower ExtremityExoskeleton (BLEEX). Proceedings of the2005IEEE International Conference onRobotics and Automation, Barcelona, Spain,2005. United States: Inst. of Elec. and Elec.Eng.,4353-4360P
    [38] http://www.mittrchinese.com/single.php?p=2984
    [39] Sai K. Banala, Sunil K. Agrawal, Abbas FattahA, et al. Gravity Balancing Leg Orthosisfor Robotic. Rehabilitation Proceedings of2004IEEE International Conference onRobotics&Automation, New Orleans, La,2004. United States: Institute of Electricaland Electronics Engineers Inc.,2474-2479P
    [40] Sunil K. Agrawal, Sai K. Banala, Abbas Fattah, et al. Assessment of Motion of a SwingLeg and Gait Rehabilitation With a Gravity Balancing Exoskeleton. IEEE Transactionson Neural Systems and Rehabilitation Engineering.2007,15(3):410-420P
    [41] Vijaya Krishnamoorthy, Wei-Li Hsu, Trisha M. Kesar, et al. Gait Training After Stroke:A Pilot Study Combining a Gravity-Balanced Orthosis, Functional ElectricalStimulation, and Visual Feedback. Journal of neurologic physical therapy.2008,32:192-202P
    [42] Sai K. Banala, Seok Hun Kim, Sunil K. Agrawal, et al. Robot Assisted Gait TrainingWith Active Leg Exoskeleton. Proceedings of the2nd Biennial IEEE/RAS-EMBSInternational Conference on Biomedical Robotics and Biomechatronics Scottsdale, AZ,USA,2008. United States: Inst. of Elec. and Elec. Eng. Computer Society,653-658P
    [43] Sai K. Banala, Sunil K. Agrawal, Seok Hun Kim, et al. Novel Gait Adaptation andNeuromotor Training Results Using an Active Leg Exoskeleton. IEEE/ASMETransactions on Mechatronics.2010,15(2):216-225P
    [44] Artemiadis, P.K., H.I. Krebs. On the Control of the MIT-Skywalker.2010AnnualInternational Conference of the IEEE Engineering in Medicine and Biology Society,Buenos Aires, Argentina,2010. United States: IEEE Computer Society,1287-1291P
    [45] Panagiotis K. Artemiadis, Hermano Igo Krebs. Impedance-based control of theMIT-Skywalker. ASME Dynamic Systems and Control Conference, Cambridge, MA,United States,2010. United States: American Society of Mechanical Engineers,389-396P
    [46] G Colombo, M Wirz1, V Dietz. Driven gait orthosis for improvement of locomotortraining in paraplegic patients.2001International Medical Society of Paraplegia.2001,39:252-255P
    [47] Sa so Jezernik, Gery Colombo, Manfred Morari. Automatic Gait-Pattern AdaptationAlgorithms for Rehabilitation with a4-DOF Robotic Orthosis. IEEE Transactions onRobotics and Automation.2004,20(3):574-582P
    [48] Michael Bernhardt, Peter Lutz, Martin Frey, et al. Physiological Treadmill Trainingwith the8-DOF Rehabilitation Robot LOKOMAT. BMT2005, Jahrestagung derdeutschen Gesellschaft fǚr biomedizinische Technik, Nǚrnberg.2005:790-791P
    [49] Valentina Magagnin, Alberto Porta, Laura Fusini, et al. Evaluation of the autonomicresponse in healthy subjects during treadmill training with assistance of a robot-drivengait orthosis. Gait&Posture.2009,9:504–508P
