双原子分子在飞秒激光强场中的电离解离动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在分子科学中,强激光场条件下研究分子动力学是一个具有挑战性的热点课题。在强激光场条件下探索物质的新特性以及以强激光场作为工具来研究怎样操作和控制物质等方面,该研究方向都有非常重大的应用前景。面对强场实验中层出不穷的新现象,从理论上探索这些实验现象背后的规律,建立合理的理论模型来解释这些实验现象就显得非常重要了。鉴于含时量子力学方法的高效性、直观性以及准确性,它被广泛的应用于分子动力学的理论研究当中。
     本论文采用含时量子力学方法针对不同分子体系在飞秒强激光场条件下的电离解离现象进行了模拟计算,得到了与实验符合较好的计算结果,并且从理论上很好的解释了实验现象。
     论文共包括五章,其中我们的主要工作是第三章到第五章。第一章简单介绍了分子反应动力学以及飞秒科学技术,回顾了近些年来飞秒激光的发展,简单阐述了飞秒激光强场中的电离解离现象以及量子含时波包方法,最后给出了本论文的主要工作内容。
     第二章首先介绍了波包和势能面的基本概念,然后阐述了耦合能级的基本理论,最后详细的介绍了含时量子波包计算方法。其中主要包括初始波包的计算、快速傅里叶变换方法以及常用的时间传播方法。
     第三章我们对I_2~-离子的光电离过程进行了理论研究。针对I_2~-离子飞秒时间分辨的光电离实验的结果,建立了一维含时波包模型,并且从理论上模拟了I_2~-离子的光电子能谱。和前人采用半经典的方法对该实验结果进行模拟相比,我们在这里采用了精确的量子力学方法来处理整个电离过程。我们的计算结果和实验结果符合的相当好,并且合理的解释了I_2~-离子整个光电离实验过程中的现象。
     第四章分为两部分。在第一部分中我们首先对NaI分子的光电离过程进行了理论研究。鉴于前人理论计算结果与实验结果的明显差异,我们采用了精确的量子力学方法对整个实验过程进行了理论模拟,理论结果和实验结果符合的很好。除此之外,我们还对整个光电离过程进行了合理的理论解释。在第二部分中我们从理论上对NaI分子的光解离过程进行了研究。在NaI分子的光电离过程中伴随有解离过程,并且这两个过程是相互竞争的。在不同的激光场条件下,电离和解离的产率都不相同。这点对于相关方面的实验工作来说,具有比较重要的指导意义。
     第五章我们通过计算得到了Na_2分子在强激光场条件下的光电子能谱。我们观察到了波包在中性激发态势能曲线上的周期性振动,而且还对各种电离机制进行了合理的分析。在整个光电离过程中,我们可以看到在不同的延迟时间条件下会有不同性质的光电离发生。通过计算结果我们还发现,通过控制延迟时间的长短我们可以控制自由电子动能的大小。
In molecular science,molecular dynamics study in strong laser fields is a challenging and hot topic.This research area has very significant application prospects in respects of exploring the new features of materials in strong laser fields as well as studying how to operate and control the substances with the intense laser fields as a tool.In the face of new phenomena detected in strong field experiments,it is very important to explore the law behind these experimental phenomena and set up a reasonable theoretical model to explain the phenomena of these experiments.Due to the efficiency,the intuition,and the accuracy of it,the time-dependent quantum mechanics method has been widely used in the theoretical study of molecular dynamics.
     In this dissertation,the simulations of the phenomena of ionization and dissociation in Femtosecond laser fields have been done by using the time-dependent quantum mechanics method in different molecular systems.These simulations accord well with the experimental results,and the experimental phenomena have been well explained.
     The dissertation contains five chapters,with our contributions given in ChapterⅢthrough V.First of all,the molecular reaction dynamics and the femtosecond science technology are introduced in chapterⅠ.Secondly,the development of femtosecond laser in recent years is reviewed.Thirdly,the ionization and dissociation phenomena in femtoscond laser field as well as the quantum time-dependent wave packet method are briefly described.The main work of the dissertation is given at the end of this section.
     ChapterⅡpresents firstly the basic concepts of wave packets and potential energy surfaces. Then,the basic theory of energy coupling is introduced.Finally,the quantum timedependent wave packet method is explained in details,which includes mainly the calculation of the initial wave packet,the fast Fourier transform method,and the time-transmission method commonly used.
     In ChapterⅢ,the theoretical study of photoionization process about I_2~- ion is performed. According to the experimental results,a one-dimensional time-dependent wave packet model is set up when the photoelectron spectroscopy is simulated.Compared with the earlier simulations using the semi-classical method,the accurate quantum mechanics method is adopted here to deal with the entire ionization process.The theoretical results accord well with the experimental ones and the experimental phenomena of photoionization process are illuminated reasonably.
     ChapterⅣis divided into two parts.In the first part,theoretical research is performed on the photoionization process of Nal molecule.In view of significant differences between previous theoretical calculations and experimental results,the accurate quantum mechanics method is adopted in the theoretical simulation,and the theoretical results are consistent with the experimental ones.In addition,a reasonable theory is used to explain the photoionization process.In the second part,theoretical research on the dissociation process of NaI molecule is carried out.Photoionization process of NaI molecule always occurs accompanying dissociation process and these two processes are competing.Ionization and dissociation results change with the laser field.This point has important guiding significance for the relevant experimental work.
     In ChapterⅤ,the photoelectron spectrum of Na_2 molecule in strong laser field is calculated. It is observed that the periodic vibration of the wave packet on the potential energy curve of the neutral excited state and the reasonable analysis of different ionization mechanisms is obtained.In the whole process of photoionization,it can be seen that different photoionization occurs in different delay time.From the results of calculation,it is found that the level of free-electron kinetic energy can be controlled by adjusting the length of the delay time.
引文
[1]Keefe A O,Scherer J J,Cooksy A L,et al.Cavity ring down dye laser spectroscopy of jet-cooled metal clusters:Cu_2 and Cu_3[J].Chem.Phys.Lett.,1990,172(3-4):214-218.
    [2]Scherer J J,Voelkel D,Rakestraw D J,et al.Saykally R J and Keefe A O,Infrared cavity ringdown laser absorption spectroscopy(IR-CRLAS)[J].Chem.Phys.Lett.,1995,245(2-3):273-280.
    [3]Romanini D,Kachanov A A,Sadeghi N,et al.CW cavity ring down spectroscopy[J].Chem.Phys.Lett.,1997,264(3-4):316-322.
    [4]Chandler D W,Houston P L.Two-dimensional imaging of state-selected photodissociation products detected by multiphoton ionization[J].J.Chem.Phys.,1987,87(2):1445-1451.
    [5]Kim Y S,Kang W K,Jung K H,et al.State-selective photofragment imaging of iodine atoms via photodissociation of CF_3I at 277 nm[J].J.Chem.Phys.,1996,105(3):551-555.
    [6]Dantus M,Rosker M J;Zewail A H,et al.Femtosecond real-time probing of reactions.Ⅱ.The dissociation reaction of ICN[J].J.Chem.Phys.,1988,89(10):6128-6140.
