超高混凝土重力坝坝基岩体质量及利用标准研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
澜沧江黄登水电站坝高202m,为我国第一座超高混凝土重力坝(现行重力坝设计规范规定:对于坝高超过200m的混凝土重力坝设计应作专门研究。鉴于我国目前还没有达到200m坝高的混凝土重力坝,本文把坝高超过200m的称为超高混凝土重力坝),由于超高坝荷载大,库水压力高,理论、技术、经验缺少,因此搜集国外超高重力坝和我国坝高100-186m量级的高混凝土重力坝成功修建的理论、技术和监测成果为基础,以世界最高混凝土重力坝Grande Dixence已知的坝基岩体、设计断面、试验力学参数、以及近20年的变形观测数据,用有限元进行实际力学参数的反演去揭示285m超高混凝土重力坝所要求的坝基基本岩体质量,借此去预测超高混凝土重力坝对地基岩体的要求。黄登水电站坝基岩体为角砾熔岩夹少量薄层凝灰岩,主要为坚硬岩体,左岸岩体表观结构良好,但波速低,岩体力学参数也较低,此种岩体能否满足重力坝对坝肩岩体强度和变形的要求,以及如何评价和选择河床部位超高混凝土重力坝的建基岩体是目前水工建设中具有重要意义的研究课题。
     论文以黄登水电站超高混凝土重力坝坝基岩体为研究对象,重点开展超高混凝土重力坝坝基岩体质量和建基面选择的研究,主要取得了以下成果:
     (1)从影响坝基岩体质量的因素出发,优选出评价各影响因素的代表性指标:岩石饱和单轴抗压强度、结构面间距、吕荣值、声波纵波速、变形模量、抗剪断强度。选取变形模量作为评价坝基岩体质量的控制性指标,并对各指标的对应性进行了研究。
     (2)在广泛搜集国内外资料的基础上,结合作者获得的大量现场资料,通过多种研究,分析了超高坝坝基为不同类别岩体以及坝基相同而坝高不同时的应力、位移、破坏模式和安全系数,总结出超高混凝土重力坝坝基利用岩体不得低于Ⅲ1类。在此基础上,结合国内外已建200m级以及百米级重力坝坝基岩体情况,提出了超高混凝土重力坝坝基岩体利用标准及基本的量化指标。
     (3)得出坝高>340m,抗震烈度为7度时,坝基岩体即使为Ⅰ级岩体也满足不了抗滑稳定性要求,即对于混凝土重力坝来说,坝高340m可能是其极限高度。
     (4)黄登坝址区两岸岩体具有明显的“松弛块状结构”。岩体块度大,按结构面间距应划为次块状-整体状结构,对应岩级应为Ⅲ1-Ⅰ级,按规范为高坝直接利用的优良坝基。但波速、变形模量却较低,按波速、变形模量为高坝不可利用岩体。为了能正确地评价岩体结构,采用以结构面间距为第一指标,辅以反映结构面紧密程度的波速作为补充进行坝址区岩体结构划分。左岸岩体受成组发育的卸荷长大裂隙影响岩体结构明显差于右岸。
     (5)坝址区岩体的风化、卸荷松弛特征是黄登水电站坝基利用岩体评价中的主要问题,特别是左岸岩体风化、卸荷较为突出。采用多种量化指标对坝区岩体进行风化、卸荷评价,得出高程越高,岩体风化卸荷深度越大,左岸风化卸荷深度大于右岸。
     (6)根据建立的超高混凝土重力坝坝基岩体利用标准,对黄登坝址区岩体进行质量评价,结合现场变形试验以及波速测试等数据,得出黄登坝址区岩体利用上限,并对选出的建基岩体进行了校核,证明所选的建基岩体满足黄登超高混凝土重力坝的应力、变形和稳定性要求。
Dam height of Lancang Huangdeng hydropower Station is202m and it is thefirst ultra high concrete gravity dam in our country (current design code on gravitydam stipulates that: the design for the concrete gravity dam of which the heightexceeds200m shall be researched technically. In consideration that there is noconcrete gravity dam with more than200m dam height in China presently, the papercalls the concrete gravity dam that the dam height is beyond200m as ultra highconcrete gravity dam). Due to large load for ultra high dam, high pressure of thereservoir water, and lack of relevant theory, technology and experience, the basic rockmass quality of dam foundation required by285m of ultra high concrete gravity damis revealed via inverting actual mechanical parameters with finite element dependingon the known dam foundation rock mass, design section, testing mechanicalparameters and deformation observed data during recent20years of the highestconcrete gravity dam Grande Dixence in the world on the basis of collecting theories,technologies and monitoring achievements from abroad ultra high gravity dams anddomestic high concrete gravity dams and oversea at100-186m level which wereestablished successfully so as to predict the requirements on foundation rock mass forultra concrete gravity dam. Rock mass of dam foundation for Huangdeng hydropowerstation is gravel lava containing a small quantity of lamellar tuff and mainly is hardrock mass. Apparent structure of rock mass on the left portion is good but the wavespeed is low and the mechanical parameter of rock mass is also low. So, whether suchrock mass can meet the requirements on rock mass strength of dam abutment anddeformation for the gravity dam and how to evaluate and select the rock mass forconstructing foundation of the ultra high concrete gravity dam at the river bed portionare the research topics with important significance in the field of current hydraulicconstruction. The paper focuses on studying the rock mass quality of dam foundationfor ultra high concrete gravity dam and selecting the fundamental plane forconstructing by taking the ultra high concrete gravity dam of Huangdeng hydropowerstation as the example and mainly obtains the following achievements:
     (1) On the view of factors affecting the rock mass quality of dam foundation, therepresentative indexes of various influence factors are evaluated preferably: uniaxial compressive strength of rock saturation, gap of structural surface, lugeon value,longitudinal wave speed of sound wave, deformation modulus, and shearing resistantstrength. The deformation modulus is taken as the controllable index for evaluating therock mass quality of dam foundation and the congruity of each index is researched too.
     (2) By combining lots of the field materials gained by the author and analyzingthe stresses, displacements, destroy modes and safety coefficients for ultra high damfoundations with different types of rock masses and the same dam foundation butdifferent dam heights on the basis of widely collecting domestic and overseasmaterials, conclude that the used rock mass of dam foundation for ultra high concretegravity dam must be Ⅲ1class at least via multiple researches. Propose the rock massutilization standard of dam foundation of ultra high concrete gravity dam and basicquantitative criteria by the rock mass situations of dam foundations of establishedgravity dams at200m level or hundred meter level based on the mentionedconclusion.
     (3) When the dam height is higher than340m and the seismic fortificationintensity is seven, the rock mass of dam foundation cannot meet the requirement ofanti-slide stability even if it is the rock mass at I level, which means that340m of damheight may be the ultimate height for the concrete gravity dam.
     (4) The rock masses at both sides of Huangdeng Dam have obvious “looseblocky structure”. Lumpiness of rock mass is large and should be classified assecondary blocky-integral blocky structure based on the gap of structural gap and thecorresponding rock level is Ⅲ1-Ⅰlevel. Thus, it is the excellent dam foundationwhich can be directly used for high dam based on the code.
     (5) Weathering and unloading and relaxation features of the rock mass in thisdam area are the major problems in the evaluation of available rock mass forHuangdeng hydropower station. In particular, rock mass weathering and unloadingproblems for the left side are conspicuous. By adopting multiple quantitative criteriato implement weathering and unloading evaluation for the rock mass in the dam area,the conclusions that the weathering and unloading depths for rock mass are deeperbecause of higher elevation and the weathering and unloading depths at the left side islarger than the right side.
     (6) According to the rock mass utilization standard of dam foundation forestablished ultra high concrete gravity dam, the rock mass quality in Huangdeng damarea is estimated and the available upper limit of rock mass in Huangdeng dam area isobtained by combining with the data on the filed deformation test and wave speed testand so on. Moreover, the selected rock mass for constructing foundation is checked toprove it reaches the requirements on stress, deformation and stability for Huangdengultra high concrete gravity dam.
引文
[1]中国水力发电工程学会,中国大坝协会,中国水利水电科学研究院等.国外水电开发对我国的启示[J].中国三峡,2011,(05).
    [2]顾洪宾.中国水电开发现状[EB/OL].(2010-10-25)[2011-09-15].http://wenku.baidu.com/view/6a4ec029bd64783e09122be9.html
    [3]徐建凤.解禁水电开发[J].英才,2011,(03):54-56.
    [4]国家电力公司华东勘测设计研究院.混凝土重力坝设计规范DL5108-1999[S].北京:中国电力出版社,2000.
    [5]中华人民共和国水利部.混凝土重力坝设计规范SL319-2005[S].北京:中国水利水电出版社,2005.
    [6]周建平,钮新强,贾金生主编.重力坝设计二十年[M].中国水利水电出版社,2008.
