北京地铁工程建设安全风险控制体系及监控系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市地铁工程受周边环境限制与工程、水文地质条件影响,存在大量的工程建设安全风险。在目前地铁工程建设高速发展的背景下,安全风险控制形势日趋严峻。
     依托北京地铁工程建设经验,紧密结合北京地铁实际需要,通过经验总结与分析,提出了风险工程的概念,确定了风险工程的分级标准、预警体系、监控管理模式、安全管控工作要点及各参建单位职责,形成了系统的地铁工程建设安全风险控制体系。基于北京地铁4、5号线和10号线一期邻近周边建(构)筑物(包括既有地铁线、桥基、建筑和管线)施工的典型工程,建立了地铁工程典型环境风险的评估与控制体系,并成功应用该体系对北京地铁9号线军事博物馆站工程(原方案)进行了现状调查评估与施工影响预测。在上述安全风险控制体系和周边环境评估体系的基础上,领导研发了地铁工程施工安全风险监控系统。将安全风险控制体系与监控系统成功应用于北京地铁建设中,通过在北京地铁9号线太平桥-北京西站区间工程的应用实践证明:安全风险控制体系和监控系统行之有效,具有很强的实用性。
     论文的主要贡献是:
     1、提出了北京地铁工程建设安全风险控制体系的核心理念,即“基础工作坚实、监控标准明确、立足预防预控、突出过程控制”。围绕该理念,建立了安全风险控制体系,提出了落实体系的关键工作包括“夯实基础工作、完善控制标准、强化控制过程、定性定量结合、综合控制措施、完善专家系统、细化安全责任”。
     2、提出了风险工程的概念,确定了分级标准。提出了“施工单位全面监测结合第三方监测单位重点监测,施工、监理、第三方监测单位现场巡视,风险预警以第三方监测单位为主”的监控管理模式。总结提出了北京地铁第三方监测的工作要求,在工程监测的基础上提出了现场巡视的思想,并且分工法(盾构法、明挖法和矿山法)、分对象(工程自身与周边环境)的提炼形成了现场巡视的工作内容与重点。提出了单一的监测预警、巡视预警以及综合预警的预警体系。总结提出了地铁新线建设的安全风险技术管理模式及职责,形成了贯穿工程建设全过程(勘察与环境调查、方案设计、初步设计、施工图设计、施工、工后阶段)的风险识别、分析、分级和控制体系,明确了工程建设各阶段的安全风险管控工作重点。
     3、建立了北京地铁工程典型周边环境的评估与控制体系,包括现状调查与评估、地铁施工影响预测、控制标准确定与措施制定等。提出了相应的评估流程包括:1)邻近等级划分;2)调查与评估;3)施工影响预测;4)确定影响等级;5)确定控制指标和标准,制定控制措施。6)变形监测与反馈;7)工后评估。
     4、基于安全风险控制体系的研究,提出了安全风险监控系统设计思路和流程,建立了网络化架构,设计了监测、巡视、风险处置和工程文档等用例模型,设计的系统模块包括地理地质系统、工程资料管理、基础信息管理、工程事务管理和风险预警管理等。领导研发的管理系统实现了风险工程管控的信息化管理。
     5、工程实际应用结果表明,贯穿工程建设全过程的安全风险控制体系及监控系统适应北京地铁大规模工程建设的需求,为地铁建设的风险控制提供了一整套比较系统、完善的技术管理指南,最大限度地规避了工程建设安全风险,为工程建设提供了安全保障服务,促进了北京地铁工程建设安全风险控制工作的系统化、规范化和信息化。
Due to the influence of surrounding building environment, engineering and hydrology geology conditions on metro engineering, there are a large number of safety risks during metro construction. With the rapid development of metro engineering, present safety risk control has been becoming an increasingly serious concern.