    [50] S.S. Galen, C.J. Clarke, D.B. Allan, et al. A portable gait assessment tool to recordtemporal gait parameters in SCI. Medical Engineering&Physics.2011,33:626–632P
    [51] Mohamed Bouri, Yves Stauffer, Carl Schmitt, et al. The WalkTrainerTM: A RoboticSystem for Walking Rehabilitation. Proceedings of the2006IEEE InternationalConference on Robotics and Biomimetics, Kunming, China,2006. United States: Inst.of Elec. and Elec. Eng. Computer Society,1616-1621P
    [52] Y. Stauffer, Y. Allemand, M. Bouri, J. Fournier, et al. Pelvic motion measurementduring over ground walking, analysis and implementation on the WalkTrainerreeducation device.2008IEEE/RSJ International Conference on Intelligent Robots andSystems, Acropolis Convention Center Nice, France,2008. United States: Inst. of Elec.and Elec. Eng. Computer Society,2362-2367P
    [53] Yves Allemand, Yves Stauffer, Reymond Clavel, et al. Design of a new lower extremityorthosis for overground gait training with the WalkTrainer.2009IEEE11thInternational Conference on Rehabilitation Robotics, Kyoto International ConferenceCenter, Japan,2009. United States: IEEE Computer Society,550-555P
    [54] Kyoungchul Kong, Doyoung Jeon. Design and Control of an Exoskeleton for theElderly and Patients. IEEE/ASME Transactions on Mechatronics.2006,11(4):428-432P
    [55] Kyoungchul Kong, Doyoung Jeon. Fuzzy Control of a New Tendon-Driven ExoskeletalPower Assistive Device. Proceedings of the2005IEEE/ASME InternationalConference on Advanced Intelligent Mechatronics Monterey, California, USA,2005.United States: Inst. of Elec. and Elec. Eng. Computer Society,146-151P
    [56] Kyoungchul Kong, Hyosang Moon, Beomsoo Hwang, et al. Robotic RehabilitationTreatments: Realization of Aquatic Therapy Effects in Exoskeleton Systems.2009IEEE International Conference on Robotics and Automation, Kobe, Japan,2009. UnitedStates: Inst. of Elec. and Elec. Eng. Computer Society,1923-1928P
    [57] Kyoungchul Kong, Hyosang Moon, Doyoung Jeon, et al. Control of an Exoskeleton forRealization of Aquatic Therapy Effects. IEEE/ASME Transactions on Mechatronics.2010,15(2):191-200P
    [58] Bondhan Novandy, Christiand, Jung-Won Yoon. Development of Gait RehabilitationRobot Driven by Upper Limb Motion. ICCAS2007International Conference onControl, Automation and Systems COEX, Seoul, Korea,2007. United States: Inst. ofElec. and Elec. Eng. Computer Society,2383-2388P
    [59] Bondhan Novandy, Jungwon Yoon, Auralius Manurung. Interaction Control of aProgrammable Footpad-Type Gait Rehabilitation Robot for Active Walking on VariousTerrains.2009IEEE11th International Conference on Rehabilitation Robotics, KyotoInternational Conference Center, Japan,2009. United States: IEEE Computer Society,372-377P
    [60] Jungwon Yoon, Bondhan Novandy, Chul-Ho Yoon, et al. A6-DOF Gait RehabilitationRobot With Upper and Lower Limb Connections That Allows Walking VelocityUpdates on Various Terrains. IEEE/ASME Transactions on Mechatronics.2010,15(2):201-215P
