影像引导肺癌立体定向放疗技术的建立与临床应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:影像引导放疗(IGRT)技术的建立
     1.千伏级锥形束CT引导放疗系统质量保证体系的建立
     目的建立千伏级锥形束CT(kilovoltage cone-beam CT,kVCBCT)引导放疗系统质量保证体系。
     材料与方法kVCBCT引导放疗系统质量保证体系包括三个部分:安全性与功能性、机械准确性与精确性以及kVCBCT图像质量。安全性与功能性质量保证检测的内容包括:系统连锁、碰撞示警、kV级X线球管预热和kVCBCT引导放疗系统与放疗计划系统之间的信息传递。机械准确性与精确性的检测是指:应用小球(Ball-Bearing,BB)体模检测kV容积影像系统与MV级治疗系统中心位置差异。kVCBCT图像质量检测应用Catphan 500体模,检测内容包括:kVCBCT图像的低对比度分辨率、空间分辨率和图像均匀性。
     结果安全性与功能性质量保证各项检测项目可以满足系统安全性与功能性检测的需要,每天逐一对这些项目进行检测,有助于保证系统的安全性与稳定性。kV容积影像系统与MV级治疗系统中心位置差异共分析4次,kV级系统中心与MV级系统中心的位置差异在侧向上最大为0.43 mm,纵向上最大为0.43 mm,垂直方向上最大为0.28 mm,均未超过验收标准规定的0.5 mm。kVCBCT图像的低对比度分辨率4次测得的均值为1.65%,空间分辨率4次测量的均值为7线对数(lp)/cm,图像均匀性4次测得的均值为1.20%。符合验收标准规定的kVCBCT图像质量:低对比度分辨率需小于2.0%;空间分辨率需大于或等于7lp/cm;图像均匀性需小于2.0%。
     结论本研究建立了系统安全性与功能性、机械精确性与准确性和kVCBCT图像质量的检测方法,通过在4个月研究中的反复应用,显示出这些方法的短期可重复性和系统本身的精确性与稳定性。系统安全性与功能性、机械精确性与准确性和kVCBCT图像质量的建议检测频率分别为:每天一次、每月一次和每半年一次。根据研究中建立的检测方法、获得的检测结果以及建议的检测频率,可以初步形成:医科达Synergy(?) kVCBCT引导放疗系统质量保证体系。
     2.影像引导肺癌放疗图像配准方法研究
     2.1肺癌影像引导放疗人工图像配准方法分析
     目的分析千伏级锥形束CT(kilovoltage cone-beam CT,kVCBCT)引导肺癌放疗人工图像配准法的重复性。
     材料与方法选择16例在我院行根治性放疗的非小细胞肺癌患者,每周行kVCBCT在线引导体位校正一次,获取患者kVCBCT影像。图像配准选择肺尖和椎体作为参考标记,在矢状位、冠状位和横断位等中心层面上配准患者kVCBCT影像和计划设计CT影像。比较同一名医生相隔一周两次配准,不同医生之间配准和医生与技术员之间配准结果的差异,用于评价kVCBCT引导肺癌放疗人工图像配准法的重复性。
     结果同一名医生相隔一周两次配准同一幅kVCBCT影像与计划设计CT影像,配准结果在患者左右(LR)、头脚(SI)和前后(AP)三个方向上,差值大于3 mm所占的比例分别为:0,13%和6%。不同医生之间的配准结果在LR、SI和AP三个方向上,差值大于3 mm所占的比例分别为:11%,19%和14%。医生与技术员的配准结果在LR、SI和AP三个方向上差值大于3 mm所占的比例,分别为:16%,27%和27%。
     结论kVCBCT引导肺癌放疗人工图像配准法的重复性有待进一步提高,尤其表现为不同医生,医生与技术员之间应用该方法的重复性较差。kVCBCT引导肺癌放疗的图像配准方法需要进一步研究。
     2.2 Clipbox范围确定对影像引导放疗图像配准影响的体模研究
     目的分析医科达Synergy(?)千伏级锥形束CT(kilovoltage cone-beam CT,kVCBCT)引导放疗系统灰度自动图像配准Clipbox范围(人为选定的用于图像配准计算的感兴趣区域)对图像配准结果的影响。
     材料与方法研究选择CIRS Model 002LFC胸部体模,获取体模的计划设计CT影像和kVCBCT影像,并在医科达Synergy(?)kVCBCT引导放疗系统ⅩⅥ(X-ray volume image)工作站上进行图像配准。图像配准选择灰度自动图像配准法,选取体模计划设计CT影像横断面上的不同区域作为Clipbox范围(整个横断面、1/2横断面、下1/4横断面和上1/4横断面),进行灰度自动图像配准,将其结果与由人工点标记法确定的参考标准进行比较,分析不同Clipbox范围对灰度自动图像配准结果的影响。