     With the construction experience of Beijing metro as the background, the concept of risk engineering is put forward, and grading standards, pre-warning system, monitoring management mode, safety control and the duties of construction units are introduced on the basis of engineering experience analysis, and then the safety risk control system for metro engineering construction is presented, according to the actual situation and needs of Beijing metro construction. Based on the typical adjacent building environment engineering (including existing metro lines, bridge foundations, buildings and pipelines) in Beijing metro line4,5and the first period of line10, a typical environment risk evaluation and control system for metro engineering is established and applied to the project of Military Museum station in Beijing metro line9. Based on the risk control system and environment risk evaluation and control system, Beijing metro construction safety risk monitoring system is developed. Moreover, above two systems are successfully used in the construction of Beijing metro, from the case of the running tunnel between the Beitaipingqiao station and Beijing west railway station in line9, the effectiveness and practicality of the two systems are verified at the same time.
     The main contributions are:
     The core idea of risk control system of Beijing metro construction is put forward, which is the solid basic work, specifying monitoring criterion, standing on preventing and pre-controlling, highlighting process control. Surrounding the core idea, the key works establishing the system are specified, which including strengthening basic works, optimizing control criterion, strengthening control process, combining with qualitative and quantitative analysis, integrating control measures, perfecting expert system, tessellating safety responsibilities.
     The concept of risk engineering is put forward, and the grading standards is determined. The pre-warning management pattern is proposed, which includes the combination with overall monitoring by construction enterprises and major monitoring by third party monitoring enterprises, integral on-site inspection with construction, supervision and the third party enterprises, and risk pre-warning mainly by the third party monitoring enterprises. The third party monitoring job requirement is proposed, and on-site inspection idea is put forward based on monitoring, and the content and key point of inspection is establish according to the construction method(cut and cover, mining method and shield method) and object(metro engineering itself and building environment risk). The2-level pre-warning system is established, which includes the single monitoring pre-warning, inspection pre-warning and comprehensive pre-warning. The safety risk management pattern and responsibility is proposed, and the risk identification, analysis, classification and control system is formed, which runs through the entire construction course (investigation and environment survey, schematic plan design, preliminary design, construction documents design, construction and after construction accomplishment). The key point of risk control and management in every stage of engineering construction is specified.
     An evaluation and control system is established for typical adjacent building environment in Beijing metro engineering, including current situation investigation and evaluation, construction effect forecast, the control criterion and measures setting. The specific evaluation process includes dividing adjacent grade, investigation and evaluation, construction effect forecast, determining effect grade, setting the control index and criterion, confirming the control measure, monitoring deformation, evaluation after construction accomplishment.
     Based on the risk control system of Beijing metro construction, the design idea and process of monitoring system is put forward, and the network frame is proposed. The use case models are designed about monitoring, inspection, risk disposal and engineering document, and the system module includes geology and geography information system, engineering data management, basic information management, engineering affair management and risk pre-warning management. The risk engineering information management is achieved through the studied system under the leadship.
     The application of the risk control system and monitoring system shows that the system running through the entire construction course meets the needs of large-scale engineering construction of Beijing metro, and the system is a systemic and comprehensive technical management manual for risk management in metro construction. The system can provide insurance service for engineering construction, and can promote the achievement of systematism, normalization and informatization in the risk control work.