    [61] J.F. Veneman, R. Ekkelenkamp, R. Kruidhof, et al. Design of a Series Elastic andBowdencable based actuation system for use as torque actuator in exoskeleton typetraining. Proceedings of the2005IEEE9th International Conference on RehabilitationRobotics, Chicago, IL, USA,2005. United States: Institute of Electrical and ElectronicsEngineers Computer Society,496-499P
    [62] E. H.F. Van Asseldonk, R. Ekkelenkamp, Jan F. Veneman, et al. Selective control of asubtask of walking in a robotic gait trainer (LOPES). Proceedings of the2007IEEE10th International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands,2007. United States: Inst. of Elec. and Elec. Eng. Computer Society,841-848P
    [63] Herman van der Kooij, Bram Koopman, Edwin H.F. van Asseldonk. Body weightsupport by virtual model control of an impedance controlled exoskeleton (LOPES) forgait training. Proceedings of the30th Annual International Conference of the IEEEEngineering in Medicine and Biology Society, Vancouver, British Columbia, Canada,2008. United States: Inst. of Elec. and Elec. Eng. Computer Society,1969-1972P
    [64] Edwin H. F. van Asseldonk, Jan F. Veneman, Ralf Ekkelenkamp, et al. The Effects onKinematics and Muscle Activity of Walking in a Robotic Gait Trainer DuringZero-Force Control. IEEE Transactions on Neural Systems and RehabilitaitonEngineering.2008,16(4):360-370P
    [65] Edwin H. F. van Asseldonk, Bram Koopman, Jaap H. Buurke, et al. Selective andadaptive robotic support of foot clearance for training stroke survivors with stiff kneegait.2009IEEE11th International Conference on Rehabilitation Robotics, KyotoInternational Conference Center, Japan,2009. United States: IEEE Computer Society,602-607P
    [66] Terris Yakimovich, Jonathan Kofman, Edward Lemaire. Design, Construction andEvaluation of an Electromechanical Stance-Control Knee-Ankle-Foot Orthosis.Proceedings of the2005IEEE Engineering in Medicine and Biology27th AnnualConference, Shanghai, China,2005. United States: Institute of Electrical andElectronics Engineers Inc.,6934-6941P
    [67] Terris Yakimovich, Jonathan Kofman, Edward D. Lemaire. Design and Evaluation of aStance-Control Knee-Ankle-Foot Orthosis Knee Joint. IEEE Transactions on NeuralSystems and Rehabilitaiton Engineering.2006,14(3):361-369P
    [68] A. Cullell, J.C. Moreno, E. Rocon, A. Forner-Cordero,et al. Biologically based designof an actuator system for a knee–ankle–foot orthosis. Mechanism and Machine Theory.2009,44(3):860-872P
    [69] J.L. Pons, J.C. Moreno, F.J. Brunetti, et al. Lower-Limb Wearable Exoskeleton.Rehabilitation Robotics.2007:471-498P
    [70] http://www.mossrehab.com/
    [71] http://www.robot360.cn/portal.php?mod=view&aid=1209
