铁路隧道下穿既有路基沉降规律及控制标准研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高速铁路和客运专线建设规模的不断扩大,新建铁路与既有铁路和公路的交叉相互影响也越来越严重,新建和改建铁路采用隧道下穿方式跨越既有铁路和公路的工程越来越多。新建隧道下穿施工必然会引起既有铁路路基和轨道及既有公路路基和路面产生变形,不仅对铁路施工和周边环境的安全产生不利影响,而且会影响既有线路的安全运营,严重的会造成既有铁路和公路的破坏,引起较大的安全事故和造成较大的经济损失。因此,研究铁路隧道下穿既有道路引起的沉降变形规律和隧道、道路相互作用机理、科学制定新建铁路线下穿既有铁路和公路施工引起的沉降控制标准是十分必要的。
     本文在阅读大量国内外已有隧道下穿工程和研究成果的基础上,通过对国内30多个典型隧道下穿工程实例的资料收集和调研,研究分析了隧道下穿既有公路和铁路引起路基的沉降变形规律,采用统计分析方法首次归纳总结了施工过程中沉降变形控制指标、控制标准以及施工过程中沉降变形的发展。
     基于隧道-地基-路基相互作用理论,在路面荷载作用下,通过数值分析方法研究了不同下穿深度、不同地基土模量、泊松比及力学参数情况下隧道下穿既有公路沉降变形规律及影响路基沉降变形的主要因素及其影响规律,计算表明,隧道下穿深度、地基土层模量、泊松比和地基土层力学参数均影响既有路基的沉降变形,但隧道下穿深度和土层模量是路基沉降大小和沉降槽宽度的主要影响因素。
     进一步基于共同作用理论和数值计算方法,通过对下穿既有铁路线路隧道施工过程以及考虑不同下穿深度和不同列车运行速度的情况进行建模,分析研究了铁路隧道下穿既有铁路引起路基及轨道结构的变形规律以及对列车安全运营的影响,分析研究了不同列车运行速度作用下轨道结构的变形特点。
     根据隧道施工对既有公路、铁路的影响及破坏模式,分析了既有公路、铁路沉降变形控制指标,在分析公路、铁路不同功用性和安全性的基础上,提出了公路以舒适性为主的平整度控制原则以及铁路以平稳性为主的高低偏差控制原则控制隧道施工引起的不均匀沉降,结合公路、铁路相关部门的安全运营管理规则,制定了不同等级和路面形式的既有公路允许沉降值及沉降速率控制标准以及不同列车运行速度下既有铁路允许沉降值及沉降速率控制标准,并通过所收集的30多个国内下穿工程实例验证了标准的合理性和适用性。
As the high-speed railway and Railway Passenger Transportation Special Line of china are built expansible at a large scale, the new line underpassing the existing highway and railway is more and more and the crossing mutual influence between different lines becomes inevitably. The settlement and deformation of the existing railway roadbed and tracks and the highway subgrade and pavement is caused during the new tunnel construction underpassing.lt not only effects the safety of the new tunnel contruction and surrounding environment,but also effects the safety of the existing line.The serious settlement and deformation will cause of both the existing railway and road damage and safety accidents and cause large economic loss.Therefore,it is very import that studying on the settlement and deformation of the existing embankment during the new tunnel construction underpassing and the controlling criteria of the existing embankment settlement and deformation is very necessary.
     Based on the data collecting and summarization of the former tunnel engineering that construction underpass the existing railway and highway, the settlement regularity has been studied by the construction data collecting and survey and the controlling settlement in the process of construction has been analyzed using statistic analysis method.
     Secondly, based on the interaction theory of tunnel and foundation and embankment, the calculation model of highway embankment under vehicle load is builded.The embankment settlement developing regularity is studied and the influence of the embankment settlement in the process of the tunnel underpassing is analyzed.the results show that the buried depth of tunnel and the foundation modulus influencing on the highway embankment settlement is larger than others.The formula of the tunnel buried depth and the embankment settlement is given.
     Thirdly, the model of railway embankment when the tunnel underpassing is built by mean of ABAQUS while the train load and speed is considen.The track structure deformation and the influence of the safe train operation are analyzed during the tunnel construction underpassing.
