多目标动态差分进化算法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多目标优化问题广泛存在于实际工程应用和科学研究中,是一类非常重要而又难以解决的复杂问题。作为随机启发式搜索算法,进化计算通过代表整个解集的种群进化,以内在并行的方式搜索,一次优化运行就能够获得多个非劣解,已被成功应用于多目标优化领域,并发展成为一个相对较热的进化多目标优化研究方向。差分进化算法作为当今最有效的随机优化算法之一,是解决多目标优化问题的一种有效工具。本论文主要研究了基于动态更新种群方式的差分进化算法,重点将其拓展到多目标优化领域,并应用于混合动力汽车多目标优化设计和电力系统环境经济负荷多目标优化分配。全文主要工作包括如下几个方面。
     论文首先介绍了多目标差分进化算法的研究背景及意义,给出了多目标优化的相关定义,然后回顾和总结了进化多目标优化的发展历程以及多目标差分进化算法的国内外研究现状,并提出了进化多目标优化领域的热点和难点问题。
     针对原创DE算法静态更新种群结构不利于提高算法收敛性的不足,引出了一种采用动态更新种群策略的动态差分进化算法(DDE),并利用随机压缩映射原理对其收敛性进行了分析。21个经典Bechmark函数测试实验结果表明,动态更新种群策略大大提高了DE算法的收敛速率,但也一定程度上增加了"best"变异方式的DE算法陷入局部最优的风险。为解决算法全局探索与局部开发之间的平衡,结合不同进化模式DDE的优点,提出了一种基于自适应变异算子的改进DDE算法(SAMDDE)。大量经典Bechmark函数测试实验以及2D IIR滤波器设计实例均证实了改进算法的有效性。
     基于DDE/rand/1/bin变异策略无须选择当前种群中的最优个体,能有效保持种群的多样性从而避免早熟收敛的特点,提出了一种新颖的求解多目标优化问题的参数自适应动态差分进化算法。参数自适应策略有效提高了算法的鲁棒性。针对Deb的拥挤距离估计方法很多时候不能准确地测量非占解之间的拥挤程度的不足,结合解在目标空间中的分布熵和Deb拥挤距离,提出了一种称为拥挤熵的拥挤度测量方法。基于拥挤熵的测量方法能更准确地估计非占优解之间的拥挤程度,从而能更有效保持非占优解集的多样性。选用18个进化多目标优化领域的标准测试问题对提出的算法进行了测试。实验结果表明,与NSGA-Ⅱ、SPEA2和MOPSO三种代表性MOEAs相比,MOSADDE(?)够更好地收敛到问题的Pareto最优前沿,且所得非占优解集具有更好的分布性。
     为了进一步提高MOSADDE算法的收敛性能和鲁棒性,针对参数重新随机初始化自适应策略的不足,提出了一种具有自学习能力的参数自适应策略。同时,为了使所求得的非占优解在Pareto最优前沿,尤其在高维目标问题的Pareto最优前沿具有更好的散布性,提出了归一化最近邻域距离的拥挤度测量方法。由此,通过引入新的参数自适应策略和拥挤度估计方法,并基于具有快速收敛特性的DDE/best/2/bin变异方式,提出了一种用于求解MOPs的改进参数自适应动态差分进化算法MOSADDE-Ⅱ。选用27个进化多目标优化领域的标准测试问题对提出的算法进行了测试。实验结果证实了以上方法的有效性。
     在前面静态多目标差分进化算法基础上,通过引入环境检测算子和新环境下初始种群多样性保持策略,提出了一种求解动态多目标优化问题的动态多目标差分进化算法(dMODDE)。用七个测试问题进行了仿真研究并与其它动态MOEAs进行了比较。实验结果表明,当问题的Pareto最优解和(或)前沿随时间发生变化时,dMODDE能够跟踪到动态变化的Pareto最优前沿,且所获得的Pareto最优解具有良好的多样性和散布性。
     基于非占优排序策略和动态差分进化算法,提出了一种求解双层多目标优化问题(BLMOP)的动态差分进化算法。针对BLMOP的特点,设计了一种特殊的进化种群结构。并对最新文献给出的7个测试问题进行了理论分析并用来测试算法的有效性。实验结果表明,所提出的算法能很好地收敛到每个测试问题的Pareto最优前沿,并能保持良好的多样性和宽广性,是一种求解BLMOP的有效方法。
     基于MOSADDE-Ⅱ算法,提出了一种同时优化混合动力汽车动力总成部件参数和控制策略参数的方法。基于电动辅助控制策略,将HEV优化设计问题归结为一个非线性约束多目标优化问题,其中优化目标包括油耗FC、HC排放、CO排放和NOx排放等四个指标,约束条件包括PNGV性能标准和电池SOC荷电状态维持等要求。同时,利用模糊集理论,从所获得的Pareto最优解集中提取出最优折衷解。以典型行驶循环工况FTP、ECE-EUDC和UDDS为试验工况,针对一种并联式混合动力轿车进行了离线优化仿真研究。实验结果表明,与基于GA的加权系数法和NSGA-Ⅱ相比较,MOSADDE-Ⅱ具有明显的优越性。
     为了进一步检验MOSADDE-Ⅱ在工程优化设计中的有效性,同时还将其应用于电力系统环境经济负荷分配(EED)多目标优化。针对传统EED只考虑发电成本和污染控制成本两个优化目标的不足,通过引入系统损耗,建立了一个包含经济、环境和线损三个目标的EED多目标优化模型。应用MOSADDE-Ⅱ对IEEE30-和118-bus典型测试系统进行了仿真研究,实验结果证实了所提方法的有效性。
     论文最后总结了全文的主要工作和创新性的研究成果,并对下一步研究工作进行了展望。
Multi-objective optimization problems are often encountered in many practice engineering applications and science researches, and it is one of class of very important but difficult complex problem to be solved. As stochastic optimization metaheuristics, evolutionary algorithms deal simultaneously with a set of possible solutions (the so-called population) which allows us to find several members of the Pareto optimal set in a single run of the algorithm. Consequently, Evolutionary multi-objective optimization (EMO) has now become a popular and useful field of research and application. Differential evolution (DE), as one of the most powerful stochastic real-parameter optimization algorithms in current use, is a natural candidate to be extended for multi-objective optimization. This dissertation mainly focuses on the researches of differential evolution with dynamic population updating stratey, and its extention for multi-objective optimization. Main results and contribu-tions of this dissertation are as follows:
     The research background of multi-objective differential evolution (MODE) is introduced firstly. Then, the relative definitions of multi-objective optimization (MO) are presented, and a breaf histrory of EMO and main multi-objective evolutionary algorithms (MOEAs) are introduced. Furthermore, a review of the basic concepts of DE and a survey of its application to multiobjective are also presented. Thereafhter, the hot and difficult problems in EMO are discussed and the research significance of this dissertation is also provided.
     In the view of slower convergence of original DE with static population updating structure, a dynamic population updating stratey is introduced and a novel dynamic differential evolution (DDE) is then proposed. Twenty-one Benchmark test functions are used to evaluate the effectiveness of the proposed DDE. Experiment results show that the dynamic population updating stratey greatly speeds up the DE's convergence speed, but also increases the risk to premature convergence in some extent for the DEs with 'best' mutation strategy. Therefore, to keep the balance between the global explora-tion and local exploitation, an adaptive mutation operator combined with the advantages of strategies of DDE/rand/1/bin and DDE/best/2/bin is proposed. The effectiveness of the modified version is validated by using twenty-one classical Benchmark functions and a specific2D IIR filter design problem.
     An approach called MOSADDE to extend the stragety of DDE/rand/1/bin to solve multi-objective optimization problems with an external elitist archive is presented. To preserve the diversity of the Pareto optimality, a more accurate crowding measure method namely crowding entropy is proposed. Moreover, to improve the robustness of DDE, a control parameter self-adaptive strategy is introduced. Therefore, the user does not need to guess the good values for F and CR, which are problem dependent. The proposed approach was validated using eighteen standard test problems currently adopted in the evolutionary multi-objective optimization community. The experiment results and no-parametric statistical results associated indicate that MOSADDE is able to maintain a better spread of solutions and converge in the obtained Pareto-optimal front compared to three representative multi-objective evolutionary algorithms NSGA-Ⅱ, SPEA2and MOPSO.
     To further improve the convergence properties of MOSADDE, based on the stratey of DDE/best/2/bin, an improved version MOSADDE-Ⅱ is proposed. The random initialization based parameter self-adaptive strategy in MOSADDE is replaced by a new parameter self-adaptive strategy with self-learning ability. Moreover, in order to preserve a set of nondominated solutions widely distributed along the Pareto front, especially along the Pareto front of high-dimension problem, a progressive comparison truncate operator based on normalized nearest neighbor distance is proposed in the MOSADDE-Ⅱ. This density estimation method is able to accurately reflect the crowding degree for problems with objective functions range between values of different orders of magnitude. The proposed approach was validated using twenty-seven standard test problems currently adopted in the evolutionary multi-objective optimization community.