     结果只有将整个体模计划设计CT影像横断面作为Clipbox范围进行图像配准,配准结果与参考标准进行比较,侧向、纵向和垂直三个方向上的配准结果无显著统计学差别(侧向、纵向和垂直三个方向上比较的P值分别为:0.803、0.289和0.603)。采用不同的Clipbox范围进行灰度自动图像配准所用时间也各不相同,选择整个横断面作为Clipbox范围配准所用时间最长,选择下1/4横断面作为Clipbox进行图像配准所用时间最短。
     结论体模研究显示,选择包括完整计划设计CT影像信息在内的Clipbox范围进行灰度自动图像配准,结果较为准确。
     2.3肺癌锥形束CT影像引导放疗最优图像配准方法的筛选与评价
     目的筛选、评价适合应用于千伏锥形束CT(kilovoltage cone-beam CT,kVCBCT)在线引导肺癌放疗的图像配准方法。
     材料与方法选择16例行根治性放疗的非小细胞肺癌患者进入研究,每例患者每周行kVCBCT在线引导体位校正1次,共96幅kVCBCT图像用于研究。分别采用基于灰度的自动配准法、基于骨性结构的自动配准法、人工图像配准法和自动加手动图像配准法配准患者kVCBCT图像与计划设计CT图像。配准由1名医生完成,配准结果由另外1名医生在对所用配准方法设盲的情况下应用4点法对根据不同配准方法获得的配准结果进行评分,之后对筛选出的最优图像配准方法的可重复性进行评价。
     结果基于灰度的自动配准法、基于骨性结构的自动配准法、人工图像配准法和自动加手动图像配准法的平均得分分别为2.7、2.4、3.0和3.7分,4种不同配准方法评分的差异有统计学意义(F=42.197,P<0.001)。采用自动加手动图像配准法左右(LR)、头脚(SI)和前后(AP)方向上,同一医生2次配准结果差值>3 mm所占比例分别为0、3%和6%,不同医生的分别为0、14%和0,医生与技术员的分别为8%、14%和8%。
     结论自动加手动图像配准法以其配准结果好、所需时间较短、临床应用可重复性强等特点适合应用于肺癌kVCBCT在线引导放疗。
     第二部分:影像引导早期非小细胞肺癌立体定向放疗技术的建立
     3.锥形束CT与慢速CT确定肺癌放疗ITV的比较研究
     目的比较锥形束CT与慢速CT在确定肺癌放疗内在靶体积(internal targetvolume,ITV)中的作用。
     材料和方法选择在我院接受放疗的14例周围型肺癌(肿块距气管和支气管外1cm)患者进入研究,获得患者知情同意。其中,男性12例,女性2例,患者的中位年龄为72岁(范围:47-81岁)。肺内肿块T分期:T1期4例,T2期10例。肿块位于肺上叶者7例,肺中叶者3例,肺下叶者4例。进入研究的患者行不同方式的胸部CT扫描,其中包括:1次快速螺旋定位CT扫描(层厚3 mm,每层扫描时间1s);1次慢速CT扫描(层厚3 mm,每层扫描时间4s),慢速CT扫描范围仅为肿瘤上、下2 cm区域;3次千伏锥形束CT(kilovoltage cone-beamCT,kVCBCT)扫描,锥形束CT扫描时间为2 min,重建层厚为3 mm。将每位患者的5幅CT影像分别传输至放疗计划设计系统,以快速螺旋CT影像为基础影像,将其余4幅CT影像与之进行图像配准。之后,勾画各幅CT影像上的可见肿瘤病灶,根据计划设计CT勾画的可见肿瘤病灶称为大体肿瘤体积(grosstarget volume,GTV);根据慢速CT和kVCBCT勾画的可见肿瘤已包括呼吸运动信息,称之为内在大体肿瘤靶体积(internal gross target volume,IGTV)。在GTV╱IGTV外扩5 mm(临床靶体积边界),形成临床靶体积(clinical target volume,CTV)/ITV。基于慢速CT形成的ITV为ITV-s,基于kVCBCT形成的ITV为ITV-c。对CTV、ITV-s和ITV-c的体积进行两两比较;比较CTV叠ITV-s体积与CTV叠ITV-c体积。
     结果共有12例患者进入最终的研究分析。CTV的体积与ITV-s和ITV-c的体积分别做比较,均具有统计学意义差别,P值分别为:0.001和0.005。但是,ITV-s和ITV-c的体积无明显统计学意义差别(p=0.099)。CTV叠ITV-s体积与CTV叠ITV-c体积也无明显统计学意义差别(p=0.061)。