    [7]Bowman R M,Dantus M,Zewail A H,et al.Femtosecond transition-state spectroscopy of iodine:From strongly bound to repulsive surface dynamics[J].Chem.Phys.Lett.,1989,161(1-2):297-302.
    [8]Rose T S,Rosker M J,Zewail A H,et al.Femtosecond real-time probing of reactions.Ⅳ.The reactions of alkali halides[J].J.Chem.Phys.,1989,91(5):7415-7419.
    [9]Breen J J,Peng L W,Willberg D M,et al.Real-time probing of reactions in clusters[J].J.Chem.Phys.,1990,92(3):805-809.
    [10]Khundkar L R,Zewail A H.Picosecond photofragment spectroscopy.Ⅳ.Dynamics of consecutive bond breakage in the reaction C_2F_4I_2-C_2F_4+2I[J].J.Chem.Phys.,1990,92(2):231-236.
    [11]孙志刚.小分子飞秒动力学和量子计算模拟[D].大连:中国科学院大连化学物理研究所,2005.
    [12]姚丽.几个重要的基元反应的动力学研究[D].大连:大连理工大学物理系,2005.
    [13]张宏.光解动力学的实验与理论研究[D].大连:中国科学院大连化学物理研究所,2007.
    [14]楚天舒.量子含时波包方法研究基元反应的非绝热动力学过程[D].大连:中国科学院大连化学物理研究所,2005.
    [15]赵美玉.三原子分子光解动力学的理论研究[D].大连:中国科学院大连化学物理研究所,2005.
    [16]李国辉.含时波包理论在光解离动力学中的应用[D].大连:中国科学院大连化学物理研究所,2002.
    [17]朱井义.飞秒激光强场中的电离解离动力学[D].大连:中国科学院大连化学物理研究所,2007.
    [18]张竞辉.离子成像方法研究光解离和光电离[D].大连:中国科学院大连化学物理研究所,2002.
    [19]尹淑慧.飞秒实时探测技术研究小分子里德堡态动力学[D].大连:中国科学院大连化学物理研究所,2003.
    [20]元凯军.超短脉冲激光场中小分子激发与电离动力学研究[D].大连:大连理工大学物理系,2007.
    [21]Mairesse Y,de Bohan A,Frasinski L J,et al.Attosecond Synchronization of High-Harmonic Soft X-rays[J].Science,2003,302(5650):1540-1543.
    [22]Johnsson P,Lopez-Martens R,Kazamias S,et al.Attosecond Electron Wave Packet Dynamics in Strong Laser Fields[J].Phys.Rev.Lett.,2005,95(1):013001(1)-013001(4).
    [23]Kreibich T,Lein M,Engel V,et al.Even-Harmonic Generation due to Beyond-Born-Oppenheimer Dynamics [J].Phys.Rev.Lett.,2001,87(10):103901(1)-103901(4).
    [24]Bandrauk A D,Chelkowski S.On laser Coulomb explosion imaging of proton motion [J].Chem.Phys.Lett.,2001,336(2-3):518-522.
    [25]Itatani J,Levesque J,Zeidler D,et al.Tomographic imaging of molecular orbitals [J].Na-ture(London),2004,432(3):867-871.
    [26]Kanai T,Minemoto S,Sakai H.Quantum interference during high-order harmonic generation from aligned molecules [J].Nature(London),2005,435(5):470-474.
    [27]Tong X M,Zhao Z X,Lin C D.Probing Molecular Dynamics at Attosecond Resolution with Femtosecond Laser Pulses [J].Phys.Rev.Lett.,2003,91(23):233203(1)-233203(4).
    [28]Alnaser A S,Tong X M,Osipov T,et al.Routes to Control of H_2 Coulomb Explosion in Few-Cycle Laser Pulses [J].Phys.Rev.Lett.,2004,93(18):183202(1)-183202(4).
    [29]Harumiya K,Kono H,Fujimura Y.Intense laser-field ionization of H_2 enhanced by two-electron dynamics [J].Phys.Rev.A,2002,66(4):043403(1)-043403(14).
    [30]Paramonov G K.Ionization and dissociation of simple molecular ions in intense infrared laser fields:Quantum dynamical simulations for three-dimensional models of HD~+ and H_2~+ [J]-Chem.Phys.Lett.,2005,411(3-4):350-356.
    [31]Alnaser A S,Voss S,Tong X M,et al.Effect of Molecular Structure on Ion Disintegration Patterns in Ionization of O_2 and N_2 by Short Laser Pulses [J].Phys.Rev.Lett.,2004,93(11):113003(1)-113003(4).
    [32]Tong X M,Zhao Z X,Lin C D.Correlation Dynamics between Electrons and Ions in the Fragmentation of D2 Molecules by Short Laser Pulses [J].Phys.Rev.A,2003,68(4):043412(1)-043412(12).
    [33]Kawata I,Kono H,Fujimura Y,et al.Intense-laser-field-enhanced ionization of two-electron molecules:Role of ionic states as doorway states [J].Phys.Rev.A,2000,62(3):031401(1)-031401(4).
    [34]Chelkowski S,Zamojski M,Bandrauk A D.Laser-Phase Directional Control of Photofragments in Dissociative Ionization of H_2~+ Using Two-Color Intense Laser Pulses [J].Phys.Rev.A,2001,63(2):023409(1)-023409(11).
    [35]Itatani J,Quere F,Yudin G L,et al.Attosecond Streak Camera [J].Phys.Rev.Lett.,2002,88(17):173903(1)-173903(4).
    [36]Drescher M,Hentschel M,Kienberger R,et al.Time-Resolved Electron Spectroscopy of Atomic Inner-Shell Dynamics [J].Journal of Electron Spectroscopy and Related Phenomena,2004,259(3):137-140.
    [37]Niikura H,Legare F,Hasbani R,et al.Probing Molecular Dynamics with Attosecond Resolution Using Correlated Wave Packet Pairs [J].Nature (London),2003,421(2):826-829.
    [38]Niikura H,Legare F,Villeneuve D M,et al.Attosecond Dynamics Using Sub-Laser-Cycle Electron Pulses [J].Journal of Modern Optics,2005,52(2-3):453-464.
    [39]Erdmann M,Engel V J.Combined Electronic and Nuclear Dynamics in a Simple Model System [J].J.Chem.Phys.,2004,120(1):158-164.
    [40]Zhou X X,Tong X M,Zhao Z X,et al.Role of Molecular Orbital Symmetry on the Alignment Dependence of High-Order Harmonic Generation with Molecules [J].Phys.Rev.A,2005,71(6):061801(1)-061801(4).
    [41]Itatani J,Zeidler D,Levesque J,et al.Controlling High Harmonic Generation with Molecular Wave Packets [J].Phys.Rev.Lett.,2005,94(12):123902(1)-123902(4).
    [42]Chen C T,Robicheaux F.R-matrix Floquet description of multiphoton ionization of Li [J].Phys.Rev.A,1996,54(4):3261-3269.