引文
[1]乐贵平.北京地铁复一八线与五号线地下车站施工技术比较,市政技术.2004,22(4).93-196,215
    [2]崔玖江.北京地铁新线工程概况暨建设特点、难点、管理要点.现代城市轨道交通.2004(1).22-26
    [3]北京市轨道交通建设管理有限公司.2005.工程建设环境安全技术管理体系.北京.2005
    [4]Einstein H H, Vick S G, Geological model for tunnel cost model.Proc Rapid Excavation and Tunneling Conf.2nd.1974.1701-1720
    [5]Einstein H H. Risk and risk analysis in rock engineering. Tunneling & Underground Space Technology.1996.141-155
    [6]Einstein H H, Xu S, Grasso P, and Mahtab MA. Decision Aids in Tunneling.World Tunneling April.1998.157-159
    [7]R Stuzk, L Olsson, U Uohansson. Risk and Decision Analysis for Large Underground Projects, as Applied to the Stockholm Ring Road Tunnels. Tunnelling and Underground Space Technology.1996.11 (2).157-164
    [8]Heinz Duddeck. Challenges to Tunnelling Engineers. Tunnelling and Underground Space Technology.1996,11(1).5-10
    [9]Reilly J J. Management process for complex underground and tunneling projects Tunnelling & Underground Space Technology.2000.31-44
    [10]CB Chapman. Risk analysis for large projects:models, methods, and cases, DF Cooper.1987 John Wiley & Sons Inc
    [11]Sturk R, Olsson L, Johansson J. Risk and Decision Analysis for Large Underground Projects, as Applied to the Stockholm Ring Road Tunnels. Tunneling and Underground Space Technology. Volume 11,Number 2,April 1996.157-164(8)
    [12]E. A. Vik, L. Sverdrup Experiences from environmental risk management of chemical grouting agents used during construction of the Romeriksporten tunnel Tunnelling and Underground Space Technology Volume 15, Issue 4,12 October 2000.369-378
    [13]Snel A JM, Hasselt D R S van. Risk management in the Amsterdam North/South Metroline:A matter of process-communication instead of calculation.the 21st century.1999
    [14]The British Tunnelling Society. The association of British Insurers:Joint code of practice for risk assessment of tunnel works in the UK-09[Z]. London:The British Tunnelling Society, 2003
    [15]S(?)ren Degn Eskesen, Per Tengborg, Jogen Kampmann, Trine Holst Veicherts. Guidelines for Tunnelling Risk Management.2004. ITA.
    [16]TNZ. Risk Management Process Manual. New Zealand. Sep 2004
    [17]ETWB. Risk Management for Public Works-Risk Management User Manual.2005
    [18]The International Tunnelling Group. The Joint Code of Practice for Risk Management of Tunnel Works [S][S.l.]:[S.n.]2006
    [19]郭仲伟.风险分析与决策.机械上业出版社.北京.1986
    [20]于九如.投资项目风险分析.机械工业出版社.1997
    [21]姜青舫.风险度量原理.同济大学出版社.2000
    [22]邱苑华.管理决策与应用熵学.机械工业出版社.2002
    [23]范益群,钟万勰,刘建航.时空效应理论与软土基坑工程现代设计概念.清华大学学报(自然科学版).2000.40(增1).49-53
    [24]同济大学.崇明越江通道工程风险分析研究总报告.同济大学.2002
    [25]建设部等.建质[2003]177号.关于进一步加强地铁安全管理工作的意见.2003
    [26]建设部.建质电[2006]4号.关于加强地铁建设安全管理工作的紧急通知.2006
    [27]建设部.建质电[2007]21号.关于加强地铁建设和运营安全管理工作的紧急通知.2007
    [28]建设部.建质电[2008]118号.关于进一步加强地铁建设安全管理工作的紧急通知.2008
    [29]中国土木工程学会,同济大学.地铁及地下工程建设风险管理指南(试行).北京.中国建筑工业出版社.2007
    [30]中华人民共和国住房和城乡建设部.城市轨道交通工程质量安全管理暂行办法.2010
    [31]中国土木工程学会.城市轨道交通地下工程建设风险管理规范(征求意见稿).2009
    [32]国家安全生产监督管理总局.AQ8004-2007.19430-2007.城市轨道交通安全预评价细则.北京.煤炭工业出版社.2007
    [33]铁道部.铁路建设安全风险评估指南(试行).2008
    [34]中华人民共和国铁道部.铁建设[2007]200号.铁路隧道风险评估与管理暂行规定.北京.中国铁道出版社.2008
    [35]王梦恕.北京地铁修建过程的安全风险技术平台和管理.轨道交通安全技术与管理国际会议文集.2004年世界轨道交通论坛.2004.