    [7]陈宗梁.世界超级高坝[M].北京:中国电力出版社,1998.
    [8]赵纯厚,朱振宏,周端庄.世界江河与大坝[M].北京:中国水利水电出版社,2000.
    [9]长江水利委员会编.三峡工程地质研究[M].湖北科学技术出版社,1997.10.
    [10]Arild Palmstrom.Characterizing Rock Masses by the Rmi for use in Practical RockDeep Space[J]. Tunnelling and Underground Space Technology.1996(2).
    [11]Hakan Stille,Arild Palmstrom.Classification as a tool in rockengineering[J].Tunnelling and Underground Space Technology.2003,18:313-335.
    [12]Manuel Romama.DMR,a new geomechanics classification for use in damsfoundation,adapted from RMR.Reprint for4thinternational Symposium on RollerCompacted Concrete(RCC) Dams MADRID2003.P1-9.
    [13]Bieniawski Z T.Engineering Rock Mass Classification-A Complete Manual forEngineers and Geologists in Mining,Civil and Petroleum Engineering[M].Wiley:Interscience Publication,1989.
    [14]Bieniawski Z T.Geomechanics classification of rockmasses and its applicationin tunneling[A].In:Proc.3th Int.Cong.on Rock,Mechanics(ISRM)[C],Denver.1974:
    [s.n.],4:27~32.
    [15]Bieniawski Z T. Rock mass classification in rock engineering[A]. In:Proc.Symposium for rock engineering[C].Johannesburg:[s.n.],1976,1:97~106.
    [16]Barton N.Analysis of rock mass quality and support practice in tunneling anda guide for estimating support requirements[J].Rock Mechanics,1974,6(4):189~236.
    [17]菊一小吉等(日本).坝基岩石稳定性的岩土力学综合评价[J].水利水电译文,1983.
    [18]谷德振,黄鼎成.岩体结构的分类及其质量系数的确定[J].水文地质工程地质.1979,3(2).
    [19]严沛漩主编.水利水电工程勘测设计专业综述:工程地质[M].成都:电子科技大学出版社,1993,74-78.
    [20]孙广忠.论岩体力学介质[J].地质科学.1980(2).
    [21]任自民.乌江彭水枢纽坝基岩体结构分类及岩体质量的研究[J].人民长江.1984(3).
    [22]李广诚,王思敬著.工程地质决策概论[M].科学出版社.2006,02.
    [23]李云林.三峡工程坝基岩体力学参数选择分析[J].长江科学院院报.1996,13(3).
    [24]“七五”国家科技攻关17-03-03专题科研组[J].水电站设计.1991,7(2).
    [25]何启标.李家峡水电站坝基岩体质量分级[J].水利水电技术.1992(10).
    [26]胡卸文,黄润秋.西南某电站坝区岩体质量分级与评价[J].水利发电学报.1996,(2).
    [27]聂德新等著.岩体结构.岩体质量及可利用性研究[M].北京:地质出版社,2008.1.
    [28]聂德新等.向家坝水电站坝址岩体结构、岩体质量及建基面选择研究[R].成都理工大学.2003.
    [29]聂德新.金沙江龙开口水电站建基面选择研究及岩体力学参数评价[R].成都理工大学.2008.
    [30]聂德新.坝基复杂岩体工程地质特性及修建高砼重力坝的适宜性研究[R].成都理工大学.2008.
    [31]聂德新.雅砻江卡拉水电站坝基岩体质量及建基面选择研究[R].成都理工大学.2009.
    [32]聂德新.金安桥水电站坝基裂面绿泥石化岩体成因机制、工程性状、工程适应性及坝基可利用岩体工程地质研究[R].成都理工大学.2004.
    [33]万宗礼,聂德新,杨天俊.拉西瓦高拱坝岩体力学、工程地质研究成果综述[J].水力发电.2007.33(11),21-23.
    [34]万宗礼,聂德新.坝基红层软岩工程地质研究与应用[M].北京:中国水利水电出版社,2007.
    [35]宋彦辉,聂德新.坝基层状岩体质量评价探讨[J].长江科学院院报.2005(1).
    [36]刘克远.二滩水电站枢纽区岩体抗剪强度参数的选取[J],水电站设计.1986.(1).
    [37]长江流域规划办公室.岩石坝基工程地质[M].北京:水利电力出版社,1982.
    [38]任自民,马代馨等,三峡工程坝基岩体工程研究[M],中国地质大学出版社,1998.5.