     结论锥形束CT和慢速CT均为包括了患者呼吸运动信息在内的CT影像,在确定肺癌患者放疗内在靶体积中的作用相似。
     4.锥形束CT引导肺癌立体定向放疗PTV外放边界研究
     目的量化分析肺癌患者影像引导后剩余摆位误差和治疗过程中患者体位变化情况,为采用锥形束CT引导肺癌立体定向放疗技术时,形成合理的计划靶体积(planning target volume,PTV)外放边界提供依据。
     材料和方法选择从2007年5月至2008年12月在我院接受立体定向放疗的20例肺癌患者进入研究。研究方法为:患者在根据体表标记线完成摆位后,行kVCBCT扫描;将获得的kVCBCT影像与计划设计CT影像进行配准,得出患者在左右(left right,LR)、头脚(superior inferior,SI)和前后(anterior posterior,AP)三个方向上的摆位误差,对任一方向上摆位误差大于2 mm者,借助引导系统提供的摆位误差校正对话框,通过移动治疗床纠正患者摆位误差;之后,再次行kVCBCT扫描。图像获取结束后患者开始治疗。将第二次获得的kVCBCT影像再次与计划设计CT影像进行配准,得出患者在LR、SI和AP三个方向上的摆位误差,这一摆位误差即为采用kVCBCT在线引导放疗技术后的剩余摆位误差。患者治疗结束后行第三次kVCBCT扫描,获得的影像与计划设计CT进行配准,配准的结果与剩余误差在相应的LR、SI和AP三个方向上分别相减,得到的即为患者在治疗过程中的体位变化。所有进入研究的患者,每次治疗均重复上述过程。
     结果来自20例患者的89幅kVCBCT影像用于剩余误差分析;9例患者完成了分次放疗结束后的kVCBCT扫描,共45幅kVCBCT影像用于治疗过程中患者体位变化分析。这9例患者的单次平均治疗(±标准差)时间为:23.7±2.2 min。采用kVCBCT在线引导放疗技术后,患者在LR、SI和AP三个方向上的剩余摆位误差分别为:-0.1±1.3 mm、0.3±1.5 mm和0.2±1.3 mm。患者在治疗过程中的体位变化在LR、SI和AP三个方向上分别为:0.5±1.3 mm、-0.5±2.1 mm和0.1±2.1mm。考虑剩余误差和患者在治疗过程中体位变化两个因素,PTV外放边界在LR、SI和AP三个方向上应分别设定为:3.2、4.5和3.7 mm。
     结论本研究采用医科达Synergy(?)kVCBCT引导放疗系统分析锥形束CT引导立体定向放疗技术治疗肺癌患者的剩余误差和患者在治疗过程中的体位变化,将这两个因素考虑入PTV的外放边界,PTV外放边界约需要5 mm。
     5.肺癌立体定向放疗射线束边界(beam margins)研究
     目的分析射线束边界大小对肺癌立体定向放疗靶区剂量分布和正常肺组织接受剂量的影响,为临床合理选择肺癌立体定向放疗射线束边界提供依据。
     材料与方法选择在我院接受立体定向放疗的三位肺癌患者进入研究,入选的三个患者大体肿瘤体积(gross target volume,GTV)的体积分别为:2.02cc,22.23cc和50.36cc。将患者的定位CT(包括常规定位CT和慢速定位CT)传输至放疗计划系统,对两幅CT进行图像融合,在肺窗上确定的肺部肿瘤范围即为内在大体靶体积(internal gross target volume,IGTV),IGTV外放5 mm形成PTV。同时,在IGTV外放6 mm(亚临床病变范围),之后再外放5 mm(摆位误差)形成PTVC。针对PTV,采用三维适形放疗技术设计肺癌立体定向放疗计划。处方剂量为5my/4次。选择不同射线束边界:0 mm,1 mm,2 mm,3 mm和4 mm,每位患者形成5套放疗计划,三位患者共形成15套放疗计划。计划评价指标包括:95%PTVC接受剂量;靶区剂量均匀指数(HI),剂量梯度指数(GSI),病变同侧肺接受的平均剂量,双肺平均剂量以及V20。
     结果95%PTVC体积接受剂量随着射线束边界的增大而增大,在射线束边界设定为2 mm时,95%PTVC1,95%PTVC2和95%PTVC3接受的剂量分别为:31.0Gy,29.5Gy和31.5Gy。PTV1,PTV2和PTV3的HI均随着射线束边界的增大而增大,射线束边界设定为0 mm时,HI值最大,PTV1,PTV2和PTV3的HI最大值分别为:1.682,1.386和1.381。PTV1,PTV2和PTV3的GSI最大值分别为:32.2,51.4和80.8,出现在射线束边界设定为1 mm,2 mm和1 mm时。患者1双肺和同侧肺接受的平均剂量最小值出现在将射线束边界设定为1 mm时,最大值出现在射线边界设定为4 mm时。患者2和患者3双肺和同侧肺接受的平均剂量随着射线束边界增大而增大。3例患者双肺V20均随着射线束边界的增大而增大。