     Fourthly, the failure of existing subgrade data during tunnel underpassing is collected. Based on the anaysis of the collecting data, the failure mode of the existing subgrade is summed and the settlement control index of the existing highway and railway is given.Then the function and safe operation requirements are studied.The comfort is import to the highway operation and the stablition is to the railway.The flatness control principle is put forward to control the highway embankment settlement as well as the vertical deviation control principle to the railway track struction and embankment settlement. Combined with the safety management rules of the highway and railway departments and based on the regularity of the existing embankment in this paper, the control standards of the allowing maximum settlement value and rate during the tunnel construction undepassing is developed to the existing highway in different grades and surface forms and it is did to the existing railway in different train speed.
     Finally, the collected more than30domestic underpassing engineerings are exampled. The results show that the proposed criterion in this paper is rational and applicable.
引文
[1]中华人民共和国铁道部,中长期铁路网调整规划方案,2008年11月27日。
    [2]吴波,复杂条件下城市地铁隧道施工沉降研究[D],西南交通大学博士学位论文,2003.
    [3]王振伟,城市练功隧道施工沉降研究[D],重庆交通大学硕士学位论文,2008.
    [4]Peck R. B. Deep excavations and tunneling in soft ground [A]. Proceedings of the7th International Conference on soil Mechanics and Foundation Engineering [C]. Mexico City: State of the Art Volume,1969:225-290.
    [5]Clough, G. W. and Schmidt, B. (1981). Design and performance of excavations and tunnels in soft clay. In Soft Clay Engineering, Elsevier. pp.569-634.
    [6]日本土木学会隧道标准规范(盾构篇)及解说[M].北京:中国建筑工业出版社,2001.
    [7]0. Reilly, M. P., New, B. M.,1982, settlements above tunnels in the United Kingdom their magnitude and Prediction. Proc. of Tunnelling.82Symposium, London, pp.173~181,
    [8]0. Reilly, M. P., New, B. M.,1991. Tunnelling Induced Ground Movements:predicting their Magnitude and Effeets.4th Int. Conf. on Ground Movements& Structures. PP.671-697.
    [9]刘建航,侯学渊,盾构法隧道[M],北京,中国铁道出版社,1991
    [10]刘联伟,复合地层中盾构法建设地铁地表沉降规律研究[D],中国矿业大学博士学位论文,2009.
    [11]潘旭东,隧道施工引起地层移动的半解析方法研究[D],长沙理工大学硕士学位论文,2009.
    [12]T. Kimura, R. J. Mair. Centrifugal testing of model tunnels in soft clay [A]. Pros, of 10th Int. Conf. Soil Mechanics&Foundation Engineering[C]Stockholm, Balkema,1981,2 (1):183"-186.
    [13]Wu B R, Chiou S Y. Lee C J. et al. Soil movements around parallel tunnels insoftground[A]. Centrifuge 98 [C]., Tokyo 1988,2(1):739~744.
    [14]Shinichiro Imamura, Toshiyuki Hagiwara. Kenji Mito et al. Settlementthroughabove a model shield observed in a centrifuge [A]. Centrifuge 98 [C], Tokyo1998,2(1)::713~719.
    [15]Gutter U, Stoffers U. Investigation of the deformation and collapse behaviour ofcircular lined tunnels in centrifuge model tests[A]. Centrifuge in Soil Mechanics[C]. Rotte-rdam:Balkema,1988,
    [16]周小文,濮家骝,隧道结构受力及变形特征的离心模型试验研究[J],清华大学学报,2001(8):
    [17]周顺华,杨龙才等,变跨度隧道施工引起的地表沉降[J],同济大学学报,2003,Vo130(4):408-412
    [18]侯学渊,地下圆形结构弹塑性理论[J],同济大学学报,1983(4):24-28
    [19]粘弹性围岩复合式隧道衬砌解析解[J],淮南矿业学院学报,1996(3):122-125
    [20]阳军生,.深基坑和隧道施工引起的地层移动及变形研究[D],长沙:湖南大学,1999.
    [21]Ito. T. and Histake K隧道掘进引起的三维地面沉陷分析[J].隧道译丛,1985,1(9):46-55.
    [22]Lee, K. M and Rowe, R. K. Finite element modeling of the three-dimensionalground deformations due to tunneling in soft cohesive soils. Part 1. Methods ofanalysis[J]. Computers and Geotechincs,1990, (10):87-109.
    [23]杨龙才,变跨度隧道施工引起的地表沉降[J],同济大学学报(自然科学版),2003(3):456-460.