    [36]崔艳萍,唐祯敏.城市轨道交通行车安全保障信息系统的研究.中国安全科学学报.2004.14(5).95-98
    [37]刘涛,刘国彬.轨道交通建设远程监控管理系统.现代城市轨道交通.2005(6).30-33
    [38]上海地铁运营有限公司,上海时空软土工程研究咨询中心.地铁工程远程监控管理系统.2002
    [39]周文波,胡珉.盾构法隧道施工智能化辅助决策系统的研制与应用.岩土力学与工程学报.2003(z1).2412-2417
    [40]杜年春.地铁施工监测信息管理及安全预警系统的设计.工工程建设.2006.38(1).37-40
    [41]陈伟珂,王兴华.地铁施工灾害预警指标体系的设计与分析.城市轨道交通研究.2007.10(10).25-29
    [42]北京市轨道交通建设管理有限公司.北京地铁工程建设环境安全评估技术管理体系.2005
    [43]北京市轨道交通建设管理有限公司.北京地铁邻近桥梁施工影响的评估与控制技术指南.2008
    [44]北京市轨道交通建设管理有限公司.北京地铁邻近建筑物施工影响的评估与控制技术指南.2008
    [45]北京市轨道交通建设管理有限公司.北京地铁邻近管线施工影响的评估与控制技术指南.2008
    [46]天津市城乡建设和交通委员会.地铁工程建设质量安全风险控制技术指导书书.天津市城乡建设和交通委员会.2009
    [47]I.Yamaguchi, I.Yamazaki, Y.Kitani. study of Ground-Tunnel Interactions of Four shield Tunnels Driven in Close Proxmity, in relation to Design and Construction of Parallel Shield Tunnels[J].Tunnelling and Underground Space Technology,1998, vo113(3).289-304.
    [48]E.Soliman, H.DuddeckandH. Ahrens. Two-and three-dimensional analysis of closely spaced double-tube tunnels, Tunnelling and Underground Space Technology 1993,8(1).13-18
    [49]周文波,吴惠明.上海地铁二号线盾构法隧道施工难题浅述.上海市政工程.2000(3).68-77
    [50]张路青,杨志法.两平行的任意形状洞室围岩位移场解析法研究及其在位移反分析中的应用[J].岩石力学与工程学报.2000.19(5).584-589
    [51]李强,曾德顺.盾构施工中垂直交叉隧道变形的三维有限元分析.岩土力学.2001.22(3).334-338
    [52]吉茂杰,刘国彬.开挖卸荷引起地铁隧道位移的预测方法.同济大学学报.2001.29(5)
    [53]仇文革.地下工程近接施工力学原理与对策的研究.2003
    [54]张晓丽,张顶立,王梦恕.既有地铁注浆抬升合理位置的确定.岩土工程学报.2008.30(5).712-717.
    [55]房倩,张顶立.浅埋暗挖地铁车站下穿既有线结构施工方法研究.中国铁道科学.2007.28(5).71-77.
    [56]沈良帅.复杂环境下隧道施工对邻近地铁隧道及地下管线的影响及变形控制分析[硕士学位论文].北京.北京交通大学.2007
    [57]石明江.注浆法在盾构推进穿越己运营地铁隧道中的应用.西部探矿工程.2006.18(4).155-157
    [58]K.w.Lo, T.Tamilselvan, K.H.Chua and M.M.zhao. A unified model for fracture mechanics, Engineering Fracture Mechanics.1996.54(2).189-210
    [59]Sang-Hwan Kim. Interaction Behaviours between Parallel Tunnels in Soft Ground. Tunnelling and Underground Space Technology.19(2004)44.
    [60]刘艳青,钟世航等.小净距并行隧道力学状态的试验研究.岩石力学与工程学报.2000.19(5).590-594.
