落叶松根系生长计算模型及模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
落叶松根系为树形分枝结构,主要由初生根、次生根、初生根一次侧根、次生根一次侧根组成。各级根系之间具有明显的自相似性,本文基于L-系统理论构建落叶松根系生长模拟模型,表达落叶松根系构型的拓扑结构。根据根系生长的生理功能,改进了根系的向水性模型和向地性模型,探讨了基于人工生命方法的约束条件对落叶松根系形态结构以及生理功能的影响,将落叶松根系形态结构模型和生理功能模型相结合。实现了落叶松根系生长的动态模拟。
     落叶松根系属直根系,由四种不同类型的根组成,即主根、次生根、侧根和不定根。尽管微观上具有明显的相似性,但由于根系在生长过程中受土壤结构、湿度等各种因素的影响,使得根系的延伸过程表现出随机波动的不规则形态。文中以落中松生理生态理论为依据,建立了描述落叶松根系生长参数的数据结构,使得落叶松根系的动态生长模型和其形态发生模型相融合,并应用随机生成技术,抽象出落叶松根系形态及生长规律的规则描述,在数据结构中引入生长控制参数以实现动态可控性。设计了模型的解法,实现了便于计算机模拟的数值算法。设计开发了基于B/S结构的模拟软件,实现了落叶松根系生长及水分需求的计算机模拟。
     由于自然植物的生存、进化、生长受环境影响,表现为区域性和时空变异性。对模型的优化,引入了分种群的竞争模式,采用基于种群分类的进化算法。落叶松根系生长过程中会出现异常—即遗传算法的选择、变异和进化,将遗传算法的操作加入在分形过程中,对形态模型中L—系统所涉及到的参数通过遗传算法进行重新设计,可生成结构有不同变化的根系形态。对功能模型采用浮点数编码代替二进制编码,将性质相近的个体作为一个种群,初期进化搜索仅限种群内部,使个体进化不受其他种群的影响,每个种群均具有产生优秀个体的机会;进化计算几代后,进行所有种群个体的相互竞争和进化,促使较差个体在种群竞争中逐渐消亡,充分保持群体的多样性,有效地克服了过早收敛和局限于局部最优解的问题。对所用的进化算子进行了详细的描述,鉴于变异操作在浮点数编码算法中的重要性,本文采用自适应调整变异算子,根据个体的适应值调整变异的步伐,使较好的个体在较小的局部区域内小步伐地变异搜索,增加局部寻优的精细度,较差的个体则加大变异幅度,使之尽快跳出较差的区域,进入较有希望的区域。
The larch root which is composed of the primary root,the secondary root,the lateral root of primary root,and the lateral root of secondary root,is a branching tree structure.As all the levels of the roots have significantly self-similarity,this article is mainly to build a simulation model root growth of larch based on the L-system theory. According to the physiological function of root growth,it improve the root system of the larch on the water-based model and the geotropism model. It explore the impact on the morphology structure and physiological function of larch root by constraint based on artificial life methods.It have achieved dynamic simulation of the larch root growth because of the combination of morphology structure model and physiological function model.
     Larch root belongs to the straight root,which is composed of four different types of the roots.It include main root,secondary root, lateral root and adventitious root. Despite the obvious micro-similarity of the larch root,the root is affected by soil structure, humidity and other factors on the process of growth.So it makes that the process of the extension of the root system show irregular shape in random fluctuation patterns. In the text,it has established data structure,which can descripe the growth parameters of the larch root, on the basis of physiological ecological theory of larch.At the same time, dynamic growth model of the larch is integrated with morphogenetic model.Applying the random generation technology,it has abstracted rule description of the morphology and growth pattern of the larch root.It has introduced growth control parameters in order to achieve dynamic control in the data structure. It has achieved numerical algorithm which is easy to simulate in the computer with solution of the model design.Also,it has also achieved the computer simulation of the the larch root growth and water needs,with the simulation software based on B / S structure.