     Based on the previous static MODDE, an approach for the dynamic multi-objective optimization is presented by introducing environment detecting operator and diversity maintaining strategy for inintial population in new enviroment. The effect-iveness of the dynamic multi-objective dynamic differential evolution (dMODDE) is validated against various dynamic MOEAs upon seven Bechmark problems with different characteristics in Pareto optimal front. Experiment results show that the proposed dMODDE is able to well track the Pareto front as it changes with time in dynamic environments.
     Based on the nondominate sorting strategy, a multi-objective dynamic differential evolution algorithm for the bi-level multi-objective optimization problems (BLMOP) is proposed. For the characteristics of BLMOPs, a special evolutionary population structure is designed for the bi-level multi-objective dynamic differential evolution (BLMODDE) algorithm. The effectiveness of the BLMODDE is examined on several updated test problems. Experiment results demonstrate that the proposed BLMODDE is able to maintain a good spread of solutions and converge to the Pareto-optimal front of problems. It is suggested that the proposed approach is promising for dealing with BLMOPs.
     The application of the MOSADDE-II for the simultaneous optimization of component sizing and control strategy in parallel hybrid electric vehicles (HEVs) is described. Based on an electric assist control strategy, the HEV optimal design problem is formulated as a nonlinear constrained multiobjective problem with competing and noncommensurable objectives of fuel consumption (FC), CO emission, HC emission, and NOx emission. The driving performance requirements are considered constraints. Moreover, fuzzy set theory is employed to extract the best compromise solution. The optimization process is performed over three typical driving cycles including FTP, ECE+EUDC and UDDS that currently used in United States and European community. The results demonstrate the capability of the proposed approach to generate well-distributed Pareto optimal solutions of the HEV multi-objective optimization design problem. The comparison with reported results of GA based weighting sum approaches and NSGA-Ⅱ reveals the superiority of the proposed approach and confirms its potential for optimal HEV design.
     To further demonstrate effectiveness of the MOSADDE-Ⅱ for engineering optimization design, it is used for the Environmental/Economic power Dispatch (EED) problem. The EED problem is formulated as a nonlinear constrained multi-objective problem with competing and non-commensurable fuel cost, emission and system loss objectives. Several optimization runs of the proposed approach have been carried out on the IEEE30-and118-bus test system. The comparison with reported results of other MOEAs reveals the superiority of the proposed approach and confirms its potential for solving other power systems multi-objective optimization problems.
     Finally, the main innovations of the dissertation are summarized, and then the fields for further research are prospected.
引文
[1]Coello C A. Evolutionary multi-objective optimization:a historical view of the field. IEEE Computational Intelligence Magazine,2006,1(1):28-36.
    [2]Deb K. Introduction to evolutionary multiobjective optimization. Lecture Notes in Computer Science,2008,5252:59-96.
    [3]Fonseca C M, Flemin, P J. Genetic algorithms for multiobjective optimization: Formulation, discussion, and generalization. In:Proceedings of the Fifth Inter-national Conference on Genetic Algorithms,1993:416-423.
    [4]Srinivas N, Deb K. Multi-objective function optimization using non-dominated sorting genetic algorithms. Evolutionary Computation,1994,2(3):221-248.
    [5]公茂果,焦李成,杨咚咚,等.进化多目标优化算法研究.软件学报,2009,20(2):271-289.
    [6]Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997,11(4):341-359.
    [7]Price K. Differential evolution vs. the functions of the 2nd ICEO. In:IEEE Conference of Evolutionary Computation, Indianapolis,1997:153-157.
    [8]Qin A K, Suganthan P N. Self-adaptive differential evolution algorithm for numerical optimization. In:Proceedings of the IEEE Congress on Evolutionary Computation, Edinburgh,2005,2:1785-1791.
    [9]Kennedy J, Eberhart R C. Particle swarm optimization. In:proceedings of IEEE International Conference on Neural Networks, Piscataway,1995:1942-1948.
    [10]Das S, Suganthan P N. Differential evolution:a survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation,2011,15(1):4-31.
    [11]Leandro S C, Viviana C M. Combing of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect. IEEE Transactions on Power Systems,2006,21(2):989-996.
    [12]Fan Z, Liu J, Torben S. Improved differential evolution based on stochastic ranking for robust layout synthesis of MEMS components. IEEE Transactions on Industrial Electronics,2009,56(4):937-948.
    [13]Qing A. Dynamic differential evolution strategy and applications in electro-magnetic inverse scattering problems. IEEE Transactions on Geoscience and Remote Sensing,2006,44(1):116-125.
    [14]Ujjwal M, Indrajit S. Modified differential evolution based fuzzy clustering for pixel classification in remote sensing imagery. Pattern Recognition,2009,42(9): 2135-2149.