    [61]Vermeer P A, Bonnier P G Pile settlements due to tunneling. Proceedings of the International Conference on Soil Mechanics and Foundation Engineering.v2.Deformation of Soil and Displacements of Structures X ECSMFE. Rotterdam:Balkema.1991.869-872
    [62]Poulos H G, Chen L T. Pile response due to unsupported excavation-induced lateral soil movement. Canadian Geotechnical Journal.1996.33(4).670-677
    [63]Poulos H G, Chen L T. Pile response due to excavation-induced lateral soil movement. Journal of Geotechnical and Geoenvironmental Engineering.1997.123(2).94-99
    [64]Chen L T, Poulos H G Effects of tunnelling on piled foundations. Yuan. Computer Methods and Advances in Geomechanics. Rotterdam:Balkema.1997.2183-2188
    [65]Chen L T, Poulos H G, Loganathan N. Pile responses caused by tunneling. Journal of Geotechnical and Geoenvironmental Engineering.1999.125(3).207-215.Discussion by Goh AT C, Wong K S. Closure by Chen L T, Poulos H G, Loganathan N. Journal of Geotechnical and Geoenvironmental Engineering,2000,126(6).580-581
    [66]Loganathan N, Poulos H G Tunnelling induced ground deformations and their effects on adjacent piles. Tenth Australian Tunnelling Conference 1999, Melbourne:Vic. March 1999.21-24
    [67]Mroueh H, Shahrour I. Three-dimensional finite element analysis of the interaction between tunneling and pile foundations. International Journal for Numerical and Analytical Methods in Geomechanics.2002.26(3).217-230
    [68]Cheng C Y, Dasari G R, Leung C F, et al.3D numerical study of tunnel-soil-pile interaction. Tunnelling and Underground Space Technology.2004.19.381-382
    [69]李永盛,黄海鹰.盾构推进对相邻桩体力学影响的实用计算方法.同济大学学报.1997.25(3).274-280
    [70]关宝树.隧道工程施工要点集.北京.人民交通出版社.2003
    [71]王占生.盾构近距穿越桩基的研究[博士学位论文].北京.北方交通大学.2003
    [72]孙宗军.盾构施工与桩基础相互作用的三维力学分析与研究[博士学位论文].南京.东南大学.2004
    [73]李强,王明年,李德才等.地铁车站暗挖隧道施工对既有桩基的影响.岩石力学与工程学报.2006.25(1).184-190
    [74]吴波,刘维宁,索晓明等.城市地铁施工对近邻中长桩桥基的影响研究.岩土工程界.2005.12(8).48-50
    [75]吴波,刘维宁,索晓明等.城市地铁转弯段施工对近邻桥基的影响研究.探矿工程,2006,33(2).57-62
    [76]吴波,刘维宁,索晓明等.地铁施工近邻桥基加固效果三维数值分析.铁道工程学报,2005,89(5).48-52
    [77]Morton J D, King K H. Effects of tunnelling on the bearing capacity and settlement of piled foundations. Jones M J.Tunnelling'79.England:Stephen Austin/Hertford.1979.57-68
    [78]Yashima A, Shibata T, Sekiquchi H, et al. Soil movements associated with tunneling and their effects on an adjacent pile foundation. Bulletin of the Disaster Prevention Research Institute. Kyoto University.1985.35(4).115-135
    [79]Bezuijen A, Van der Schrier J. The influence of a bored tunnel on piled foundations. Leung, Lee, Tan. Proceedings 1994 international conference centrifuge. Rotterdam:Balkema,1994. 681-686
    [80]Loganathan N, Poulos H G, Stewart D P. Centrifuge model testing of tunneling-induced ground and pile deformations.Geotechnique.2000.50(3).283-294
    [81]Jacobsz S W, Standing J R, Mair R J, et al. The effects of tunnelling near driven piles in sand. Geotechnical Engineering in Soft Ground. Regional Conference on Geotechnical Aspects of Underground Construction in Soft Ground.Shanghai.China.2001.29-35