    [43]Paulus G G,Nicklich W,Xu H,et al.Plateau in above threshold ionization spectra [J].Phys.Rev.Lett.,1994,72(18):2851-2854.
    [44]Mohideen U,Sher M H,Tom H W K,et al.High intensity above-threshold ionization of He [J].Phys.Rev.Lett.,1993,71(4):509-512.
    [45]Krause J L,Schafer J J,Kulander K C.High-order harmonic generation from atoms and ions in the high intensity regime [J].Phys.Rev.Lett.,1992,68(24):3535-3538.
    [46]Macklin J J,Kmetec J D,Gordon C L.High-order harmonic generation using intense femtosecond pulses [J].Phys.Rev.Lett.,1993,70(6):766-769.
    [47]Zuo T,Bandrauk A D,Ivanov M,et al.Control of High-Order Harmonic Generation in Strong Laser Fields [J].Phys.Rev.A,1995,51(5):3991-3998.
    [48]Nguyen-Dang T T,teauneuf F C,Manoli S,et al.Tunnel ionization of H_2 in a low-frequency laser field:A wave-packet approach [J].Phys.Rev.A,1997,56(3):2142-2167.
    [49]Codling K,Frasinski L J.Dissociative ionization of small molecules in intense laser fields [J].J.Phys.B,1993,26(5):783-809.
    [50]Parker J,Stroud J C R.Generalization of the Keldysh theory of above-threshold ionization for the case of femtosecond pulses [J].Phys.Rev.A,1989,40(10):5651-5658.
    [51]Constant E,Stapelfeldt H,Corkum P B.Observation of Enhanced Ionization of Molecular Ions in Intense Laser Fields [J].Phys.Rev.Lett.,1996,76(22):4140-4143.
    [52]Gibson G N,Li M,Guo C,et al.Strong-Field Dissociation and Ionization of textH_2~+ Using Ultrashort Laser Pulses [J].Phys.Rev.Lett.,1997,79(11):2022-2025.
    [53]Posthumus J H,Giles A J,Thompson M R,et al.Field-ionization Coulomb explosion of diatomic molecules in intense laser fields [J].J.Phys.B,1996,29(23):5811-5829.
    [54]Yu H,Zuo T,Bandrauk A D.Molecules in Intense Laser Fields:Enhanced Ionization in a OneDimensional Model of H_2 [J].Phys.Rev.A,1996,54(4):3290-3298.
    [55]Yu H,Bandrauk A D.Molecules in Intense Laser Fields:Enhanced Ionization in One- and TwoElectron Linear Triatomic Molecules [J].Phys.Rev.A,1997,56(1):685-693.
    [56]Yu H,Zuo T,Bandrauk A D.Intense field ionization of molecules with ultra-short laser pulses- enhanced ionization and barrier-suppression effects [J].J.Phys.B,1998,31(7):1533-1551.
    [57]Bandrauk A D,Ruel J.Charge-Resonance-Enhanced Ionization of Molecular Ions in Intense LasePulses:Geometric and Orientation Effects [J].Phys.Rev.A,1999,59(3):2153-2162.
    [58]Rottke M,Ludwig J,Sandner W.H_2 and D_2 in intense sub-picosecond laser pulses:Photoelectron spectroscopy at 1053 and 527 nm [J].Phys.Rev.A,1996,54(3):2224-2237.
    [59]Walsh T D G,Ilkov F A,Chin S L,et al.Laser-induced processes during the Coulomb explosion of H_2 in a Ti-sapphire laser pulse [J].Phys.Rev.A,1998,58(5):3922-3933.
    [60]Schmidt M,Normand D,Cornaggia C.Laser-induced trapping of chlorine molecules with pico-and femtosecond pulses [J].Phys.Rev.A,1994,50(6):5037-5045.
    [61]Hishikawa A,Iwamae A,Yamanouchi K.Ultrafast Deformation of the Geometrical Structure of CO_2 Induced in Intense Laser Fields [J].Phys.Rev.Lett.,1999,83(6):1127-1130.
    [62]Hishikawa A,Iwamae A,Yamanouchi K.Ultrafast structural deformation of NO_2 in intense laser fields studied by mass-resolved momentum imaging [J].J.Chem.Phys.,1999,111(19):8871-8878.
    [63]Vijaxalakshmi K,Bhardwaj V R,Mathur D.An experimental and theoretical study of the dissociative ionization of CCl_4,CHCl_3 and CH_2Cl_2 by an intense laser field [J].J.Phys.B,1997,30(18):4065-4085.
    [64]Sanderson J H,El-Zein A,Bryan W A,et al.Geometry modifications and alignment of H_2O in an intense femtosecond laser pulse [J].Phys.Rev.A,1999,59(4):R2567-R2570.
    [65]Sanderson J H,Thomas R V,Bryan W A,et al.High-intensity femtosecond laser interaction with vibrationally excited CO_2 [J].J.Phys.B,1998,31(2):L59-L64.
    [66]Chelkowski S,Foisy C,Bandrauk A D.Electron-nuclear dynamics of multiphoton H_2~+ dissociative ionization in intense laser fields [J].Phys.Rev.A,1998,57(2):1176-1185.
    [67]Chelkowski S,Conjusteau A,Zuo T,et al.Dissociative ionization of H_2~+ in an intense laser field:Charge-resonance-enhanced ionization,Coulomb explosion,and harmonic generation at 600 nm [J].Phys.Rev.A,1996,54(4):3235-3244.
    [68]Kawata I,Kono H,Fujimura Y.Electronic and nuclear correlation dynamics of H_2~+ in an intense femtosecond laser pulse [J].Chem.Phys.Lett.,1998,289:546-552.
    [69]Chelkowski S,Zuo T,Atabek O,et al.Dissociation,ionization,and Coulomb explosion of H_2~+ in an intense laser field by numerical integration of the time-dependent Schrodinger equation [J].Phys.Rev.A,1995,52(4):2977-2983.
    [70]Bandrauk A D,Shen H.Exponential split operator methods for solving coupled time-dependent Schrodinger equations [J].J.Chem.Phys.,1993,99(2):1185-1193.
    [71]Kawata I,Kono H.Dual transformation for wave packet dynamics:Application to Coulomb systems[J].J.Chem.Phys.,1999,111(21):9498-9508.
    [72]Bandrauk A D,Lu H Z.Enhanced ionization of the molecular ion H_2~+ in intense laser and static magnetic fields [J].Phys.Rev.A,2000,62(5):053406(1)-053406(10).
    [73]Chelkowski S,Zuo T,Bandrauk A D.Ionization Rates of H_2~+ in an Intense Laser Field by Numerical Integration of the Time-Dependent Schrodinger Equation [J].Phys.Rev.A,1992,46(9):R5342-R5345.
    [74]Gattuta K J L,Cohen J S.Quasiclassical modeling of helium double photoionization [J].J.Phys.B,1998,31(24):5281-5291.
    [75]Levine R D,Bernstein R B.Molecular Reaction Dynamics and Chemical Reactivity [M].New York:Oxford University Press,1987.