    [24]Mrouch H., Shahrour I. A full 3-D finite element analysis of tunneling-adjacent structures interaction[J]. Computers and Geo techniques,2003.30: 245-253
    [25]魏新江等,暗挖隧道与邻近结构物相互作用研究现状及发展[C],2006年深部岩石工程与岩石在变预防测试新技术与应用研讨会,2006年杭州。
    [26]Gordon T K L, Charles W W N. Effects of advancing opening face tunneling on an existing loaded pile[J]. Journal of Geotechnical and Geo environmental Engineering,2005, 131(2):193-201
    [27]李强,王明年,李德才等.地铁车站暗挖隧道施工对既有桩基的影响[[J].岩石力学与工程学报,2006,25(1):184-190
    [28]许江,顾义磊,康骥鸣.隧道与地表构筑物相互影响的研究[J]岩土力学,2005,26(6):889-892.
    [29]卿伟寰,廖红建,钱春宇.地下隧道施工对相邻建筑物及地表的沉降的影响[J],.地下空间与工程学报,2005,(6):960-963,978.
    [30]Richard J, Finno, Frank T, et al. Evaluating damage potential in buildings affected by excavations [J]. Journal of Geotechnical and Geo environmental Engineering,2005,131(10): 1199-1210
    [31]Zanten, D. C.&Vries,M. Railway crossing for Randstad rail in Rotterdam[J]. Claiming the Under ground Space, Saveur(ed.) Swets&Zeitlinger, Lisse,2003:613-619.
    [32]艾传志,王芝银,既有路基下浅埋隧道开挖引起地层的位移和应力解析解,岩土力学,2010,Vo131(2):541-546
    [33]许恺,练松良,黄俊飞,地铁施工穿越铁路车站对列车限速的影响[J],同济大学学报,2003,Vol30(2):174-177
    [34]雷震宇,周顺华,许恺,铁路下穿结构施工受轮轨作用力的影响分析,同济大学学报,2003Vo124(6):174-177
    [35]姚海波,大断面隧道浅埋暗挖法下穿既有地铁构筑物施工技术研究[M],博士研究生论文,北京交通大学,2005年
    [36]张晓丽,浅埋暗挖法下穿既有地铁构筑物关键技术与实践[M]博士研究生论文,北京交通大学,2007
    [37]杨治东.既有铁路下浅埋暗挖隧道施工力学效应研究[D].河北石家庄,石家庄铁道学院,2005,2-3.
    [38]李兆平,黄庆华等,下穿大型铁路站场的地铁车站施工对线路变形影响的监测分析[J],岩石力学与工程学报,2005,Vol 24(A02):5569-5575
    [39]刘建国,盾构隧道下穿对土质路基无砟轨道的影响[J],华东交通大学学报,2006,Vol23(4):5-8
    [40]北京市轨道交通建设管理有限公司.北京市轨道轨道交通建设管理有限公司工程建设环境安全技术管理体系(试行).2005,6.
    [41]姚宣德,王梦恕,地铁浅埋暗挖法施工引起的地表沉降控制标准的统计分析[J],岩石力学与工程学报,2006,Vo125(10):2030-2035
    [42]姚国伟,孙河川,魏庆朝,以地表沉降量作为沥青路面破损控制标准的研究[J],北京交通大学学报,2008,Vol32(1):40-43
    [43]廖建春,基于路面应力分析高速公路拓宽工程差异沉降控制标准[J],广东公路勘察设计,2008(1):5-9
    [44]武彦林,王选仓,王朝辉,沥青路面结构层平程度控制标准与措施[J],主路机械与施工机械化,2008,Vo125(4):35-37
    [45]孙立军,张奎鸿等,沥青路面施工平整度控制标准研究[J],华东公路,2001(2):25-30
    [46]张鹏,谭忠盛,浅埋隧道下穿公路引起的路面沉降控制基准[J],北京交通大学学报,2008,Vo132(4):137-140
    [47]Kobayashi M., Seki S., Iwamura I., and Nagai H, Design and construetion of urban tunnels beneath operating railway[C]. Conferenee Information:Proceedings of the world tunneling eongress 2003. AMSTERDAM,/NETHERLANDS,673-679.
    [48]廉功乙,地铁平行换型站帮接建设对既有地铁车站结构的影响研究[D],北京交通大学硕士学位论文,2010.
    [49]关继发,北京地铁5号线暗挖区间地表沉降分析与控制[J],现代城市轨道交通,2008(4):31-34.
    [50]杨广武,地下工程穿越既有地铁线路变形控制标准和技术研究[D]北京交通大学博士论文,2010.
