基于智能PID的飞行控制系统的设计与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞机线性化模型在一定的状态范围内是分段有效的,当飞机工作在非线性范围内时,例如大攻角、快机动时,线性化模型就不再适用,需要利用非线性动态逆来处理模型。
     本文涉及的飞行实时仿真系统是一种半实物仿真系统,该系统主要基于MATLAB和LABVIEW平台构建,利用实时网络通信,将舵机、姿态角、发动机、大气压等难以建立精确数学模型的系统以实物方式加入飞行控制仿真回路中,以更精确地测试飞控系统的性能。
     本文主要结构如下:
     首先创建了飞机的非线性模型,并对它进行了小扰动线性化,将其解耦为横向和纵向两组线性方程,在每组方程中根据飞行状态划分进一步简化,使之成为单输入单输出系统(SISO),以方便控制器的设计。
     其次,针对某型战斗机线性化模型设计了常规PID控制器,并在此基础上设计了智能PID控制器,并分别应用于该型飞机的非线性模型进行测试,比较了两种PID控制方法的品质和鲁棒性。
     再次,针对飞机大迎角快机动时线性化模型已经不再适用的情况,利用非线性动态逆对非线性模型进行了全局线性化,在此基础上设计了线性控制器。
     最后,介绍了实时飞行仿真系统的基本构成以及工作原理。并设计了飞控系统的半实物仿真实验方案。
The linear model of aircraft is sub-effective. When the aircraft fly at a high attack angle, it is failure. So we should introduce a new theory to handle the non-linear model. The theory is non-linear dynamic inverse.
     Real-time flight simulation system is a hard-in-loop simulation system. It based on MATLAB and LABVIEW, and utilized real-time network to communicate. It add some systems that it is hard to get their precise math model in real things into the loop of flight control simulation. It can make the test of the flight control system more precise. On the other hand, it is easier to test with the system. And in the system, there is a visual system and curse computer,. This show the data more clear, and made the design and assessment of the system more easier.
     In the paper, first of all, the non-linear aircraft model is introduced, and had a small signal linearization. Then it is decoupling for two sets: one is horizontal linear equations, the other is vertical linear equations. This two sets is made to single-in-single-out system (SISO) to facilitate the controller design. Secondly, we designed the conventional PID controller of the fighter jets’linear model. On this basis we designed the expert PID controller, and tested them on the mom-linear model.
     Thirdly, when aircraft fly at a big attack angle, the linear model of aircraft has being failure. Then we utilize the non-linear dynamic inverse to linearize the non-linear model in global scope. And design a linear controller.
     Finally, we introduce the component and the working principle of the real-time flight simulation system. And the experiment of the flight control system is designed based on the real-time flight simulation system.
引文
1.魏中成.飞机总体设计中的飞行控制律模型设计与应用方法研究(硕士论文).2007.
    2.刘林,车军,唐强等.现代飞行控制律评估与确认先进方法研究.飞行力学Vol.25, No.1, 2007.3.
    3.徐军,张明廉,屠巴宁.敏捷性飞机飞行控制系统设计方法研究.北京航空航天大学学报,Vol.25, No.l,1999.
    4.秦玮,闫建国,孙兴宏等.无人机飞行控制系统纵向控制律设计及仿真.弹箭与制导学报Vol.27,No.2: 91-93,2007.
    5.胡孟权.推力矢量飞机非线性飞行控制律设计研究.西北工业大学(博士论文),2002.
    6.蒋昊亮.无人机飞控系统的仿真研究.南京理工大学(硕士论文), 2004.
    7. Lars Sonneveldt. Nonlinear F-16 Model Description. Delft University of Technology. Ver 3.0. Jun.2006.
    8. Lewis,B.L.and Stevens,F.L. Aircraft Control and Simulation. John Wiley & Sons. 1992.
    9. Prathyush P. Menon, Jongrae Kim, Declan G. Bates, and Ian Postlethwaite. Clearance of Nonlinear Flight Control Laws Using Hybrid Evolutionary Optimization. IEEE Transaction on Evolutionary, Vol.10,No.6, Dec,2006. pp:689-699.
    10. Richard Colgren. H∞Design of Future Flight Control Systems. Lockheed Advanced Development Company. IEEE. 1990. pp:805-810.
    11. Sahjendra N. Singh, Marc Steinberg, Robert D. DiGirolamo. Variable Structure Robust Flight Control System for the F-14. Proceedings of the America Control Conference Seattle, Washington, Jun.1995. pp:815-819.