    [76]Leone S R.Laser probing of chemical-reaction dynamics [J].Science,1985,227(1):889-895.
    [77]Fork R L,Greene B I,Shank C V.Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking[J].Appl.Phys.Lett.,1981,38(2):671-672.
    [78]Spence D E,Kean P N,Sibbett W.60-fsec pulse generation from a self-mode-locked Ti:sapphire laser[J].Opt.Lett.,1991,16(1):42-44
    [79]Huang C P,Asaki M T,Backus S,et al.17-fs pulses from a self-mode-locked Ti:sapphire laser[J].Opt.Lett.1992,17(2):1289-1300.
    [80]Jacobson J M,Naganuma K,Haus H A,et al.Femtosecond pulse generation in a Ti:Al_2O_3 laser by using second-and third-order intracavity dispersion[J].Opt.Lett.,1992,17(5):1606-1608.
    [81]Zhou J P,Taft G,Huang C P,et al.Pulse evolution in a broad-bandwidth Ti:sapphire laser[J].Opt.Lett.,1994,19(3):1149-1151.
    [82]Sting A,Lenznerm M,Spielmann C,et al.Sub-10fs mirror-dispersion-controlled Ti:sapphire laser [J].Opt.Lett.,1995,20(1):602-604.
    [83]Nisoli M,De Silvestri S,Sveto O,et al.Compression of high-energy laser pulses below 5 fs[J].Opt.Lett.,1997,22(1):522-524.
    [84]Baltuska A,Wei Z Y,Wiersma A.Optical pulse compression to 5 fs at a 1-MHz repetition rate[J].Opt.Lett.,1997,22(1):102-104.
    [85]Zewail A H.Femtochemistry:Atomic-Scale Dynamics of the Chemical Bond[J].J.Phys.Chem.A,2000,104(2):5660-5694.
    [86]Koltting C,Diau E W G,Baldwin J E,et al.Direct Observation of Resonance Motion in Complex Elimination Reactions:Femtosecond Coherent Dynamics in Reduced Space[J].J.Phys.Chem.A,2001,105(1):1677-1682.
    [87]Koltting C,Diau E W G,Solling T I,et al.Coherent Dynamics in Complex Elimination Reactions:Experimental and Theoretical Femtochemistry of 1,3-Dibromopropane and Related Systems[J].J.Phys.Chem.A,2002,106(3):7530-7546.
    [88]Stolow A,Bragg A E,Neumark D M.Femtosecond Time-Resolved Photoelectron Spectroscopy[J].Chem.Rev.,2004,104(1):1719-1757.
    [89]Liu H,Zhang J,Yin S,et al.CS_2 decay dynamics investigated by two-color femtosecond laser pulses [J].Phys.Rev.A,2004,70(3):042501-042507.
    [90]Carley R E,Heesel E,Fielding H H.Femtosecond lasers in gas phase chemistry[J].Chem.Soc.Rev.,2005,34(2):949-969.
    [91]Ledingham K W D,Singhal R P,Smith D J,et al.An Investigation of Polyatomic Molecules in Intense Infrared Laser Beams[J].CLF Annual Report,1997,98(1):101-104.
    [92]Levis R J,DeWitt M J.Photoexcitation,Ionization and Dissociation of Molecules Using Intense Near-Infrared Radiation of Femtosecond Duration[J].J.Phys.Chem.A,1999,103(3):6493-6507
    [93]Nakashima N,Shimizu S,Yatsuhashi T,et al.Large molecules in high-intensity laser fields[J].Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2000,1(1):131-143.
    [94]Posthumus J H.The dynamics of small molecules in intense laser fields[J].Rep.Prog.Phys.,2004,67(1):623-665.
    [95]Esry B D,Sayler A M,Wang P Q,et al.Above Threshold Coulomb Explosion of Molecules in Intense Laser Pulses [J].Phys.Rev.Lett,2006,97(2):013003-013006.
    [96]Agostini P,Fabre F,Mainfray G,et al.Free-Free Transitions Following Six-Photon Ionization of Xenon Atoms [J].Phys.Rev.Lett.,1979,42(3):1127-1130.
    [97]Keldysh L V.Ionization in the field of a strong electromagnetic wave [J].Sov.Phys.JETP,1965,20(2):1307-1314.
    [98]Ammosov M V,Delone N B,Krainov V P.Tunnel ionization of complex atoms and atomic ions in an alternating electromagnetic field [J].Sov.Phys.JETP,1986,64(1):1191-1194.
    [99]Delone N B,Krainov V P.Multiphoton processes in atoms [M].Berlin:Springer-Verlag,1999.
    [100]Meve E,Breger P,Trainham R,et al.Atoms in Strong Optical Fields:Evolution from Multiphoton to Tunnel Ionizaiton [J].Phys.Rev.Lett.,1993,70(7):406-409.
    [101]Merrick J D,Robert J L.Calculating the Keldysh adiabaticity parameter for atomic,diatomic [J].J.Chem.Phys.,1998,108(18):7739-7742.
    [102]Walker B,Sheehy B,DiMauro L F,et al.Precision Measurement of Strong Field Double Ionization of Helium [J].Phys.Rev.Lett.,1994,73(3):1227-1230.
    [103]Larochelle S,Talebpour A,Chin S L.Non-sequential and sequential double ionization of NO in an intense femtosecond Ti:Sapphire laser pulse [J].J.Phys.B:At.Mol.Opt.Phys,1997,30(7):L245-L250.
    [104]Guo C,Li M,Nibarger J P,et al.Single and double ionization of diatomic molecules in strong laser fields [J].Phys.Rev.A,1998,58(6):R4271-R4274.
    [105]Fittinghoff D N,Bolton P R,Chang B,et al.Observation of Nonsequential Double Ionization of Helium with Optical Tunneling [J].Phys.Rev.Lett.,1992,69(18):2642-2645.
    [106]Schafer K J,Yang B,DiMauro L F,et al.Above Threshold Ionization Beyond the High Harmonic Cut off [J].Phys.Rev.Lett.,1993,70(11):1599-1602.
    [107]Corkum P B.Plasma perspective on strong-field multiphoton ionization [J].Phys.Rev.Lett.,1993,71(13):1994-1997.
    [108]Zavriyev A,Bucksbaum P H,Muller H G,et al.Ionization and dissociation of H2 in intense laser fields at 1064nm,532nm,and 355nm [J].Phys.Rev.A,1990,42(9):5500-5513.
    [109]Yang B,Saeed M,DiMauro L F,et al.High-Resolution multiphoton ionization and dissociation of H~2 and D~2 molecules in intense fields [J].Phys.Rev.A,1991,44(3):R1458-R1461.
    [110]Frasinski L J,Posthumus J H,Plumridge J,et al.Manipulation of Bond Hardening in H_2~+ by Chirping of Intense Femtosecond Laser Pulses [J].Phys.Rev.Lett.,1999,83(18):3625-3628.
    [111]Suzor A G,He X,Atabek O.Above-Threshold Dissociation of H_2~+ in Intense Laser Fields [J].Phys.Rev.Lett.,1990,64(5):515-518.