     结论使不同大小的肿瘤95%PTVC体积均能受到亚临床病灶控制剂量:28.4Gy(相当于常规分割50Gy)的射线边界为2 mm。选择2 mm作为射线束边界时,三例患者的HI分别为:1.419,1.300和1.303,属于目前临床可接受范围。加之,GSI的大小并没有明显影响正常肺组织接受的剂量,所以选择选择2 mm作为射线束边界,可以兼顾95%PTVC接受的剂量,GSI和HI多项指标,形成合理的肺癌立体定向放疗计划。
     第三部分:影像引导肺癌立体定向放疗技术临床应用
     6.影像引导Ⅰ期非小细胞肺癌立体定向放疗临床研究结果报道
     目的观察影像引导体部肿瘤立体定向放疗(IG-SBRT)技术治疗Ⅰ期非小细胞肺癌患者的局部控制率、总生存率和治疗相关毒副反应。
     材料与方法患者的入组标准为病理证实的T1或T2N0M0期非小细胞肺癌,肿块最大径需小于7cm。中央型肿瘤和靠近胸壁的肿瘤采用的剂量分割为48Gy/6次,肺内其余部位的肿瘤采用的剂量分割为50Gy/4次,均为隔天照射。每位患者每次治疗均进行在线影像引导。
     结果从2007年5月到2009年2月,共有14例患者(15个病灶)入组这项研究,其中,T1期肿瘤3个,T2期肿瘤12个。患者GTV体积的中位值为:32.48cc(4.48-116.16cc)。所有患者均能按照计划完成治疗,中位随访14月(1.5-20月),1例患者死于脑转移,1例患者死于SBRT治疗后纵隔淋巴结复发,行二次放疗时引起的放射性肺炎。所有患者的1年局部控制率为100%,1年总生存率为90.6%。3例患者出现2级放射性肺炎,2例患者出现2级胸壁疼痛,无患者出现3级及以上治疗相关毒副反应。
     结论本研究采用IG-SBRT技术治疗早期NSCLC,根据目前随访结果,显示出这一技术治疗早期NSCLC患者的安全性和有效性;利用在线IGRT技术能提高SBRT技术精确性和保证治疗准确性的特点,可以扩大SBRT技术的应用范围。
ⅠEstablishment of Image-guided Radiation Therapy(IGRT) Technique
     1.Quality Assurance Program for a Kilovoitage Cone-beam CT Guided Radiation Therapy System
     Purpose To establish the quality assurance(QA) program for a kilovoltage cone-beam computer tomography(kVCBCT) guided radiation therapy system.
     Materials and Methods The QA program of this study included three parts:safety and functionality,geometrical accuracy of the system and imaging performance of the kVCBCT.During the 4 months,we evaluated the functionality of safety features and the clinical operation of the entire system during the tube warm-up process.We assessed the displacement between the center of the kV X-ray volume image and the MV treatment center using the Ball-Bearing phantom.Qualitative evaluation of imaging performance was performed using the Catphan~(?)500 phantom.The test items of the imaging performance included low contrast resolutions,spatial resolutions and the Hounsfield Unit(HU) uniformity.