    [15]Wu L H, Wang Y N, Zhou S W. Self-adapting control parameters modified differential evolution for trajectory planning manipulator. Journal of Control Theory and Applications,2007,15(4):365-374.
    [16]Wu L H, Wang Y N, Yuan X F, et al. Environmental/economic power dispatch problem using multi-objective differential evolution algorithm. Electric Power Systems Research,2010,80(9):1171-1181.
    [17]Wang L, Li L P. Fixed-Structure Hco Controller Synthesis Based on Differential Evolution with Level Comparison. IEEE Transactions on Evolutionary Compu-tation,2011,15(1):120-129.
    [18]Wang Y, Wu L, Yuan X. Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure. Soft Computing,2010,14(3):193-209.
    [19]Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. In:Proceedings of the First International Conference on Genetic Algorithms, Lawrence, Erlbaum,1985:93-100.
    [20]Goldberg D E. Genetic algorithms for search, optimization, and machine learning. Addison-Wesley, Reading,1989.
    [21]Horn J, Nafploitis N, Goldberg D E. A niched Pareto genetic algorithm for multi-objective optimization. In:Proceedings of the First IEEE Conference on Evolutionary Computation,1994:82-87.
    [22]Zitzler E, Thiele L. Multiobjective evolutionary algorithms:a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation,1999,3(4):257-271.
    [23]Knowles J D, Corne D W. Approximating the non-dominated front using the Pareto archived evolution strategy. Evolutionary Computation,2000,8(2):149-172.
    [24]Corne D W, Knowles J D, Oates M J. The Pareto-envelope based selection algorithm for multi-objective optimization. In:Proceedings of International Conference on Parallel Problem Solving from Nature,2000:869-878.
    [25]Corne D W, Jerram N R, Knowles J D, et al. PESA-Ⅱ:Region-Based selection in evolutionary multi-objective optimization. In:Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco,2001:283-290.
    [26]Zitzler E, Laumanns M, Thiele L. SPEA2:Improving the strength pareto evolutionary algorithm. Technical report, Computer Engeering and Networks Lab (TIK), ETH Zurich, Switzerland,2001.
    [27]Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation,2002, 6(2):182-197.
    [28]Erickson M, Mayer A, Horn J. The niched Pareto genetic algorithm 2 applied to the design of groundwater remediation system. In:Proceedings of the 1st Inter-national Conference on Evolutionary Multi-Criterion Optimization,2001:681-695.
    [29]Coello Coello C A, Pulido G T. A micro-genetic algorithm for multiobjective optimization. In:Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco,2001:274-282.
    [30]Moore J, Chapman R. Application of particle swarm to multiobjective optimization. Technical report, Department of Computer Science and Software Engineering, Auburn University,1999.
    [31]Reyes-Sierra M, Coello C. Multi-Objective Particle Swarm Optimizers:A Survey of the State-of-the-Art. International Journal of Computational Intelli-gence Research,2006,2(3):287-308.
    [32]Coello C A, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 2004,8(3):256-279.
    [33]Dorigo M, Maniezzo V, Clolorni A. The ant system:optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part B, 1996,26(1):29-41.
    [34]Garcia-Martinez C, Cordon O, Herrera F. A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. European Journal of Operational Research,2007,180(1):116-148.
    [35]Angus D, Woodward C. Multiple objective ant colony optimization. Swarm Intelligence,2009,3(1):69-85.
    [36]Lopez-Ibanez M, Stutzle T. Automatic configuration of multi-objective ant colony optimization algorithms. IRIDIA Technical Report Series, TR/IRIDIA/ 2011-003,2011.
    [37]Freitas A A, Timmis J. Revisiting the foundations of artificial immune systems for data mining. IEEE Transactions on Evolutionary Computation,2007,11(4): 521-540.
    [38]Coello Coello C A, Cruz-Cortes N. An approach to solve multiobjective optimization problems based on an artificial immune system. In:proceedings of 1st International Conference on Artificial Immune Systems, Canterbury,2002: 212-221.
    [39]Luh G C, Chueh C H. Multi-objective immune algorithm. Engineering Optimi-zation,2003,35(2):143-164.
    [40]Freschi F, Repetto M. Multiobjective optimization by a modified artificial immune system algorithm. In proceedings of 4th International Conference on Artificial Immune Systems, Banff,2005:248-261.
    [41]Wang X L, mahfouf M. ACSAMO:An adaptive multiobjective optimization algorithm using the clonal selection principle. In:the 2nd European Symposium on Nature-inspired Smart Information Systems, Puerto de la Cruz,2006:1-12.