    [112]Zavriyev A,Bucksbaum P H.Light-induced Vibrational Structure in H_2~+ and D_2~+ in Intense Laser Fields [J].Phys.Rev.Lett.,1993,70(8):1077-1080.
    [113]Frasinski L,Codling K,Hatherly P A.Covariance Mapping:A Correlation Method Applied to Multiphoton Multiple Ionization [J].Science,1989,246(4933):1029-1031.
    [114]Ren H,Wu C,Ma R,et al.Field ionization and Coulomb explosion of methanol in an intense field of a femtosecond laser beam [J].Int.J.Mass Spectrosc,2002,219(2):305-313.
    [115]Poth L,Zhong Q,Ford J V,et al.Charge stripping from highly charged iodine ions formed from Coulomb explosion of CH3I clusters [J].Chem.Phys.,1998,239(1-3):309-315.
    [116]Adoui L,Caraby C,Cassimi A,et al.Fast ion-induced CO molecule fragmentation in the strong interaction regime [J].J.Phys.B:At.Mol.Opt.Phys.,1999,32(3):631-647.
    [117]Posthumus J H,Frasinski L J,Giles A J,et al.Dissociative ionization of molecules in intense laser fields:a method of predicting ion kinetic energies and appearance intensities [J].J.Phys.B:At.Mol.Opt.Phys.,1995,28(10):L349-L353.
    [118]Chelkowski S,Conjusteau A,Zuo T,et al.Dissociative ionization of H_2~+ in an intense laser field:Charge-resonance-enhanced ionization,Coulomb explosion,and harmonic generation at 600 nm [J].Phys.Rev.A,1996,54(4):3235-3244.
    [119]Constant E,Stapelfeldt H,Corkum P B.Observation of Enhanced Ionization of Molecular Ions in Intense Laser Fields [J].Phys.Rev.Lett.,1996,76(22):4140-4143.
    [120]Schrodinger E.Quantisierung als Eigenwertproblem (Zweite Mitteilung) [J].Ann.Phys.,1926,79(2):489-527.
    [121]Ehrenfest P.Bemerkunguber die angenaherte Gultigkeit der klassischen Mechanik innerhalb der.Quantenmechanik [J].Z.Phys.,1927,45(2):455-457.
    [122]Hirst D M.Potential energy surfaces molecular structure and reaction dynamics [M].Great Britain:Taylor and Francis Ltd,1985.
    [123]Schatz G C.The analytical representation of electronic potential energy surfaces [J].Rev.Mod.Phys.,1989,61(2):669-688.
    [124]Truhlar D G,Steckler R.Potential energy surfaces for polyatomic dynamics [J].Chem.Rev.,1987,87(3):217-236.
    [125]Hollebeek T,Ho T S,Rabitz H.Constructing multidimensional molecular potential energy surfaces from ab initio data [J].Phys.Chem.,1999,50(2):537-570.
    [126]Schatz S,Vivie-Riedle R D.A practical approach to multivariate interpolation [J].Comput.Phys.,1997,11(3):647-659.
    [127]Ho T S,Rabit H.A general method for constructing multidimensional molecular potential energy surfaces from ab initio calculations [J].J.Chem.Phys.,1996,104(7):2584-2597.
    [128]Hollebeek T,Ho T S,Rabit H.A fast algorithm for enaluating multidimentional potential energy surfaces [J].J.Chem.Phys.,1997,106(17):7223-7227.
    [129]Jackie A,Meyer H D.Product representation of potential energy surfaces [J].J.Chem.Phys.,1996,104(2):7974-7984.
    [130]Jackie A,Meyer H D.Product representation of potential energy surfaces [J].J.Chem.Phys.,1998,109(10):3772-3779.
    [131]Frishman A,Hoffman D K,Kouri D J.Distributed approximating functional fit of the H_3 ab initio potential energy data of Liu and Siegbahn [J].J.Chem.Phys.,1997,107(6):804-811.
    [132]Ischtwan J,Collins M A.Molecular potential energy surfaces by interpolation[J].J.Chem.Phys.,1994,100(11):8080-8088.
    [133]Collins M A.The interface between electronic structure theory and reaction dynamics by reaction path methods[J].Adv.Chem.Phys.,1996,93(2):389-453.
    [134]Collins M A.Molecular potential energy surfaces for chemical reaction dynamics[J].Theor.Chem.Acc.,2002,108(6):313-324.
    [135]Bettens R P A,Collins M A.Learning to interpolate molecular potential energy surfaces with confidedce:A Bayesian approach[J].J.Chem.Phys.,1999,111(3):816-826.
    [136]Thompson K C,Collins M A.Molecular Potential energy surfaces by interpolation:Further refinements [J].J.Chem.Soc.,Faraday Trans.,1997,93(9):871-878.
    [137]Thompson K C,Jordan M J,Collins M A.Polyatomic molecular potential energy surfaces by interpolation in local internal coordinates[J].J.Chem.Phys.,1998,108(3):8302-8316.
    [138]Zewail A H.Femtochemistry[J].J.Phys.Chem,1993,97(48),12427-12446.
    [139]Dantus M,Rosker M J,Zewail A H.Femtosecond real-time probing of reactions.Ⅱ.The dissociation reaction of ICN[J].J.Chem.Phys,1988,89(10),6128-6140.
    [140]Herek J L,Materny A,Zewail A H.Femtosecond control of an elementary unimolecular reaction from the transition-state region[J].Chem.Phys.Lett,1994,228(2-3):15-25.
    [141]Kosloff R.Time-dependent quantum-mechanical methods for molecular dynamics[J].J.Phys.Chem.,1988,92(8):2087-2100.
    [142]N B,C K,N S.Time-dependent quantum mechanical approach to reactive scattering and related processes[J].Phys.Rep.,1997,280(3):79-144.
    [143]Schinke R.Photodissociation dynamics[M].Cambridge:Cambridge University Press,1993.
    [144]Born M,Huang K.Dynamical theory of Crystal Lattics[M].New York:Oxford University Press,1954.
    [145]徐克尊.高等原子分子物理学[M].北京:科学出版社,1993.
    [146]Born M,Oppenheimer R.Born-Oppenheimer approximation[J].Ann.phys.,1927,84(2):457-469.
    [147]王国文.原子与分子光谱导论[M].北京:北京大学出版社,1985.
    [148]Koppel H,Domcke W,Cederbaum L S.Multimode molecular-dynamics beyond the Born-Oppenheimer approximation[J].Adv.Chem.Phys.,1984,57(2):59-63.
    [149]Smith F T.Diabatic and adiabatic representations for atomic collision problems[J].Phys.Rev.,1969,179(3):111-121.
    [150]Mead C A,Truhlar D G.Conditions for the definition of a strictly diabatic electronic basis for molecular systems[J].J.Chem.Phys.,1982,77(2):6069-6073.
    [151]Zhang D S,Zhang Q G,Zhang Y C.Time-Dependent wavepacket treatment of the reaction HD+H→H+DH,D+H_2[J].J.At.Mol.Phys.1996,01(1):93-98.