     As the environment have an impact on the survival,evolution and growth of the natural plant,it perform regional and spatial variability.The introduction of competition pattern in the sub-population is to optimize the model,and it has used evolutionary algorithm based on population category. The process of the larch root appears unusual,that is the choice,variation and evolution of the genetic algorithm.When the genetic algorithm is joined in the operation of the process of fractal,it can redesign parameters involved in the morphology structure model based on L-system.Finally it can generate different root morphology in the structure. The floating-point encoding is used in the functional model instead of binary encoding.The algorithm takes the kin individuals as population,at the initial stages,the evolution searching only in the population inside so that individuals’ evolution can not be effect by the other populations and every population has chances to produce excellent individuals.After evolutionary computing several generations,this algorithm let all of the individuals compete and evolve each other so that the worse individuals gradually dying out of the individual competition.This algorithm fully maintains the diversity of populations,effectively conquers the premature convergence and local optimum solution.It describes evolution operators in detail.For the importance of variation operation in floating-point number coding,the paper used self-adapting adjusting variation operator,adjusted the variation steps based on individual self-adapting value,so that the better individuals vary in little steps in local region,enhance the precision,the worse individuals increase the steps to get out of the worse regions and enter into the prospective regions.
引文
[1]刘世荣,蔡体久,柴一新.落叶松人工林群落能量积累、分配、固定和转化的研究[J].生态学杂志,1990,(06).
    [2]张金屯.我国落叶松林生产力的空间变化特征[J].山地学报,2004,(03).
    [3]杨国梁,郭新宇,张光年,葛庆平.计算机视觉技术在植物根系形态研究中的应用[M].农业网络信息,2005,(11):124-128.
    [4] Diggle AJ.ROOTMAR a model in three dimensional coordinates of the growth and structure of fibrous root system[J].Plant and Soil,1988,105:169-178.
    [5] Bengough AG,M ackenzie CJ,Diggle AJ.Relations between root length densities and root intersections with horizontal and verbal plants using root growth modeling in 3-dimensions[J].Plant and Soil,1992,145:245-252.
    [6] PagesL,JordanMO,Picard D.A simulation model of the three-dimensional architecture of the maize root system[J].Plant and Soil,1989,119:147-154.
    [7] Fitter A H.Architectural analysis of plant root system 1.Architectural correlates of exploitation efficiency[J].New Phytologist,1991,118:357-382.
    [8] Fitter A H,Stricklang TR.Architectural analysis of plant root system 2.Influence of nutrient supply on architecture in contrasting plant species.New Phytologist,1991,118:383-389.
    [9] Berntson G M,Lynch J P,Snapp S.Fractal geometry and plant rooy system:current perspectives and future applications,In Fractals in Soil Science,Eds P Baveye,Parlange J Y and B A Stewart Lewis Publishers,1996,New York,USA.
    [10] Clausnitzer V,Hopmans.Simultaneous modeling of transient Three-dimensional root growth and soil waterflow[J].Plant and Soil,1994,164:299-314.
    [11] Mech R,Prusinkiewicz P.Visual models of plants interacting with their environment[M].Computer Graphics,1996,30(3):397-410.
    [12] Lynch J,S Beebe.Adaptation of beans(Phaseolus vulgaris L)to low phosphorus availability[M].HortScience,1995,30(6):1165-1171.
    [13] Loomis,Jeremy,J Liu,Xiuwen Ding,Zhaohua,Fujimura,Kikuo,Evans,Michael L,Ishikawa,Hideo.Visualization of plant growth[M].Proceedings of the 1997 TEES Visualization Conference,1997.
    [14]陈德清.冬小麦根系的分形分析和生长模拟[M].北京:中国农业大学出版社,1996.
    [15]刘桃菊,唐建军,戚昌瀚.水稻形态的分形特征及其可视化模拟研究[J].江西农业大学学报(自然科学版),2002,(3):24-25.
    [16]熊海桥,蒋立华.基于粒子系统的物理约束植物根生长建模[J].计算机应用,2002,Vol.22,No.7.
    [17]钟南,罗锡文,严小龙,廖红.植物根系生长的三维可视化模拟[J].华中农业大学学报,2005,24(5):516-518.
    [18]李德文.耕作土壤条件下冬小麦根系形态与吸水功能的计算机分形模拟[M].陕西西安:西北农林科技大学出版社,2000.
    [19]秋林,刘晓东,罗爱玲,罗轶先.用L—系统描述植物根系并实现其动态可控生长[J].微电子学与计算机,2003,(11):56-59.
    [20]邓旭阳,周淑秋,郭新宇,赵春江,王纪华.玉米根系几何造型研究[J].工程图学学报,2004(4):62-66.