    [42]Yang D D, Jiao L C, Gong M G. Adaptive multi-objective optimization based on nondominated solutions. Computational Intelligence,2009,25(2):84-108.
    [43]Gong M G, Jiao L C, Du H F, et al. Multiobjective immune algorithm with nondominated neighbor-based selection. Evolutionary Computation,2008,16(2): 225-255.
    [44]尚荣华,焦李成,公茂果等.免疫克隆多目标优化算法求解约束优化问题.软件学报,2008,19(11):2943-2956.
    [45]焦李成,尚荣华,马文萍等.多目标优化免疫算法、理论和应用.北京:科学出版社,2010.
    [46]Miettinen K, Deb K, Jahn J. multiobjective optimization. Lecture Notes in Computer Science,2008,5252:435-461.
    [47]Abbass H A. The self-adaptive Pareto differential evolution algorithm. In:Pro-ceedings of the IEEE Congress on Evolutionary Computation, Honolulu,2002: 831-836.
    [48]Madavan N K. Multiobjective optimization using a Pareto differential evolution approach. In:Proceedings of the IEEE Congress on Evolutionary Computation, Honolulu,2002:1145-1150.
    [49]Babu BV, Mathew M, Jehan L. Differential evolution for multi-objective optimization. In:Proceedings of the IEEE Congress on Evolutionary Compu-tation, Canberra,2003:2696-2703.
    [50]Xue F, Sanderson A C, Graves R J. Multi-objective differential evolution and its application to enterprise planning. In:Proceedings of the IEEE International Conference on Robot & Automation, Taipei,2003:3535-3541.
    [51]Parsopoulos K E, Tasoulis D K, Pavlidis N G, et al. Vector evaluated differential evolution for multiobjective optimization. In:Proceedings of the IEEE Congress on Evolutionary Computation, Portland,2004:204-211.
    [52]Iorio A W, Li X. Solving rotated multi-objective optimization problems using differential evolution. In:Proceedings of advances in artificial intelligence, 2004:861-872.
    [53]Kukkonen S, Lampinen J. An extension of generalized differential evolution for multi-objective optimization with constraints. In:Parallel problem solving from nature,2004:752-761.
    [54]Kukkonen S, Lampinen J. GDE3:The third evolution step of generalized differential evolution. In:Proceedings of the IEEE Congress on Evolutionary Computation, Edinburgh,2005:443-450.
    [55]Robic T, Filipic B. DEMO:differential evolution for multiobjective optimization. In:Third International Conference on Evolutionary Multi-Criterion Optimiza-tion, Mexico,2005:520-533.
    [56]Alfredo G, Luis V, Coello C C, et al. A new proposal for multi-objective optimization using differential evolution and rough sets theory. In:Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, 2006:675-682.
    [57]Zhang J, Sanderson A C. Self-adaptive multi-objective differential evolution with direction information provided by archived inferior solutions. In: Proceedings of the IEEE Congress on Evolutionary Computation, Hongkong, 2008,2801-2810.
    [58]Qian W, Li A. Adaptive differential evolution algorithm for multiobjective optimization problems. Applied Mathematics and Computation,2008,201(1/2): 431-440.
    [59]张利彪,周春光,马铭,等.基于极大极小距离密度的多目标微分进化算法.计算机研究与发展,2007,44(1):177-184.
    [60]龚文引,蔡之华.基于ε占优的正交多目标差分演化算法研究.计算机研究与发展,2009,46(4):655-666.
    [61]李珂,郑金华.一种改进的基于差分进化算法的多目标优化算法.计算机工程与应用,2008,44(29):51-56.
    [62]曾映兰,伍军,郑金华.基于空间距离的多目标差分进化算法.计算机应用 研究,2009,26(2):451-454.
    [63]俞国燕,李鹏,何真,等.一种用于多目标约束优化的改进差分进化算法.计算机集成制造系统,2009,15(6):1172-1178.
    [64]覃晖,周建中,王光谦,等.基于多目标差分进化算法的水库多目标防洪调度研究.水利学报,2009,40(5):513-519.
    [65]彭春华,孙惠娟,郭剑峰.求解PMU多目标优化配置问题的非劣微分进化算法.控制理论与应用,2009,26(10):1075-1080.
    [66]牛大鹏,王福利,何大阔,等.基于改进多目标差分进化算法的诺西肽发酵过程优化.控制理论与应用,2010,27(4):505-508.
    [67]孟红云,张小华,刘三阳.用于约束多目标优化问题的双群体差分进化算法.计算机学报,2008,31(2):228-235.
    [68]贺毅朝,王熙照,刘坤起,等.差分演化的收敛性分析与算法改进.软件学报,2010,21(5):875-885.