    [152]Light J C,Hamilton I P,Lill J V.Generalized discrete variable approximation in quantum mechanics [J].J.Chem.Phys.,1985,82(6):1400-1425.
    [153]Baye D,Heenen P H.Generalized meshes for quantum mechanical problems[J].J.Phys.A,1986,19(6):2041-2053.
    [154]Garraway B M,Suominent K A.Wave-Packet dynamics:New physics and chemistry in femto-time [J].Rep.Prog.Phys.,1995,58(5):365-375.
    [155]Morse P M.Diatomic molecules according to the wave mechanics.ⅱ.vibrational level[J].Phys.Rev.,1929,34(1):51-107.
    [156]Wei H,Carrington T.The discrete variable representation of a triatomic Hamiltonian in bond length-bond angle coordinates[J].J.Chem.Phys.,1992,97(6):3029-3038.
    [157]Harris D O,Engerholm,Gwinn W D.Calculation of matrix elements for one-dimensional quantum-mechanical problems and the application to anharmonic oscillators[J].J.Chem.Phys.,1965,43(6):1515-1532.
    [158]Dickinson A S,Certain P R.Calculation of matrix elements for one-dimensional quantum-mechanical problems[J].J.Chem.Phys.,1968,49(7):4209-4231.
    [159]Johnson B R,Reinhardt W P.Adiabatic separations of stretching and bending vibrations:Application to H_2O[J].J.Chem.Phys.,1986,85(7):4538-4553.
    [160]Muendel C,Domcke W.Nuclear-dynamics in resonant electron molecule scattering beyond the local approximation-model-calculations on dissociative attachment and vibrational excitation[J].J.Phys.B:At.Mol.Opt.Phys.,1984,17(3):3593-3599.
    [161]Marston C C,Balint-Kurti G G.The Fourier grid Hamiltonian method for bound state eigenvalues and eigenfunctions[J].J.Chem.Phys.,1989,91(6):3571-3576.
    [162]Meyer R.Trigonometric interpolation method for one-mentional quantum mechanical problems [J].J.Chem.Phys.,1970,52(2):2053-2059.
    [163]Press W H,Teukolsky S A,Vettering W T,et al.Numerical Recipes in Fortran 77[M].New York:Cambrige University Press,2001.
    [164]Balint-Kurti,Dixon R N,Marston C C.Grid methods for solving the Schr(o|¨)dinger equation and time-dependent quantum dynamics of molecular photofragmentation and reactive scattering processes [J].Int.Rev.Phys.Chem.,1992,11(1):317-325.
    [165]Kosloff R,Tal-Ezer H.A direct relaxation method for calculating eigenfunctions and eigenvalues of the Schr(o|¨)dinger equation on a grid[J].Chem.Phys.Lett.,1986,127(3):223-230.
    [166]Wei H,Carrington Jr T.Discrete variable representations of complicated kinetic energy operators [J].J.Chem.Phys.,1994,101(1):1343-1359.
    [167]Echave J,Clary D C.Potential potimized discrete variable representation[J].Chem.Phys.Lett.,1992,190(1):225-229.
    [225]Feit M D,Fleck Jr J A.Solution of the schrSdinger equation by a spectral method Ⅱ:Vibrational energy levels of triatomic molecules[J].J.Chem.Phys.,1983,78(1):301-323.
    [169]Feit M D,Fleck Jr J A,Steiger A.Solution of the schr(o|¨)dinger equation by a spectral method[J].J.Comput.Phys.,1982,47(1):412-419.
    [170]Neuhauser D.Bound state eigenfunctions from wave packets:Time-energy resolution[J].J.Chem.Phys.,1990,93(2):2611-2632.
    [171]Beck M H,Meyer H D.Extracting accurate bound-state spectra from approximate wave packet propagation using the filter-diagonalization method[J].J.Chem.Phys.,1998,109(3):3730-3738.
    [172]Chen R Q,Guo H.Efficient calculation of matrix elements in low storage filter diagonalization[J].J.Chem.Phys.,1999,111(1):464-472.
    [173]Johnson B R.New numerical methods applied to solving the one dimensional eigenvalue problem [J].J.Chem.Phys.,1977,67(3):4086-4095.
    [174]Baye D.Constant-step Lag-range meshes for central potentials[J].J.Phys.B:At.Mol.Opt.Phys.,1995,28(3):4399-4412.
    [175]Baye D.Magnetized hydrogen-atom on a Laguerre mesh[J].J.Phys.B:At.Mol.Opt.Phys.,1991,24(2):3551-3557.
    [176]Hesse M,Baye D.Lagrange-mesh calculations of the ground-state rotational bands of the H_2~+ and D_2~+ molecular ions[J].J.Phys.B:At.Mol.Opt.Phys.,2003,36(1):139-146.
    [177]Hesse M.Three-body bound-state calculations by the Lagrange-mesh method:Selection of a coordinate system[J].Phys.Rev.E,2002,65(6):0466703-0466712.
    [178]Baye D,Hesse M,Vincke M.The unexplained accuracy of the lagrange-mesh method[J].Phys.Rev.E,2002,65(3):026701-026717.
    [179]Kosloff R.Time-dependent quantum-mechanical methods for molecular dynamics[J].J.Phys.Chem.,1988,92(8):2087-2100.
    [180]Leforestier C,Bisseting R H,Cerjan C,et al.A comparison of different propagation schemes for the time dependent SchrSdinger equation[J].J.Comput.Phys.,1991,94(1):59-80.
    [181]Kosloff D,Kosloff R.A Fourier method solution for the time dependent Schr¨odinger equation as a tool in molecular dynamics[J].J.Comput.Phys.,1983,52(1):35-53.
    [182]Askar A,Cakmak A S.Explicit integration method for the time-dependent Schr(o|¨)dinger equation for collision problems[J].J.Chem.Phys.,1978,68(6):2794-2798.
    [183]Chin S,Chen R C.Gradient symplectic algorithms for solving the Schr(o|¨)dinger equation with time-dependent potentials[J].J.Chem.Phys.,2002,117(4):1409-1415.
    [184]Truong T N,Tanner J J,Bala P,et al.A comparative study of time dependent quantum mechanical wave packet evolution methods[J].J.Chem.Phys.,1992,96(3):2077-2084.
    [185]Nyman G,Yu H G.Quantum theory of bimolecular chemical reactions[J].Rep.Phys.Prog.,2000,63(3):1001-1059.
    [186]Goldstein G,Baye D.Sixth-order factorization of the evolution operator for timedependent potentials [J].Phys.Rev.E,2004,70(6):056703(1-7).
    [187]Baye D,Goldstein G,Capel P.Fourth-order factorization of the evolution operator for timedependent potentials[J].Phys.Lett.A,2003,317(3):337-343.
    [188]Bandrank A D,Shen H.Exponential split operator methods for solving coupled timedependent Schr(o|¨)dinger equations[J].J.Chem.Phys.,1993,99(2):1185-1193.