    [39]胡卸文,黄润秋.水利水电工程中的岩体质量分类探讨[J].成都理工学院学报.1996,23(3).
    [40]徐卫亚,喻和平,谢守益等.清江隔河岩坝基工程岩体质量评价研究[J].工程地质学报.1999,7(2).
    [41]周志东,胡卸文,张倬元等.西南某水电站坝肩岩体质量分级方法选取探讨[J].成都理工学院学报.1999,26(1).
    [42]胡卸文,黄润秋.西南某电站坝区岩体强度参数选取的工程地质研究[J].水文地质工程地质.1996,23(1).
    [43]胡卸文,黄润秋,徐志文.澜沧江某电站岩体质量分类的力学参数选取探讨[J].工程地质学报.1996,4(2).
    [44]孙万和,朱焕春,周创兵.坝基岩体分类[J].武汉水利电力学院学报,1989.22(4).
    [45]孙万和,周创兵.坝基岩体分类与质量评价[J].全国第三次工程地质大会论文选集.成都:成都科技大学出版社,1998,375-397.
    [46]陈昌彦,王贵荣.各类岩体质量评价方法的相关性探讨[J].岩石力学与工程学报,2002.21(22).
    [47]中国电力企业联合会.水力发电工程地质勘察规范(GB50287—2006)[S].北京:中国计划出版社.2006.
    [48]董育坚.关于混凝土坝坝基岩体利用标准和开挖深度问题[J].水力发电.1988(6).
    [49]高环安,王经.重力坝坝基岩体利用标准与实践[J].湖北水力发电.1998(4).
    [50]方大德.高坝坝基可利用岩体质量标准问题[J].水力发电.1997(12).
    [51]肖壬源,蔡健民.关于福建火山岩风化岩体的利用问题[J].水力发电.1988(04).
    [52]周火明,肖国强,阎生存,李张明,王法刚.岩体质量评价在清江水布垭面板坝趾板建基岩体验收中的应用[J].岩石力学与工程学报.2005(20).
    [53]王文远,高键,王昆,李开德.金安桥水电站坝基裂面绿泥石化岩体利用研究[J].水力发电.2006(11).
    [54]施修富,蔡健民.南一水库坝基风化岩体的利用[J].水力发电.1989(07).
    [55]张兴仁.水利水电工程混凝土坝坝基岩体的利用问题[J].水力发电.1991(11).
    [56]董学晟.三峡工程三斗坪坝址岩石力学研究[J].长江科学院院报.1992.(S1).
    [57]傅荣华.坝基开挖深度的研究现状与发展趋势[J].成都理工大学学报(自然科学版).1993(01).
    [58]黄扬一,王造根.关于弱风化岩体利用的认识与实践[J].人民长江.1995(06).
    [59]陈伊清.桑园水电站坝基工程地质问题的分析与解决[J].水力发电.1999(12).
    [60]李洪斌,徐年丰.三峡永久船闸中隔墩岩体利用与加固[J].岩石力学与工程学报.2002(02).
    [61]董学晟.邬爱清.水工岩石力学研究的基本思路[J].岩石力学与工程学报.2005(20).
    [62]高大水,徐麟祥.三峡工程船闸中隔墩岩体利用及力学性状研究[J].岩石力学与工程学报.2006(09).
    [63]魏玉峰.白鹤滩水电站多层位复杂介质坝基岩体结构特征及岩体质量分级研究[D].成都:成都理工大学,2010.
    [64]崔银祥.碎裂岩体用作高混凝土重力坝坝基的可能性评价[D].成都理工大学.2005.
    [65]韩爱果.坝基岩体质量量化分级及图形展示[D].成都理工大学.2002.
    [66]刘彬.软硬相间层状岩体变形参数理论研究及工程应用[D].成都理工大学.2006.
    [67]谷德振.岩体工程地质力学基础[M].北京.科学出版社,1979.
    [68]孙广忠.岩体结构力学[M].北京.科学出版社,1988.
    [69]孙广忠.论“岩体结构控制论”[J].工程地质学报.1993年创刊号:14~18.
    [70]胡德.弹性波动力学[M].北京:地质出版社.1992.
    [71]R.J.Shannely and M. A.Mahhlab, Delineation and Analysis of Cluster inOrientation Data[J], Mathematical Geology,1976, Vol.8.No.1.
    [72]Bingham C.Distributions on the sphere and on the projective plan[D].YaleUniversity,1964.