    [69]Brest J, Greiner S, Boskovic B, et al. Self-adapting control parameters in differential evolution:A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation,2006,10(6):646-657.
    [70]Qin A K, Huang V L, Suganthan P N. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation,2009,13(2):398-417.
    [71]吴亮红,王耀南,周少武,等.采用非固定多段映射罚函数法的非线性约束优化差分进化算法.系统工程理论与实践,2007,27(3):128-132.
    [72]Bhattacharya A, Chattopadhyay P K. Hybrid differential evolution with biogeography-based optimization for solution of economic load dispatch. IEEE Transactions on Power Systems,2010,25(4):1955-1965.
    [73]Gong W, Cai Z, Ling C X. DE/BBO:a hybrid differential evolution with biogeography-based optimization for global numerical optimization. Soft Computing,2011,15(4):645-665.
    [74]Gao Z, Xiao T, Fan W. Hybrid differential evolution and Nelder-Mead algorithm with re-optimization. Soft Computing,2011,15(3):581-594.
    [75]Antoniou A. Digital Signal Processing:Signals, Systems, and Filters. NewYork: McGraw-Hill,2006.
    [76]Lu W S, Hinamoto T, Optimal design of IIR digital filters with robust stability using Conic-Quadratic-Programming updates. IEEE Transactions on Signal Processing,2003,51 (6):1581-1592.
    [77]Mladenov V, Mastorakis N. Design of two-dimensional recursive filters by using neural networks. IEEE Transactions on Neural Networks,2001,12(3):585-590.
    [78]Mladenov N, Gonos F I, Swamy M N S. Design of two-dimensional recursive filters using genetic algorithms. IEEE Transactions on Circuits and Systems, 2003,50(3):634-639.
    [79]Das S, Konar A. A swarm intelligence approach to the synthesis of two-dimensional IIR filters. Engineering Applications of Artificial Intelligence,2007, 20(4):1806-1096.
    [80]Tsai J T, Ho W H, Chou J H. Design of two-dimensional recursive filters by using Taguchi-based immune algorithm. IET Signal Processing,2008,2(2): 110-117.
    [81]Deb K. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering,2000,186(2-4): 311-338.
    [82]Li H, Zhang Q. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation, 2009,13(2):284-302.
    [83]Qu B Y, Suganthan P N. Multiobjective evolutionary algorithms based on the summation of normalized objectives and diversified selection. Information Science,2010,180(17):3170-3181.
    [84]Landa Becerra R, Coello Coello C A. Solving hard multiobjective optimization problems using ε-constraint with cultured differential evolution. In:Proceedings of the 9th International Conference Parallel Problem Solving Nature,2006: 543-552.
    [85]Nobakhti A, wang H. A Self-adaptive differential evolution with application on the ALSTOM gasifier. In:Proceedings of the 2006 American Control Conference, Minnesota,2006:4489-4494.
    [86]Zaharie D. Parameter adaptation in differential evolution by controlling the population diversity. In:Proceedings of the 4th International Workshop on Symbolic Numeric Algorithms Science Computation,2002:385-397.
    [87]Zhang J, Sanderson A C. JADE:Adaptive differential evolution with optional external archive. IEEE Transactions on Evolutionary Computation,2009,13(5): 945-958.
    [88]Liu J, Lampinen J. A fuzzy adaptive differential evolution algorithm. In: Proceedings of IEEE Conference on Computers, Communications, Control and Power Engineering,2002:606-611.
    [89]谢晓峰,张文俊,张国瑞,等.差异演化的实验研究.控制与决策,2004,19(1):49-52.
    [90]Deb K, Thiele L, Laumanns M, et al. Scalable test problems for evolutionary multi-objective optimization. Technical report, Comput Eng and Networks Lab (TIK), ETH Zurich, Switzerland,2001.
    [91]Zhou A, Jin Y, Zhang Q, et al. Combing model-based and generics-based offspring generation for multi-objective optimization using a convergence criterion. In:IEEE Congress on Evolution Computation,2006:3234-3241.
    [92]Durillo J J, Nebro A J, Luna F, et al. jMetal:A java framework for developing multi-objective optimization metaheurstics. Technical report, University of Malaga, E.T.S.I. Informatica, Campus de Teations,2006.
    [93]Nebro A J, Luna F, Alba E, et al. AbYSS:adaptive scatter search to multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2008,12(4):439-457.
    [94]Bleuler S, Laumanns M, Thiele L, et al. PISA-A platform and programming language independent interface for search algorithms. In:Second International Conference on Evolutionary Multi-Criterion Optimization, Portugal,2003:494-508.