    [189]Fattal E,Kosloff R.Phase space approach for potimizing grid representations:The mapped fourier method[J].Phys.Rev.E,1996,53(2):1217-1225.
    [190]Sambe H.Steady states and quasienergies of a quantum-mechanical system in an oscillating field [J].Phys.Rev.A,1973,7(6):2203-2213.
    [191]Peskin U,Moiseyev N.The solution of the time-dependent Schr6dinger equation by the(t,t')method:Theory,computational algorithm and applications[J].J.Chem.Phys.,1993,99(6):4590-4596.
    [192]Pfeifer P,Levine R.A stationary formulation of time-dependent problems in quantum mechanics [J].J.Chem.Phys.,1983,79(11):5512-5519.
    [193]Peskin U,Kosloff R,Moiseyev N.The solution of the time dependent Schr(o|¨)dinger equation by the(t,t') method:The use of global polynomial propagators for time dependent Hamiltonians[J].J.Chem.Phys.,1994,100(12):8849-8855.
    [194]Yao G,Wyatt R E.Stationary approaches for solving the Schr(o|¨)dinger equation with timedependent Hamiltonians[J].J.Chem.Phys.,1994,101(3):1904-1913.
    [196]Barinovs G,Markovic N,Nyman G.Split operator method in hyperspherical coordinates:Application to CH_2I_2 and OCLO[J].J.chem.Phys.,1999,111(3):6705-6713.
    [196]Manthe U,K(o|¨)ppel H.New method for calculating wave packet dynamics:Strongly coupled surfaces and the adiabatic basis[J].J.Chem.Phys.,1990,93(1):345-359.
    [197]Tal-Ezer H,Kosloff R.An accurate and efficient scheme for propagating the time dependent Schr(o|¨)dinger equation[J].J.Chem.Phys.,1984,81(3):3967-3977.
    [198]Chen R Q,Guo H.The Chebyshev propagator for quantum systems[J].Comp.Phys.Comm.,1999,119(1):19-27.
    [199]Mandelshtam V A,Taylor H S.A simple recursion polynomial expansion of the Green's function with absorbing boundary conditions application to the reactive scattering[J].J.Chem.Phys.,1995,103(2):2903-2916.
    [200]Stolow A.Time-resolved photoelectron spectroscopy:Non-adiabatic dynamics in polyatomic molecules[J].Int.Rev.Phys.Chem.,2003,22(3):377-380.
    [201]Neumark D M.Time-resolved photoelectron spectroscopy of molecules and clusters[J].Ann.Rev.Phys.Chem.,2001,52(2):255-265.
    [202]Haight R,Bokor J,Stark J,et al.Picosecond time-resolved photoemission study of the InP(110)surface[J].Phys.Rev.Lett.,1985,54(5):1302-1309.
    [203]Baumert T,Thalweiser R,Gerber G.Femtosecond two-photon ionization spectroscopy of the B state of Na_3 clusters[J].Chem.Phys.Lett.,1993,29(3-4):209-215.
    [204]Fischer I,Villeneuve D M,Vrakking M J J,et al.Femtosecond wave-packet dynamics studied by time-resolved zero-kinetic energy photoelectron spectroscopy[J].J.Chem.Phys.,1995,102(2):5566-5571.
    [205]Fischer I,Vrakking M J J,Villeneuve D M,et al.Femtosecond time-resolved zero kinetic energy photoelectron and photoionization spectroscopy studies of I_2 wavepacket dynamics[J].Chem.Phys.,1996,207(1-2):331-338.
    [206]Blackwell M,Ludowise,Chen Y.Perturbation of electronic potentials by femtosecond pulses-time resolved photoelectron spectroscopic study of NO multiphoton ionization[J].Chem.Phys.Lett.,1996,258(2-3):530-537.
    [207]Assion A,Geisler M,Helbing J,et al.Femtosecond pump-probe photoelectron spectroscopy:Mapping of vibrational wave-packet motion[J].Phys.Rev.A,1996,54(2):R4605-4609.
    [208]Suzuki T,Whitaker B J.Non-adiabatic effects in chemistry revealed by time-resolved chargedparticle imaging[J].Int.Rev.Phys.Chem.,2001,20(3):313-318.
    [209]Seideman T.Time-resolved photoelectron angular distributions:Concepts,applications and directions [J].Ann.Rev.Phys.Chem.,2002,53(3):41-65.
    [210]Jiang J,Hasamam T,Zhang Z G.1.25 MW peak-power Kerr-lens mode-locked Ti:sapphire laser with a broadband semiconductor saturable-absorber mirror[J].Opt.commun.,2000,183(1-4):159-163.
    [211]Sullivan A,Bonlie J,Price D F.1.1-J,120-fs laser system based on Nd:glass-pumped Ti:sapphire [J].Opt.Lett.,1996,21(8):603-605.
    [246]Zewail A H.Femtochemistry[J].J.Phys.Chem.,1993,97(48):12427-12446.
    [213]Polanyi J C,Zewall A H.Direct observation of the transition state[J].Acc.Chem.Res.,1995;28(3):119-132.
    [214]Churassy S,Martin F,Bacis R,et al.Rotation-vibration analysis of the BO_4~+alg and BO_4~+a'O_g~+electronic systems of I_2 by laser-induced-fluorescence Fourier-transform spectroscopy[J].J.Chem.Phys.,1981,75(2):4863-4868.
    [215]Tellinghuisen J.Potentials for weakly bound states in I_2 from diffuse spectra and predissociation data[J].J.Chem.Phys.,1985,82(2):4012-4016.
    [216]Zheng X N,Fei S L,Heaven M C,et al.Spectroscopy of metastable species in a free-jet expansion:The D'-A' transition of I_2[J].J.Chem.Phys.,1992,96(3):4877-4881.
    [217]Appadoo D R T,Le Roy R J,Bernath P F,et al.Comprehensive analysis of the A-X spectrum of I_2:An application of near-dissociation theory[J].J.Chem.Phys.,1996,104(2):903-913.
    [218]Teichteil C,Pelissier M.Relativistic calculations of excited states of molecular iodine[J].Chem.Phys.,1994,180(1-2):1-18.
    [219]Greenblatt B J,Zanni M T,Neumark D M.Photodissociation dynamics of the I_2~- anion using femtosecond photoelectron spectroscopy[J].Chem.Phys.Lett.,1996,258(3-4):523-529.
    [220]Zanni M T,Taylor T R,Greenblatt B J,et al.Characterization of the I_2~- anion ground state using conventional and femtosecond photoelectron spectroscopy[J].J.Chem.Phys.,1997,107(3):7613-7619.
    [221]Zanni M T,Batista V S,Greenblatt B J,et al.Femtosecond photoelectron spectroscopy of the I_2~-anion:Characterization of the(?)′~2Π_(g,1/2) excited state[J].J.Chem.Phys.,1999,110(3):3748-3755.
    [222]Chen E C M,Wentworth W E.Negative ion states of the halogens[J].J.Phys.Chem.,1985,89(5):4099-4105.