    [51]姚宣德,王梦恕,地铁浅埋暗挖法施工引起的地表沉降控制标准的统计分析[J],岩石力学与工程学报,2006,Vo125(10):2030-2035
    [52]李文江,刘志春,朱永全,铁路站场下暗挖隧道地表沉降控制基准研究[J],岩土力学,2005,Vo126(7):1165-1169
    [53]王新线,既有铁路站场下暗挖隧道地面沉降标准研究[J],铁道标准设计,2006(4):54-56
    [54]韩煊,隧道施工引起地层位移及建筑物变形预测的使用方法研究[D],西安理工大学博士论文,2006.
    [55]吴介普,北京地区浅埋暗挖引起的地表沉降及其控制标准研究[D,北京交通大学学位论文,2009.
    [56]0'Reily M. P., New B. M., Settlement above tunnels in the United Kingdom-their magnitude and prediction[J], Tunnellion82,1982:173-181.
    [57]韩煊,隧道施工引起地层位移及建筑物变形预测的使用方法研究[D],西安理工大学博士论文,2006.[58]王霆,刘维宁,张成满等,地铁车站浅埋暗挖施工的地表沉降规律研究[J],岩石力学与工程学报,2007:Vo126(9):1855-1861
    [59]张忠苗,林存刚,吴世明等等过江盾构隧道穿越大堤的地层沉降分析与控制[J],岩土工程学报,2011:Vo1.33(6):977-984.
    [60]赵玉梅,城市地铁施工引起地层位移对邻近建筑物的风险研究[D],中南大学硕士学文论文,2009.
    [61]地铁隧道的下穿施工对上部路基沉降影响分析[J],隧道建设,2011,Vol.31(s1):220-225.
    [62]建设部城市建设研究院,城市桥梁设计荷载标准(CJJ77-98),中国建设工业出版,1998.
    [63]北京市市政工程设计研究总院等,给水排水工程管道结构设计规范(GB50332-2002),2003.
    [64]李子春,轨道结构垂向荷载传递与路基附加应力特性的研究[D],中国铁道部科学研究院博士论文,2000.
    [65]王光明等,汽车荷载对管道的作用标准值计算分析[J],特种结构,2007(2):34-38.
    [66]柳厚祥,地铁隧道盾构施工诱发地层移动机理与控制研究[D],西安理工大学博士学位论文,2008.
    [67]铁道部,TB10001-2005,铁路路基设计规范[S],北京,中国铁道出版社,2005.
    [68]铁道部,TB10003-2005,铁路隧道设计规范[S],北京,中国铁道出版社,2005
    [69]铁道部,TB10082-2005,铁路轨道设计规范[S],北京,中国铁道出版社,2005:15-17。
    [70]李子春.轨道结构垂向荷载传递与路基附加动应力特性的研究[D].北京:铁道部科学研究院,2000:43-58
    [71]聂志红,高速铁路轨道路基竖向动力响应研究[D],中南大学土木建筑学院硕士学文论文,2005::38-42
    [72]铁道部,铁路线路修了规则[S],北京,中国铁道出版社,2006:53-58
    [73]段敬民,矿山塌陷区房屋抗采动理论及加固技术研究[D],西南交通大学硕士学位论文,2005.
    [74]易小明,张顶立,逢铁铮等,城市隧道上覆土层整体下沉的力学机制分析[J],岩石力学与工程学报,2009:Vo128(al):2860-2867
    [75]余才高,地铁盾构隧道下穿铁路的安全措施[J],城市轨道交通研究,2009(2):67-71.
    [76]钱征,天津软土地基加固研究概述[J],勘察科学技术,1985(6):22-27.
    [77]中华人民共和国行业标准,公路养护技术规范(JTG H10-2009),中华人民共和国出版社,2010.1.1
    [78]江苏省交通公路局,水泥混凝土路面技术委员会,公路混凝土路面养护技术规范(JTJ037.1-2001),人民交通出版社,2002.
    [79]江苏省交通公路局,水泥混凝土路面技术委员会,公路沥青路面养护技术规范(JTJ037.2-2001),人民交通出版社,2002.
    [80]《高速公路养护质量检评方法(试行)》(交公路发[2002]572号),中华人民共和国交通部,
    2002.12.4.
    [81]中华人民共和国交通部,公路路基设计规范(JTGD30-2004) [S],人民交通出版社,2004
    [82]ISO2631-1:1997(E),人体承受全身振动能力的评价指南[S],国际标准化组织,1997.
    [83]张成平,张顶立,王梦恕等,城市隧道施工诱发的地面塌陷灾变机制及控制[J],岩土力学,2010, Vol.31(s1):303-309
    [84]卢祖文,高速铁路轨道技术综述[J],铁道工程学报,2007(1):1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700