    [72] Sébastien Krut, Michel Benoit, Etienne Dombre, et al. MoonWalker, a Lower LimbExoskeleton able to Sustain Bodyweight using a Passive Force Balancer.2010IEEEInternational Conference on Robotics and Automation, Anchorage, Alaska, USA,2010.United States: Institute of Electrical and Electronics Engineers Inc.,2215-2220P
    [73] http://news.163.com/10/0418/15/64IGR0U700014AEE.html
    [74] Feng Chen, Yong Yu, Yunjian Ge, et al. Basic Research on Power Assist Walking LegUsing Force/Velocity Control Strategies. Proceedings of the2006IEEE InternationalConference on Information Acquisition, Weihai, Shandong, China,2006. United States:Inst. of Elec. and Elec. Eng. Computer Society,701-706P
    [75]陈峰,余永,葛运建.基于接触力信息的可穿戴型下肢助力机器人传感系统研究.中国科学技术大学学报,2008,38(12):1432-1438页
    [76]陈峰.可穿戴型助力机器人技术研究.中国科学技术大学博士学位论文.2007:82页
    [77]张杰.脑卒中瘫痪下肢外骨骼康复机器人的研究.浙江大学硕士学位论文,2007:31-39页
    [78]董亦鸣.下肢康复医疗外骨骼训练系统研究与初步实现.浙江大学硕士学位论文,2008:27-30页
    [79] Zhang Jia-fan, Dong Yi-ming, Yang Can-jun, et al.5-Link model based gait trajectoryadaption control strategies of the gait rehabilitation exoskeleton for post-stroke patients.Mechatronics.2010,20(3):368-376P
    [80]张佳帆.基于柔性外骨骼人机智能系统基础理论及应用技术研究.浙江大学博士学位论文,2009:47,131-148页
    [81] Zhiguo Feng, Jinwu Qian, Yanan Zhang, et al. Biomechanical Design of the PoweredGait Orthosis. Proceedings of the2007IEEE International Conference on Robotics andBiomimetics, Sanya, China,2007. United States: Inst. of Elec. and Elec. Eng. ComputerSociety,2008:1698-1702P
    [82] Qiyuan Wang, Jinwu Qian, Yanan Zhang, et al. Gait Trajectory Planning andSimulation for the Powered Gait Orthosis. Proceedings of the2007IEEE InternationalConference on Robotics and Biomimetics, Sanya, China,2007. United States: Inst. ofElec. and Elec. Eng. Computer Society,2008:1693-1697P
    [83]王企远,钱晋武,冯治国等.下肢步态矫形器的生理学步态规划与试验.中国机械工程.2009,20(8):928-932页
    [84]曹辰.人体下肢步态矫形器设计与装置研究.上海大学硕士学位论文.2008,55-66页
    [85] Liuling Xu, Linyong Shen, Jinwu Qian et al. Measuring on Coupling Force betweenLower Extremity Exoskeleton and Subject during Rehabilitation Training.2011FourthInternational Conference on Intelligent Computation Technology and Automation,Shenzhen, China,2011. United States: IEEE Computer Society,822-825P
    [86]归丽华,杨智勇,顾文锦等.能量辅助骨骼服NAEIES的开发.海军航空工程学院学报.2007,22(4):467-470页
    [87]杨智勇,归丽华,杨秀霞等.骨骼服直接力控制方法研究与仿真.系统仿真学报.2009,21(24):7868-7872页
    [88]杨智勇,归丽华,杨秀霞等.骨骼服虚拟力控制方法研究.机器人.2009,31(4):365-369页
    [89]杨智勇,归丽华,杨秀霞等.基于位置内环的骨骼服力控制方法.中南大学学报(自然科学版).2010,41(1):225-230页
    [90]杨智勇,曹恒,顾文锦等.基于跟踪微分器的骨骼服阻抗控制方法.华东理工大学学报.2009,35(6):926-931页
    [91]胡伟佳.被动式步态康复训练器的设计与研究.哈尔滨工程大学硕士学位论文.2007:17页
    [92] Zhang lixun, Wang lingjun, Wang fengliang, et al. Gait simulaition of new robot forhuman walking on sand. Cent.South Univ. Technol.2009,16(6):971-975P
    [93]王令军.康复机器人样机研制及步态控制研究.哈尔滨工程大学博士学位论文.2010:15-16页
    [94]吕广明,孙立宁,彭龙刚.康复机器人技术发展现状及关键技术分析,哈尔滨工业大学学报,2004,36(9):1224-1227,1231页
    [95]张西正,侍才洪,李瑞欣等.医疗机器人的研究与进展.中国医学装备.2009,6(1):7-12页