    [82]Jacobsz S W. Tunnelling effects on piled foundations. Tunnels and Tunnelling International.2003.35(6).28-31
    [83]Lee C J, Kao C M, Chiang K H. Pile response due to nearby tunneling. BGA International Conference on Foundations, Innovations, Observations, Design and Practice, London. Thomas Telford.2003.483-492
    [84]Teunissen E A H, Hutteman M. Pile and surface settlements at full scale tests North/South metro line Amsterdam. Negro Jr, Ferreira. Tunnels and Metropolises. Rotterdam. Balkema, 1998.981-986
    [85]Coutts D R, Wang J. Monitoring of reinforced concrete piles under horizontal and vertical loads due to tunnelling. Zhao, Shirlaw, Krishman. Tunnels and Underground Structures. Rotterdam.Balkema.2000.541-546
    [86]Selemetas D. Cooling prize paper:Pile settlement due to tunnelling in London clay. A case study. Ground Engineering.2004.37(6).29-32
    [87]刘晓苹,顾强,李坚.上海漕溪路立交桥桩基受地铁盾构推进的影响研究.上海市政工程.1996.39(3).9-17
    [88]刘晓苹,李坚.桥梁桩基受地铁盾构掘进影响的研究与探讨.上海公路.1998(3).20-24
    [89]Skempton A W and MacDonald D H. Allowable settlement of buildings. Proc. Institution of civil engineers.1956.13(6).19-32
    [90]Bjerrun L. Contribution to discussion. Session VI, Proc. European Conf. On soil Mechanics and Foundation Engineering, Wiesbaden,II.1963.135-137
    [91]Burland J B. Assessment of risk of damage to buildings due to tunneling and excavation. Proceeding of 1st International Conference on Earthquake geotechnical Engineering. Tokyo. 1995.495-546.
    [92]Breth H, and Chambosse G Settlement behavior of buildings above subway tunnels in Frankfurt clay. Proc, Conf. on Settlement of Structures, Pentech Press. London, England.1974.329-336.
    [93]Frischmann W W, Hellings J E, Gittoes, Cs and Snowden, C. Prediction of the Mansion House against damage causing by ground movements due to the Docklands Light Railway Extension. Proc. Inst. Civil Engineering.1994(107).65-76
    [94]Rankin, W J.1988 Ground movements resulting from urban tunneling; predictions and effects. Engineering geology of underground movement. Geological Society, Engineering Geology special publication No 5.79-92.
    [95]Boscardin, M. D., and Cording, E. J. Building response to excavation-induced settlement,1. Geotech. Engrg, ASCE.1989.115(1).1-21
    [96]Mair R.J, Taylor RN, Borland JB. Prediction of ground movements and assessment of risk building damage due to bored tunneling, Proceedings Geotechnical Aspect of Underground Construction in soil Ground, Bai_kema:Rotterdam.1996.713-718.
    [97]Storer J. Boone. Ground-movement-related Building Damage. Journal of Geotechnical Engineering, ASCE.1996.122(11).886-896
    [98]G Liu.2-Dimensinal Analysis of Settlement Damage to Masonry Buildings Caused by Tunneling. The Structural Engineer.2000.79(1).19-26.
    [99]Houlsby G T., Burd H. J. Modeling Tunneling-Induced Settlement of Masonry Buildings.Proc. Instn. Civ. Engrs. Geotecb. Engng.2000.143.17-29.
    [100]Burd H. J., Houlsby G T., Chow L. Analysis of Settlement Damage to Masonry Structures. Proceedings of the 3rd European Conference on Numerical Methods in Geotechnical Engineering-Economic[C].Manchester.1994.203-208.