    [95]Garcia S, Molina D, Lozano M, et al. A study on the use of Non-parametric tests for analyzing the evolutionary algorithm'behaviour:A case study on the CEC'2005 special session on real parameter optimization. Journal of Heuristics, 2009,15(6):617-644.
    [96]Huband S, Hingston P, Barone L, et al. A review of multi-objective test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Com-putation,2008,10(5):477-506.
    [97]Bingul Z. Adaptive genetic algorithm applied to dynamic multiobjective problems. Applied Soft Computing,2007,7(3):791-799.
    [98]Farina M, Deb K, Amato P. Dynamic multiobjective optimization problems:test cases, approximations, and applications. IEEE Transactions on Evolutionary Computation,2004,8(5):425-442.
    [99]Mehnen J, Wagner T, Rudolph G. Evolutionary optimization of dynamic multi-objective test functions. In:Proceedings of 2nd Italian Workshop on Evolu-tionary Computation,2006.
    [100]Deb K, Rao U B, Karthik S. Dynamic multi-objective optimization and decision-making using modified NSGA-II:a case study on hydrothermal power scheduling. Technical Report KanGAL Report No.2006008, Kanpur, Indian Institute of Technology, India,2006.
    [101]Zeng S Y, Chen G, Zheng L, et al. A dynamic multi-objective evolutionary algorithm based on an orthogonall design. In:IEEE Congress on Evolutionary Compuation,2006:573-580.
    [102]Zhang Z. Multiobjective optimization immune algorithm in dynamic environ-ments and its application to greenhouse control. Applied Soft Computing,2008, 8(2):959-971.
    [103]尚荣华,焦李成,公茂果等.免疫克隆算法求解动态多目标优化问题.软件学报,2007,18(11):2700-2711.
    [104]Greeff M, Engelbrecht A P. Solving dynamic multi-objective problems with vector evaluated particle swarm optimization. In:IEEE Congress on Evolu-tionary Computation,2008:2922-2929.
    [105]Wang Y, Li B. Multi-strategy ensemble evolutionary algorithm for dynamic multi-objective optimization. Memetic Computing,2010,2(1):3-24.
    [106]Hatzakis I, Wallace D. Dynamic multi-objective optimization with evolutionary algorithms:a forward-looking approach. In:Proceedings of the 8th annual conference on genetic and evolutionary computation,2006:1201-1208.
    [107]Koo W T, Goh C K, Tan K C. A predictive gradient strategy for multiobjective evolutionary algorithm in a fast changing environment. Memetic Computing, 2010,2(1):87-110.
    [108]Goh C K, Tan K C. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Transactions on Evolutionary Com-puatation,2009,13(1):103-127.
    [109]Vicente L N, Calamai P H. Bilevel and multilevel programming:A bibliography review. Journal of Global Optimization,2004,5(3):291-306.
    [110]Colson B, Marcotte P, Savard G. An overview of bilevel optimization. Annals of Operational Research,2007,153(1):235-256.
    [111]Koh A. Solving transportation bi-level programs with differential evolution. In: 2007 IEEE Congress on Evolutionary Computation,2007:2243-2250.
    [112]Dempe S, Dutta J, Lohse S. Optimality conditions for bilevel programming problems. Optimization,2006,55(56):505-524.
    [113]Wang Y, Jiao Y C, Li H. An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-handling scheme. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,2005,35(2): 221-232.
    [114]Yin Y. Genetic algorithm based approach for bilevel programming model. Journal of Transportation Engineering,2000,126(2):115-120.
    [115]Deb K, Sinha A. Constructing test problems for bilevel evolutionary multi-objective optimization. Technical Report, KanGAL Report No.2008010, Kanpur, Indian Institute of Technology, India,2008.
    [116]Deb K, Sinha A. Solving bilevel multi-objective optimization problems using evolutionary algorithms. Technical Report, KanGAL Report No.2008006, Kanpur, Indian Institute of Technology, India,2008.
    [117]Eichfelder G. Soving nonlinear multiobjective belevel optimization problems with coupled upper level constraints. Technical Report, Preprint-Series of the Institute of Applied Mathematics, University Erlangen-Naijrnberg, Germany, 2007.
    [118]Ehsani M, Gao Y, Emadi A. Modern electric, hybrid electric, and fuel cell vechicles:fundamentals, theory, and design (second edition). Boca Raton:Taylor and Francis Group,2010.
    [119]Chan C C, Bouscayrol A, Chen K. Electric, hybrid, and fuel-cell vehicles: architectures and modeling. IEEE Transactions on Vehicular Technology,2010, 59(2):589-598.