    [21]曹云飞,刘晓东,李慧,秋林.基于生长骨架模型的虚拟作物器官建模[J].微电子学与计算机,2004,21(9):68-70.
    [22]金明现,王天铎.玉米根系生长及向水性的模拟[J].植物学报,1996,38(5):384-390.
    [23]吴长高.计算机视觉技术在根系形态和构型分析中的应用[J].农业机械学报,2000,31(3).
    [24]罗锡文,周学成,严小龙,罗良平,向子云.基于XCT技术的植物根系原位形态可视化研究[J].农业机械学报,2004,35(2).
    [25]刘炳成,刘伟,刘俐华,金弋.落叶松生长的三维仿真模拟[J].华中科技大学学报(自然科学版),2005,33(9):65-67.
    [26] Room P M,Hanan J S,Prusinkiewicz P.Virtual plants:new perspectives for ecologists,pathologists and agricultural scientists[J].Trends in Plant Science,1996,1(1):35-38.
    [27]张青蓉,王文永.虚拟植物的构建及在生物学科教学中的应用[J].系统仿真学报,2006,131(18):964-967.
    [28] Smith A.R.,Plants、fractals and formal languages[J].Computer Graphics,1984,18 (3):l-10.
    [29]陆汝铃,张文妍.广义L—系统[J].中国科学,2002,32(4):530-540.
    [30]靳润昭,王兆毅.L一系统的基本概念和示例[J].天津农学院学报,2002,3:49-54.
    [31]孔小利.分形学及L—系统的三维拓展研究[J].承德石油高等专科学校学报,2001,12:26-29.
    [32]严蔚敏,吴伟民.数据结构[M].北京:清华大学出版社,1997.
    [33]李春葆.数据结构教程[M].北京:清华大学出版社,2005.
    [34] Rubio G,Walk T,Ge ZY,Yan X,Liao H.Lynch JP(2001)Root gravitropism and below-grown competition among neighbouring plants:a modeling approach[M].Annals of Botany,88:929-940.
    [35]熊海桥,蒋立华.基于粒子系统的物理约束植物根生长建模[J].计算机应用,2002,Vol.22,No.7.
    [36]杨培岭.根系发育的形态学特征及其分形模拟[D].1995.
    [37]孙卫琴,李洪成.Tomcat与Java Web开发技术详解[M].电子工业出版社,2004:1-13.
    [38]吴悦,吴冲华等.HTML&WEB设计技术与技巧[M].机械工业出版社,2002:238-269.
    [39]曹卫星,李存东,李旭,等.基于作物模型的专家系统预测和决策功能的结合[J].计算机与农业,1998,(02).
    [40]熊银键,稽启春.演化算法在非线性参数估计中的应用[J].西安建筑科技大学学报(自然科学版),1999,(01).
    [41]毕鹏翔,苗竹梅,刘健.浮点数编码的无功优化遗传算法[J].电力自动化设备,2003,23(9):42-45.
    [42] Aarts E H L,Korst J H M,Simulated Annealing and Boltzmann Machine[D].John Wiley and Sons,1989.
    [43] Adler D.Genetic Algrithm and Simulated Annealing:A Marriage ProPosal.Proe.ofIEEE Int’l.Conf.on Neural networks,1993.
    [44] Goudriaan.J..A simple and fast numerical method for the computation of daily totals of crop Photosynthesis.Agr.and For.Mete,1987.
    [45] van Henten.E.J.,Greenhouse climate management,An optimal control approach,PhD Thesis,Wageningen Agricultural University.,Wageningen,The Netherlands,1994.
    [46] Rasmus K.Ursem,Bogdam and Thiemo Krink,Exploring the Performance of an Evolutionary Algorithm for Greenhouse Control.
    [47]刘铁男,陈广义,刘延力,等.模拟生物种族形成的进化算法与多峰函数优化[J].控制与设计,1999,14,(2):185-188.
    [48]李敏强.遗传算法的基本理论与应用[M].科学出版社,2002.
    [49]崔嘉,刘弘.遗传算法在计算机辅助创新作曲中的应用[J].计算机工程与应用,2007,43(3):198-200.
    [50]郭东伟.遗传算法运行机理的研究[D].吉林大学博士论文,2002.
    [51] Eiben A E,Schoenauer M.Evolutionary computing[J].Information Processing Letters,2002(82):1-6.