    [96]刘永斌.步态分析及其在下肢假肢装配中应用.康复工程学.中国康复研究中心内部教材.1994
    [97]李凯.正常青年人行走步态的下肢关节动力学研究.大连理工大学硕士论文.2009:1页
    [98] http://wenku.baidu.com/view/5d5c660303d8ce2f006623d3.html
    [99]顾晓松.人体解剖学.北京:科学出版社,2009:18页
    [100]郑秀瑗等.现代运动生物力学.北京:国防工业出版社,2002:157-159,366-368页
    [101]赵凌燕.人体步态模型实验研究.哈尔滨工程大学博士学位论文.2008:52,60-62页
    [102] Adam B. Zoss, H. Kazerooni, Andrew Chu. Biomechanical Design of the BerkeleyLower Extremity Exoskeleton (BLEEX). IEEE/ASME Transactions on Mechatronics.2006,11(2):128-138P
    [103]欧阳升,金维强,关文标.强制性运动疗法结合减重步行训练对卒中后偏瘫康复的效果.甘肃医药.2010,29(2),197-199页
    [104]洪炳镕,蔡则苏,唐好选.虚拟现实及其应用.北京:国防工业出版社,2005:124页
    [105] Landis E. Micro-injection studies of capillary blood pressure in human skin Heart.1930,15:209-228P
    [106] Krouskop T A, Williams R, Krebs M, et al. Effectiveness of mattress overlays inreducing interface pressures during recumbency. Joural of Rehabilitation Research andDevelopment.1985,2(3):7-10P
    [107] Goonetilleke R S, Eng T. Contact area effects on disconmfort. Proceedings of the38thHuman Factors and Ergonomics Society Conference.1994,688-690P
    [108]方红.平衡训练对脑卒中偏瘫患者步态及行走能力的影响.浙江中医药大学学报.2010,34(4):565-566页
    [109]梁少琼,彭先胜,杨建华.两阶段康复训练方法促进脑卒中偏瘫患者步行能力的恢复.中国临床康复.2005,9(27):8-9页
    [110]黄晓琳,王平,王伟等.脑卒中偏瘫患者减重平板步行训练的临床应用研究.中华物理医学与康复杂志.2003,25(9):544-547页
    [111]张立勋,王克义,张今瑜等.基于绳索牵引的骨盆运动并联康复机器人的可控性研究.哈尔滨工程大学学报.2007,28(7):790-794页
    [112] Liepert G, Bauder H, Wolfgan HR, et al. Treatment-Induced Cortical ReorganizationAfter Stroke in Humans. Stroke.2000,31:1210-1216P
    [113]毕胜,瓮长水,秦茵等.强制性使用运动疗法在脑卒中和脑外伤上肢康复中的应用中国康复理论与实践.2003,9(3):144-145页
    [114]徐国政.上肢康复机器人自适应控制理论与实验研究.东南大学博士学位论文.2010:14页
    [115]杨年峰.人体运动协调规律及其参数化描述.清华大学博士论文.2001:24-24页
    [116]尹君茂.穿戴式下肢外骨骼机构分析与设计.北京工业大学硕士论文.2010:16页
    [117]范金城,梅长林.数据分析.北京:科学出版社,2002:94页
    [118]华大年,华志宏.连杆机构设计与应用创新.北京:机械工业出版社,2008:115-117,255-256页
    [119]曲秀全,谭立军,方勃.平面连杆机构动力学矩阵数学模型的建立.哈尔滨工业大学学报,2008,40(11):1746-1750页
    [120]申铁龙.机器人鲁棒控制基础.北京:清华大学出版社,2000:126,176-183页
    [121] http://www.sport.gov.cn/n16/n1077/n1467/n1587/616932.html
    [122] Koren, Y. Cross-coupled biaxial computer controls for manufacturing systems. ASMEJournal of Dyanmic Systems, Measurement, and Control.1980,102:265-272P
    [123]孙天赦.老年人常速与快速行走足底压力分布特征分析.东北师范大学硕士学位论文.2007:2页
    [124]陈亦云,刘梅.“主动渐进性拮抗累积锻炼法”在社区偏瘫康复中的疗效分析.中国全科医学.2001,4(3):227-229页
    [125]周序洋,钱艺柏.地面工程的防滑及验收.建筑施工.2010,32(11):1152-1154页
    [126]顾文锦,刘建成,李世明,杨秀霞.人体步态的动力学建模与仿真.海军航空工程学院学报.2008,23(2):149-152页
    [127]崔华阳.电动舵机动态加载仿真控制方法研究.西北工业大学硕士论文.2006:17-19页
    [128]王正林,郭阳宽.过程控制与Simulink应用.北京:电子工业出版社,2006:57,130-132页
    [129]黄晓琳,王平,王伟等.脑卒中偏瘫患者减重平板步行训练的临床应用研究.中华物理医学与康复杂志.2003,25(9):544-547页
    [130]霍速,纪树荣.减重步行训练的临床应用.中国康复理论和实践.2003,9(2):115-118页
    [131]张立勋,董玉红.机电系统仿真与设计.哈尔滨:哈尔滨工程大学出版社,2006:132,237页
    [132]柏江.助行机器人整机试验台结构设计及研究.哈尔滨工程大学硕士学位论文:2011:23页
    [133]刘攀.绳索牵引机器人及虚拟重力系统研究.哈尔滨工程大学博士学位论文.2010:102页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700