    [120]Wu J, Zhang C H, Cui N X. PSO algorithm-based parameter optimization for HEV powertrain and its control strategy. International Journal of Automotive Technology,2008,9(1):53-69.
    [121]Farzad R S. Control strategies for hybrid electric vehicles:evolution, classification, comparison, and future trends. IEEE Transactions on Vehicular Technology,2007,56(5):2393-2404.
    [122]Galdi V, Ippolito L, Piccolo A, et al. A genetic-based methodology for hybrid electric vehicles sizing. Soft Computing,2001,6(1):451-457.
    [123]Montazeri G M, Poursamad A. Optimization of component sizes in hybrid electric vehicle via genetic algorithms. ASME International Mechanical Engineering Congress and Exposition, IMECE2005-82338,2005.
    [124]Gao W, Mi C. Hybrid vehicle design using global optimisation algorithms. International Journal of Electric and Hybrid Vehicles,2007,1(1):57-70.
    [125]钱立军,吴伟岸,赵韩.混合动力汽车传动系优化匹配.农业机械学报,2005,36(9):5-8.
    [126]Morteza M, Amir P, Babak G. Application of genetic algorithm for optimization of control strategy in parallel hybrid electric vehicles. Journal of the Franklin Institute,2006,343(4-5):420-435.
    [127]Amir P, Morteza M. Design of genetic-fuzzy control strategy for parallel hybrid electric vehicles. Control Engineering Practice,2008,16(7):861-873.
    [128]Wang B H, Jin Y, Luo Y G. Parametric optimization of EQ6110HEV hybrid electric bus based on orthogonal experiment design. International Journal of Automotive Technology,2010,11(1):119-125.
    [129]Xiong W, Zhang Y, Yin C. Optimal energy management for a series-parallel hybrid electric bus. Energy Conversion and Management,2009,50(7):1730-1738.
    [130]Wu X, Cao B, Wen, J, et al. Particle swarm optimization for plug-in hybrid electric vehicle control strategy parameter. In:IEEE Vehicle Power and Propulsion Conference, Harbin, China,2008:1-5.
    [131]Morteza M, Amir P. Application of genetic algorithm for simultaneous optimisation of HEV component sizing and control strategy. International Journal of Alternative Propulsion,2006,1(1):63-78.
    [132]吴光强,陈慧勇.基于遗传算法的混合动力汽车参数多目标优化.汽车工程,2009,31(1):60-64.
    [133]Chirag D, Sheldon S W. Optimal design of a parallel hybrid electric vehicle using multi-objective genetic algorithms. In:IEEE Conference on Vehicle power and Propulsion,2009:871-876.
    [134]连志伟,邓亚东,颜超.基于小生境遗传算法的混合动力汽车参数优化.武汉理工大学学报,2009,35(1):102-105.
    [135]Hu X, Wang Z, Liao L. Multi-objective optimization of HEV fuel economy and emissions using evolutionary computation. In:Proceeding of the Future Car Congress, SAE Paper No.2004-01-1153,2004.
    [136]房立存,秦世引.基于多目标遗传算法的混合电动汽车参数优化.汽车工程,2007,29(12):1036-1040.
    [137]Zhang L, Lin C, Niu X. Optimization of control strategy for plug-in hybrid electric vehicle based on differential evolution algorithm. In:Proceedings of 2009 Asia-Pacific Power and Energy Engineering Conference, Wuhan,2009:1-5.
    [138]Johnson V H, Wipke K B, Rausen D J. HEV control strategy for real-time optimization of fuel economy and emissions. Proceeding of the Future Car Congress, SAE Paper No.2000-01-1543,2000.
    [139]Farina M, Amato P. A fuzzy definition of'optimality'for many criteria optimization problems. IEEE Transactions on Systems, Man, Cybernectic, Part A:Systems and Humans,2004,34(3):315-326.
    [140]Markel T, Brooker A, Hendricks T, et al. ADVISOR:a systems analysis tool for advanced vehicle modeling. Journal of Power Sources,2002,110(2):255-266.
    [141]Abido M A. Environmental/economic power dispatch using multiobjective evolutionary algorithms. IEEE Transactions on Power Systems 2003,18(4): 1529-1537.
    [142]Wang L F, Singh C N. Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm, Electric Power Systems Research,2007,77 (12):1654-1664.
    [143]Abido M A. Multiobjective particle swarm optimization for environmental/ economic dispatch problem. Electric Power Systems Research,2009,79 (7) 1105-1113.
    [144]Guerrero R P. Differential evolution based power dispatch algorithms, M.S. Thesis, Electrical Engineering Department, University of Puerto Rico, Mayaguez Campus,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700