    [101]Augarde C. E., Burd H. J., Houlsby G T.A Three-Dimensional Finite Element Model of Tunneling.Proceedings of Numog V. Davos[C].Switzerland.6-8.1995.457-462.
    [102]Houlsby G T, Burd H. J., Gugarde C. E. Analysis of Tunnel-Induced Settlement Damage to Surface Structures. Proceedings of the 12th European Conference on Soil Mechanics and Foundation Engineering[C].Amsterdam.1999.31-44.
    [103]Moorak Son. Estimation of Building Damage Due to Excavation-Induced Ground Movements. Journal of Geotechnical and Geoenvironmental Engineering.131(2).February.2005.162-177
    [104]Hakmoon Kim. The Model Tests for the Damage Assessment of Brick Structures in Urban Tunnelling. Tunnelling and Underground Space Technology.21(3-4).May-July.2006.Page 305 Safety in the Underground Space-Proceedings of the ITA-AITES 2006 World Tunnel Congress and 32nd ITA General Assembly
    [105]姜忻良等.天津地铁盾构施工对邻近工程设施影响的动态模拟.天津大学学报.2006.39(2).188-193.
    [106]张志强等.深圳地铁隧道邻接桩基施工力学行为研究.岩土工程学报.2003.25(3).204-207.
    [107]卿伟宸等.地下隧道施工对相邻建筑物及地表沉降的影响.地下空间与工程学报.2005.1(6).960-963.
    [108]施成华等.浅埋隧道开挖对地表建筑物的影响.岩石力学与工程学报.2004.23(19).3310-3316.
    [109]蒲武川等.地下隧洞对地面沉降影响的数值分析.地质与勘探.2003.39(8).145-148
    [110]Hong-jian Liao. Research on the Effect of Underground Tunnelling on the Settlement of the Building and the Ground Surfaces. Safety in the Underground Space-Proceedings of the ITA-AITES 2006 World Tunnel Congress and 32nd ITA General Assembly
    [111]李文江等.铁路站场下暗挖隧道地表沉降控制基准研究.岩土力学.2005.26(7).1165-1169
    [112]吕勤.北京城铁暗挖区间隧道穿越楼群关键施工技术.中国安全科学学报.2003(11)
    [113]徐彦胜.地铁车站风道穿越房区沉降控制技术.铁道建筑技术.2005(2).34-35
    [114]赵玉良.北京地铁5号线崇东区问渡线隧道穿越密集民房超前预加固地层施工方案探讨.铁道标准设计.2003(12).22-24
    [115]范国文.暗挖双连拱隧道穿越浅基础高层楼群区施工技术.铁道工程学报.2003(3).109-116
    [116]中国建设部.JGJ 125-99--2000.危险房屋鉴定标准.北京.中国建筑工业出版社.2000
    [117]国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程.煤炭工业出版社.2000
    [118]北京市轨道交通建设管理有限公司,北京交通大学.地铁工程施工对桥基、建筑和管线的影响及控制研究报告.2007
    [119]O'Rourke T D, Trautmann C H. Buried pipeline response to tunneling ground movements.Europipe'82.Basel, Switzerland.1982.9-15
    [120]Attewell P B, Yeates J, Selby A R. Soil Movements Induced by Tunnelling and their Effects on Pipelines and Structures. London. Blackie and Son Ltd.1986
    [121]Takagi, Nobuo, Shimamura, Kazunori, Nishio, Nobuaki. Buried pipe response to adjacent ground movements associated with tunneling and excavations. Ground Movements and Structures. Proceedings of the 3rd International Conference.1985.97-112
    [122]李大勇.软土地基深基坑工程邻近地下管线的性状研究.杭州.浙江大学.2001
    [123]李大勇,龚晓南,张土乔.软土地基基坑周围地下管线保护措施的数值模拟.岩土工程学报.2001.23(6).736-740
    [124]吴波.复杂条件下城市地铁隧道施工地表沉降研究[博士学位论文].成都.西南交通大学.2003
    [125]吴波,高波.地铁区间隧道施工对近邻管线影响的三维数值模拟.岩石力学与工程学报.2002(2).2451-2456