    [52]李云飞,姜晓峰,郭肇娴.遗传算法在自然树生成中的应用[J].微电子学与计算机,2005,22(5):95-97.
    [53]戴春妮,姚萌,谢祝捷,等.一种新的进化计算算法模型——种群竞争消亡算法[J].计算机应用,2005,25(1):224-225.
    [54]费璐璐.进化计算在作物生长模型优化中的应用研究[D].上海:华东师范大学,2004(5).
    [55]何光宏,潘英俊,吴芳.基于肤色特征和动态聚类的彩色人脸检测[J].2004,31(11):47-50.
    [56] GREFENSTETTE J J,BAKER J E.How genetic algorithms work:a critical look at implicit parallelism//.Proc 3rd nt Conf Genetic Algorithms[C],1989.
    [57] Przemyslaw Prusinkiewica.Aristid Lindenmayer the Algorithmic Beauty of Plants Springer-verlag[M].New York:Inc.,1990.
    [58]陈昆,石国祯.浮点数编码遗传算法变异概率的选取[J].武汉理工大学学报(交通科学与工程版),2001,25(4):496-99.
    [59]高磊,蒋平,李海峰,等.基于进化策略并考虑款频段补偿的PSS参数优化[J].继电器,2007,35(4):27-31.
    [60]张彤,张华,王子才.浮点数编码的遗传算法及其应用[J].哈尔滨工业大学学报,2000,32(4):59-62.
    [61]莫纯欢,等.进化算法选择机制的比较[M].98人工智能进展.西安交通大学出版社,1998.
    [62]庄丽娟.遗传算法的交叉算子研究[J].内蒙古民族大学学报,2006,21(6):637-639.
    [63]陈杰,周东华.浮点数编码的遗传算法在模糊控制器参数寻优中的应用[J].安徽建筑工业学院学报(自然科学版),12(2):40-43.
    [64]陈国良,王熙法,等.遗传算法及其应用[M].北京:人民邮电出版社,1996,51-60.
    [65]王江峰,沈静珠,李有瑞,等.基于种族分类的进化算法[J].计算机与应用化学,2003,20(1):105-110.
    [66]秦东晨,李磊,王双喜.变异算子确定的一种新方法研究[J].河南科学,2007,25(1):95-97.
    [67] Bian R,Chen P,Burrage K,et al.Derivation of L-system models from measurementsof biological branching structures using genetic algorithms[J].Lecture Notes in Computer Science 2358,2002:514-524.
    [68] B.W.Kernighan and D.M.Ritchie.The C programming language,Second edition.Prentice Hall,Englewood Cliffs,1988.
    [69] Srinivas,Pantnaik L M.Adaptive probability of crossover and mutation in genetic algorithms[J].IEEE Trans System and Cyberneics,1994,24(4):657-667.
    [70]毕鹏翔,苗竹梅,刘健.浮点数编码的无功优化遗传算法[J].电力自动化设备,2003,23(9):42-5.
    [71]魏平,熊伟清.一种改进的实数编码遗传算法[J].计算机应用研究.2004,21(9):87-91.
    [72]董颖,刘欢杰,许宝栋.一种基于实数编码的改进遗传算法[J].东北大学学报(自然科学版),2005,26(4):321-323.
    [73]欧阳森,王建华,等.一种新的改进遗传算法及其应用[J].系统仿真学报,2003,15(8):1066-1068,1073.
    [74]黄隽,谢俊.最优子种群实数编码遗传算法的研究[J].徐州师范大学学报(自然科学版),2005,23(2):53-56.
    [75]金晶,苏勇.一种改进的自适应遗传算法[J].计算机工程与应用,2005,41(18):64-69.
    [76]王慧妮,彭其渊,张晓梅.基于种群相异度的改进遗传算法及应用[J].计算机应用,2006,26(3):668-669.
    [77]许义海,李晓东.一种快速寻优的新型改进遗传算法[J].中山大学学报(自然科学版),2006,45(2):36-40.
    [78]蔡良伟.基于距离测度的实数编码自适应遗传退火算法[J].深圳大学学报理工版,2004,21(04):291-294.
    [79]胡觉亮,吴庆标.一种基于自适应混合遗传算法的非线性函数优化方法[J].高校应用数学学报A辑,2004,19:529-531.
    [80]李敏强,寇纪淞,林丹,等.遗传算法的基本理论与应用[J].科学出版社,2002,1-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700