    [223]Dojahn J G,Chen E C M,Wentworth W E.Characterization of Homonuclear Diatomic Ions by Semiempirical Morse Potential Energy Curves.1.The Halogen Anions[J].J.Phys.Chem.,1996,100(3):9649-9657.
    [224]Chen E C M,Dojahn J G,Wentworth W E.Characterization of Homonuclear Diatomic Ions by Semiempirical Morse Potential Energy Curves.2.The Rare Gas Positive Ions[J].J.Phys.Chem.A,1997,101(17):3088-3101.
    [225]Feit M D,Fleck J A.Solution of the Schrddinger equation by a spectral method Ⅱ:Vibrational energy levels of triatomic molecules [J].J.Chem.Phys.,1983,78(6):301-308.
    [226]Kosloff R,Kosloff D.A Fourier method solution for the time dependent Schrodinger equation:A study of the reaction H~+ + H_2,D~+ + HD,and D~++H_2 [J].J.Chem.Phys.,1983,79(5):1823-1833.
    [227]Chu T S,Zhang Y,Han K L.The time-dependent quantum wave packet approach to the electronically nonadiabatic processes in chemical reactions [J].Int.Rev.Phys.Chem.,2006,25(1):201-235.
    [228]Meng Q T,Yang G H,Han K L,et al.Theoretical study of the femtosecond-resolved photoelectron spectrum of the NO molecule [J].Phys.Rev.A,2003,67(6):063202(1-5).
    [229]Zhang H,Han K L,Zhao Y,et al.A real time dynamical calculation of H2 photodissociation [J].Chem.Phys.Lett.,1997,271(2-3):204-208.
    [230]Hu J,Meng Q T,Han K L.Theoretical study of the femtosecond-resolved photoelectron spectrum of the N_2 molecule [J].Chem.Phys.Lett.,2004,393(3-4):393-396.
    [231]Hu J,Han K L,He G Z.Correlation Quantum Dynamics between an Electron and D_2~+ Molecule with Attosecond Resolution [J].Phys.Rev.Lett.,2005,95(12):123001-123004.
    [232]Miao X Y,Wang L,Yao L,et al.Theoretical study of the femtosecond-resolved photoelectron spectrum of the I_2~- anion [J].Chem.Phys.Lett.,2006,433(1-3):28-31.
    [233]Miao X Y,Wang L,Yao L,et al.Theoretical investigation of femtosecond-resolved photoelectron spectrum of Na_2 molecules [J].Chin.Phys.Lett.,2007,24(10):2815-2818.
    [234]Miao X Y,Wang L,Song H S.Theoretical study of the femtosecond photoionization of the NaI molecule [J].Phys.Rev.A,2007,75(4):042512(1-7).
    [235]Miao X Y,Li X,Song H S.Probing Wave Packet Dynamics of I_2~- Anions with Pump-Probe Femtosecond Spectroscopy [J].Chin.Phys.Lett.,2008,25(3):915-919.
    [236]Faeder J,Parson R.Ultrafast reaction dynamics in cluster ions:Simulation of the transient photoelectron spectrum of I_2~- Ar_n photodissociation [J].J.Chem.Phys.,1998,108(7):3909-3914.
    [237]Batista V S,Zanni M T,Greenblatt B J,et al.Femtosecond photoelectron spectroscopy of the I_2~- anion:A semiclassical molecular dynamics simulation method [J].J.Chem.Phys.,1998,110(3):3736-3747.
    [238]Rosker M J,Rose T S,Zewail A H.Femtosecond real-time dynamics of photofragment-trapping resonances on dissociative potential energy surfaces [J].Chem.Phys.Lett.,1988,146(1-2):175-179.
    [239]Rose T S,Rosker M J,Zewail A H.Femtosecond real-time observation of wave packet oscillations (resonance) in dissociation reactions [J].J.Chem.Phys.,1988,88(6):6672-6673.
    [240]Rose T S,Rosker M J,Zewail A H.Femtosecond real-time probing of reactions.Ⅳ.The reactions of alkali halides [J].J.Chem.Phys.,1989,91(3):7415-7436.
    [241]Cong P,Mokhtari A,Zewail A H.Femtosecond probing of persistent wave packet motion in dissociative reactions:up to 40 ps [J].Chem.Phys.Lett.,1990,172(1-2):109-113.
    [242]Materny A,Herek J L,Cong P et al.Femtosecond Real-Time Probing of Reactions.16.Dissociation with Intense Pulses [J].J.Phys.Chem.,1994,98(5):3352-3360.
    [243]Herek J L,Materny A,Zewail A H.Femtosecond control of an elementary unimolecular reaction from the transition-state region [J].Chem.Phys.Lett.,1994,228(1-3):15-25.
    [244]Hartland G V,Qin D,Dai H L.Collisional deactivation of highly vibrationally excited NO_2 monitored by time-resolved Fourier transform infrared emission spectroscopy [J].J.Chem.Phys.,1996,100(3):7832-7835.
    [245]Motzkus M,Pedersen S,Zewail A H.Femtosecond Real-Time Probing of Reactions.19.Nonlinear (DFWM) Techniques for Probing Transition States of Uni-and Bimolecular Reactions [J].J.Phys.Chem.,1996,100(7):5620-5633.
    [246]Zewail A H.Femtochemistry [J].J.Phys.Chem.,1993,97(9):12427-12446.
    [247]Jouvet C,Martrenchard S,Solgadi D,et al.Experimental Femtosecond Photoionization of NaI[J].J.Phys.Chem.A,1997,101(6):2555-2560.
    [248]Charron E,Suzor-Weiner A.Femtosecond dynamics of Nal ionization and dissociative ionization [J].J.Chem.Phys.,1998,108(3):3922-3931.
    [249]Meier C,Volker E V,Manthe U.An effective method for the quantum mechanical description of photoionization with ultrashort intense laser pulses [J].J.Chem.Phys.,1998,109(2):36-39.
    [250]Faist M B,Levine R D.Collisional ionization and elastic scattering in alkali-halogen atom collisions [J].J.Chem.Phys.,1976,64(3):2953-2959.
    [251]Bower R D,Chevrier P,Das P,et al.Broad-band structured fluorescence from NaI [J].J.Chem.Phys.,1988,89(2):4478-4485.
    [252]Schaefer S H,Bender D,Tiemann E.Spectra potential curves and predissociation of LiI [J].Chem.Phys.,1986,202(1-2):165-174.
    [253]Kwak H,Chou K C,Guo J et al.Femtosecond Laser-Induced Disorder of the (1×1)-Relaxed GaAs(110) Surface [J].Phys.Rev.Lett.,1999,83(5):3745-3748.
    [254]Frohnmeyer T,Hofmann M,Strehle M,et al.Mapping molecular dynamics (Na_2) in intense laser fields:another dimension to femtochemistry [J].Chem.Phys.Lett.,1999,312(1-3):447-454.
    [255]T.Baumert,B.Buehler,M.Grosser,et al.Femtosecond time-resolved wave packet motion in molecular multiphoton ionization and fragmentation [J].J.Phys.Chem.,1991,95(21):8103-8110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700