    [126]侯剑锋.地铁车站信息化施工控制研究与实现[硕士学位论文].上海.同济大学.2003
    [127]广州市建设委员会.GJB02-98.广州地区建筑基坑支护技术规定.广州.1998
    [128]上海市勘察设计协会.DBJ08-61-97.上海市标准基坑工程设计规程.上海.1997
    [129]O'Rourke T D, Trautmann C H. Buried pipeline response to tunneling ground movements. Europipe'82.Basel, Switzerland.1982.9-15
    [130]Bracegirdle A, Mair R J, Nyren R J, Taylor R N.A methodology for evaluating potential damage to cast iron pipes induced by tunneling. Proc. Geotechnical Aspects of Underground Construction in Soft Ground. London:Balkema.1996.659-664
    [131]Yoo C S. Damage assessment of buried pipelines due to tunneling-induced ground movements. J. Korean Geotech.Soc.2001.17(4).71-86
    [132]Yoo Chungsik, Kim Jae-Hoon. A web-based tunneling-induced building utility damage assessment system:TURISK. Tunnelling and Underground Space Technology.2003. 18.497-511
    [133]Kusakabe O, Kimura T, Ohta A, Takagi N, Nishio N. Centrifuge model tests on the influence of axisymmetric excavation on buried pipes. Ground Movements and Structures, Proceedings of the 3rd International Conference.1985.113-128
    [134]杨志法,刘大安,刘英.关于综合地质信息系统的设计及应用研究.岩石力学与工程学报.1999
    [135]孙钧.城市地下工程施工安全的智能控制预测与控制及其三维仿真模拟系统研究[J].岩石力学与工程学报.1999.18(增).753-762.
    [136]李元海,朱合华.岩土工程施工监测信息系统初探.岩土力学.2002.23(1).103-106
    [137]吴金华,丘先声等.监测作业与地下工程.岩石力学与工程学报.1999(增8).1181-1184
    [138]Williams TM. Using a Risk Register to integrate Risk Management in Project Definition. International Journal of Project Management.1994(12).17-22.
    [139]Carter R, Hancock T, Morin JM, Robins N. Introducing RIKSKMAN Methodology.1st ed.UK: NNC Blackwell Ltd.1995.
    [140]Ward S. Assessing and managing important risks. International Journal of Project Management.1999(17).331-336.
    [141]Barry LJ. Assessing risk systematically. Risk Management.1995(42).12-17.
    [142]J. H. M. Tah, V. Carr. Towards a framework for project risk knowledge management in the construction supply chain.Advance in Engineering Software.2001(32).835-846
    [143]Fiona D. Patterson, Kevin Neailey. A Risk Register Database System to aid the management of project risk.International Journal of Project Management,2002(20).365-374
    [144]陈亮,黄宏伟,胡群芳.盾构隧道施工风险管理数据库系统开发.地下空间与工程学报.2005.1(6).964-967
    [145]GDMS( geodata master system):an information system for managing geoengineering projects[OL](2006.12.10)[2007.10.10]
    [146]黄宏伟,曾明,陈亮,胡群芳.基于风险数据库的盾构隧道施工风险管理软件(TRM1.0)开发.地下空间与工程学报.2006.2(1).36--41
    [147]汤漩,吴惠明.盾构隧道施工风险知识管理系统的设计开发.地下工程与隧道.2006(4).20-24
    [148]广东省工程建设标准化协会.DBJ/T15-20-97.建筑基坑支护工程技术规程.广东省工程建设标准化协会
    [149]北京市轨道交通建设管理有限公司.DB11/490-2007.J10909-2006.北京地铁工程监控量测技术规程.北京.北京市建设委员会.北京市质量技术监督局联合发布.2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700