    [73]P.H.W. Kulatilake and T.W.Wu.The Density of Discontinuity Traces in SpacingWindows[J], int.Rock Mech. Min. Sci. and Geomech. Abstracts,1984, Vol.21.
    [74]P.H.W. Kulatilake and T.W.Wu. Estimation of mean length of Discontinuity[J].Rock Eng.1984, Vol.17.
    [75]Terzaghi K.Introduction to tunnel geology in rock tunneling with steelsupports[M].Proctor and white1946.
    [76]Goodman R E.Introduction to rock mechanics[M].New York:John wiley and sons,1980.
    [77]Goodman R E.Introduction to rock mechanics(Second.Edition)[M]. New York:John wiley and sons,1992.
    [78]Evert Hoek.ROCK ENGINEERING(Course notes)[M].1999.
    [79]Sen Zekai. Fractal Dimension and Rock Quality Charts[J]. Bulletin of theAssociation of Engineering Geologists.1992,29(1).
    [80]John Kemeny, Randy Post. Estimating three-dimensional rock discontinuityorientation from digital images of fracture traces[J]. Computers&Geosciences,2003(29):65-77.
    [81]T.R.Reid,J.P.Harrison. Automated tracing of rock mass discontinuities fromdigital images[J]. Int. J. Rock Mech. Sci.1997(3):535.
    [82]韩爱果,聂德新.岩体结构研究中结构面间距取值方法探讨[J].岩石力学与工程学报.2003,22(增2):2575~2577.
    [83]韩爱果,聂德新.岩体结构研究中统计区间长度的确定[J].地球科学进展.2004,19(增):296~299.
    [84]张咸恭等编,专门工程地质学[M].地质出版社,1988.5,北京
    [85]Z. T. Bieniawski. Engineering Classification of Jointed Rock Mass[J]. Trans.S. Africa Inst. Civ. Engrs.1973,15(12).
    [86]王思敬著,坝基岩体工程地质力学分析[M].科学出版社,1990,北京.
    [87]聂德新.岩体的场位特征及其工程应用[J].工程地质学报,2000,8(1):68-72.
    [88]魏克和.用点荷载法对花岗岩风化程度进行定量评价的研究[J].水文地质工程地质,1982,(2):24-27.
    [89]W. R. DEARMAN, F. J. BAYNES and T. Y. IRFAN. Engineering Grading of WeatheredGranite J. Eng. Geo.1978,12:345-374.
    [90]向桂馥等.大岗山电站花岗岩风化带划分及其测试指标对比研究[M].水文地质工程地质论丛,北京:地质出版社,1987.
    [91]张倬元,王士天,王兰生.工程地质分析原理(第一、二版)[M],北京:地质出版社,1994.
    [92]MERRITT, A. H., Engineering classification for in situ rock. Ph. D. Thesis,Univ. Illinois, Urbana,1968.
    [93]游敏,聂德新.河谷斜坡卸荷综合分带研究[J].人民黄河.2011.(01).
    [94]Brunner, F. K.Sohedigger, A.E. Exfoliation.Rock Mechanics[J].1973,5:43-62.
    [95]哈秋舲.三峡工程永久船闸陡高边坡各向异性卸荷岩体力学研究[J].岩石力学与工程学报,2001,20(5):603-618.
    [96]任光明,巨广宏,聂德新,王毅,宋彦辉.斜坡岩体卸荷分带量化研究[J].成都理工大学学报(自然科学版).2003,30(4):335-338.
    [97]李勇,聂德新,任光明.西南某水电站左坝肩岩体卸荷分带研究[J].地质灾害与环境保护.2003,14(2):44-46.
    [98]沈军辉,张进林,徐进,廖荣贵,陈春文.斜坡应力分带性测试及其在卸荷分带中的应用[J].岩土工程学报.2007,29(9):1423-1427.
    [99]郑达,黄润秋.西南水电工程坝址峨眉山玄武岩卸荷分带研究[J].成都理工大学学报(自然科学版).2009,36(2):195-200.
    [100]郑达,黄润秋.高边坡岩体卸荷带划分的量化研究[J].水文地质工程地质.2006,5:9-12.
    [101]巨广宏.斜坡岩体卸荷及卸荷带划分的几种方法[J].成都理工学院学报.2001,1(增刊):414-417.
    [102]王毅,聂德新,任光明.一种高边坡岩体卸荷分带方法的探讨[J].工程地质学报.2004,12(1):83-86.
    [103]聂德新.金沙江白鹤滩水电站坝基岩体质量及建基面选择工程地质研究[R].成都理工大学.2010.