    12. R.A. Hyde, K. Glover. Taking H∞Control into Flight. Proceeding of the 32nd Conference on Decision and Control San Antonio, Texas.Dec,1993. pp:1458-1463.
    13. Tom Sadeghi, Sean Wall, Virtual Reality Tool for Flight Control Law Verification. CH35797 -95/0000-0817, IEEE. 1995.
    14. J.Renfrow, S. Liebler, J. Denham. F-14 Flight Control Law Design, Verification and Validation Using Computer Aided Engineering Tools. US Government work.
    15.杨克明,杨向中等.歼击机大范围战术机动飞行控制律设计与仿真.电光与控制第四期,1998.
    16.张新国,张汝麟,陈宗基.飞行控制系统设计方法研究.航空科学技术,1997.1.
    17.范子强,方振平. H∞控制理论在飞行力学中的应用,航空学报,Vol.21,No.3, 2000.
    18.张翔伦.动态逆在航迹飞行控制系统中的应用.中国航空学会控制与应用第九届学术年会论文集:135-140,2000.8.
    19.范子强,方振平.超机动飞机的非线性飞行控制研究.北京航空航天大学学报,Vo1.26,No.4:32-36,2000.
    20.高建平,陈宗基.推力矢量控制中的非线性鲁棒解耦控制方法.飞行力学,Vo1.15, No.3:15-18,1997.
    21.杜金刚.基于动态逆方法的飞行控制系统设计与仿真.硕士学位论文.西安:西北工业大学,2006.
    22.蔡世龙.第四代战斗机超机动飞行智能控制及半实物分布式仿真平台研究.硕士学位论文.南京航空航天大学. 2002.
    23.朱铁夫,李明,郁万鹏.反馈线性化及其在飞控系统中的应用.飞机设计.第2期:22-28. 2004.6.
    24.郭锁凤,申功章.先进飞行控制系统.北京:国防工业出版社,2003,110-278.
    25.王威,杨平.智能PID控制方法的研究现状及应用展望.自动化仪表Vol. 29, No.10. 2008.10.
    26.陈宗基,孔繁峨,李卫琪等.先进战斗机的飞行控制计算机系统研究.航空学报.Vol.28 No.4.2007.7.
    27.魏中成,高正红,郑遂.简化飞行控制律模型设计与应用方法研究.飞行力学.Vol.26, No.1. 2008.2.
    28.柳扬.多操纵面战斗机飞行控制系统设计研究.计算机测量与控制.Vol.16. No.3. 2008.
    29.陈宗基.我国民机飞行控制系统研究.中国航空学会2007年学术年会.机载/航电专题3.
    30.文传源等.现代飞行控制.北京:北京航空航天大学出版社.2004
    31.方振平,陈万春,张曙光.航空飞行器飞行动力学.北京:北京航空航天大学出版社,2005.
    32. Little J.N,Gahinet P. Control System Toolbox User’s Guide Control System Toolbox For Use with MATLAB. The MathWorks,Inc:1992
    33. Stevens Brain, Lewis Frank. Aircraft Control and Simulation [M].New York: John Wiley& Sons, INC,1992.
    34.王耀男.智能控制系统.长沙:湖南大学出版社,1996
    35. Ho Seong Lee, Masayoshi Tomizuka. Robust Motion Design for High Accuracy Positioning System. IEEE Transaction Industrial Electronics, 1996,43(1):48~55.
    36.黄文梅,杨勇,熊桂林.系统分析与仿真MATLAB语言及应用.长沙:国防科技大学出版社.2005:52~55.
    37.赵文峰等.控制系统设计与仿真.西安电子科技大学出版社.2002
    38.王亚刚,邵惠鹤.基于相位裕度和幅值裕度的PID参数自整定新方法.电气自动化.2005(5):13~15.
    39.孙明玮等.利用MATLAB优选PID参数及其在飞控系统设计中的应用.计算机仿真.2003(1):47~49.
    40.杨新,王小虎,申功章等.飞机六自由度模型及仿真研究.系统仿真学报.2000(3):310~213.
    41. Jacob Reiner, Gary J. Balas, William L. Garrard. Robust Dynamic Inversion for control of highly maneuverable aircraft. Journal of guidance, control, and dynamics. Vol.18, No.1, January-February 1995.
    42.宋炜.基于MATLAB的无人机硬件在回路仿真技术研究.硕士学位论文.南京:南京航空航天大学.2008.01.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700