    [104]张世殊.坝基岩体块度特征研究[J].工程地质学报.2001(04).
    [105]胡卸文,钟沛林,任志刚.岩体块度指数及其工程意义[J].水利学报.2002(3).
    [106]杜时贵,许四法,杨树峰,程俊杰,王思敬.岩石质量指标RQD与工程岩体分类[J].工程地质学报.2000(3).
    [107]杜时贵,王思敬.岩石质量指标(RQD)的各向异性分析[J].工程地质学报.1996(04).
    [108]杜时贵,何芳象,王思敬. RQD研究的几个理论问题[J].现代地质.1998(02).
    [109]杨光辉,毛慧龙.岩石质量指标(RQD)应用中存在问题的商榷[J].工程勘察.2010(S1).
    [110]陈剑平,范建华,刘迪.RQD应用与研究的回顾与展望[J].岩土力学.2005(S2).
    [111]聂德新.金沙江溪洛渡水电站坝基岩体质量及建基面工程地质研究[R].成都理工大学.2002.
    [112]大狄桑士.水利水电工程地质情报网.国外高坝工程地质专辑.1986.5.p136-139.
    [113]贾金生,李新宇,郑璀莹.特高重力坝考虑高压水劈裂影响的初步研究[J].水利学报.2006(12).
    [114]黄耀英,沈振中,王润富,田斌.水荷载引起混凝土重力坝位移的理论研究[J].力学与实践.2010(01).
    [115] UTILI Stefano,YIN Zhenyu,JIANG Mingjing.INFLUENCES OF HYDRAULIC UPLIFTPRESSURES ON STABILITY OF GRAVITY DAM[J]. Chinese Journal of Rock Mechanicsand Engineering.2008(8).
    [116]中华人民共和国建设部.建筑地基基础设计规范GB50007-2002[S].北京:中国建筑资讯网.2002.
    [117]赵德海,沈成能,董毓新.混凝土重力坝坝顶水平位移安全范围分析[J].东北电力技术,1998,(06)
    [118]赵永.大朝山重力坝蓄水期实测水平位移分析[J].大坝与安全,2004,(06):48-57.
    [119]水利水电科学研究院,水利水电规划设计总院等合编.岩石力学参数手册[M].水利电力出版社.1991.5.
    [120]郭海庆.复杂混凝土坝坝基对坝体结构行为影响的分析理论和方法研究[D].河海大学.2002.
    [121]聂德新,张勇,游敏等.黄登水电站坝基岩体质量及可利用岩体研究[R].成都理工大学.2009.
    [122] A.B.科利奇科[俄].高混凝土坝基础岩体变形特性[J].水利水电快报.1997.18(2).
    [123] Josephe Torrione. Swiss Dams-Monitoring and Maintenance. Swiss NationalCommittee on Large Dams,1985.
    [124] Mermel T W. The World’s Major Dams and Hydro Plants. Water Power and DamConstruction Handbook,1993.72-73.
    [125] Grande DixenceⅠ.Water Power,1963.1.145-154
    [126] Grande DixenceⅡ. Water Power,1963.5.201-210
    [127]大狄克逊坝的分期施工.水利工程快报,1966.8
    [128]杨德功,印度巴克拉坝的基础处理,水力发电,1957.30-42
    [129] B Pant.Fundamental Aspects of Dam-Foundation Interface Problems in Relationto Some Gravity Dams in India. Proceedings ICOLD Congress,1977.895-905.
    [130]英刊《水力发电》1963年4月
    [131]瑞士三座大坝长期观测14届国际大坝会议文集Q52R54
    [132] Case-Histories in ENGINEERING GEOLOGY J.G.C.ANDERSON C.F. TRIGG
    [133]大狄克逊坝的渗漏和扬压力王成梓译自瑞士《水能.空气》1981年4期.
    [134]伍修焘.世界最高的混凝土重力坝[J].水力发电.1980(1):57.
    [135]葛修润,任建喜,李春光,郑宏.三峡左厂3#坝段深层抗滑稳定三维有限元分析[J].岩土工程学报.2003,25(4):389-394.
    [136]苗琴生,李启雄.有限元法计算重力坝应力时的控制标准[J].水电站设计.1996,12(4):9-15.
    [137]王春涛,练继建.重力坝坝踵应力集中问题的有限元法研究[J].水利水电技术.2003,34(5):10-12.
    [138]王志远.重力坝的实测坝踵应力及原因分析[J].大坝观测与土工测试.2000,24(6):14-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700