     Results All safety and functionality tests passed on a daily basis.Geometrical accuracy of the system was tested four times.The displacement between the center of the kV X-ray volume image and the MV treatment center was all less than 0.5mm. The maximal difference is 0.43 mm,0.43 mm and 0.28 mm in the lateral,longitudinal and vertical direction,respectively.The low contrast resolutions of the imaging ranged between 1.3%and 1.8%,and the HU uniformity ranged between 0.7%and 1.6%.The spatial resolutions of the four tests were all 71p/cm.
     Conclusions We have developed a comprehensive,yet practical,set of QA tests for the kVCBCT guided radiation therapy system.Use of the tests over extended periods show that the kVCBCT guided radiation therapy system can work safety and functionality with reliable mechanical accuracy and stable image quality.
     2.Image Alignment Methods Evaluation of the Image-guided Lung Cancer Radiotherapy
     2.1 Reproducibility evaluation of the manual image alignment method for kilovoltage cone-beam CT guided lung cancer radiation
     Purpose To evaluate reproducibility of the manual image alignment method for kilovoltage cone-beam CT(kVCBCT) guided lung cancer radiotherapy.
     Materials and Methods Sixteen non-small cell lung cancer patients entered into this study.Weekly on-line kVCBCT guided set-up error correction was performed.A total of ninety-six pretreatment kVCBCT images were available for analysis.The landmarks of the manual alignment included the cranial part of the lung and spine. Images were aligned in three dimensions,and the LR(left-right),SI (superior-inferior),and AP(anterior-posterior) components of translation of the target isocenter were documented and analyzed for each registration.Intra-observer variability was investigated:at least one week after treatment all kVCBCT studies were reexamined by the same physician.Additionally,all kVCBCT studies were examined by a second physician,a radiation therapist and inter-observer variability was tested.
     Results The intra-observer variability of the manual registration method was investigated.All kVCBCT scans were re-evaluated by the same physician.Compared with the original results,the percentage of the more than 3 mm differences in LR,SI, and AP directions are 0,13%and 6%,respectively.The percentage of the more than 3 mm differences in LR,SI,and AP directions between two physicians are 11%,19% and 14%.The difference of the registration results between radiation therapist and physician in LR,SI,and AP directions are 16%,27%and 27%.
     Conclusions The reproducibility of the manual alignment method was poor, especially in the inter-observer evaluation.The optimal alignment method for kVCBCT guided lung cancer radiation needs further research.
     2.2 Impact of the Clipbox size on the image registration results for image-guided radiotherapy:a phantom study
     Purpose To investigate the impact of the Clipbox size(region of interesting for automatic image registration) on the results of gray value based automatic image alignment method for kilovoltage cone-beam CT(kVCBCT)guided radiotherapy.
     Materials and methods The CIRS Thorax phantom Model was used in this study. Three fiducial markers were attached on the phantom.And the phantom was aligned with the laser using attached fiducial markers.This setup assumes that a laser-based phantom alignment represents an accurate alignment.After setup,kVCBCT of the phantom was acquired.The procedure was repeated ten times and ten kVCBCT scans of the phantom were acquired.A reference model for the image alignment comparison was made before the evaluation.The acquired ten kVCBCT scans of the phantom were retrospectively matched with planning CT using gray value based automatic image registration method with four different Clipbox.Four groups of registration result with different Clipbox were compared with the reference model,respectively.
     Results There is only one Clipbox,which include the whole region of the thoracic, can get the exact image registration result when compared with the reference model, but it take more time than any other three Clipboxes to complete the image alignment.
     Conclusions Based on the phantom study,the Clipbox,which include the whole region of the thoracic,was selected as the optimal regions for automatic image registration.
     2.3 Study of different registration methods for on-line kilovoltage cone-beam CT guided lung cancer radiation:selection and evaluation
     Purpose To select the optimal registration method for on-line kilovoltage cone-beam CT(kVCBCT) guided lung cancer radiation and evaluate the reproducibility of the selected method.
     Materials and Methods Sixteen non-small cell lung cancer patients were entered into this study.A total of ninety-six pretreatment KVCBCT images from sixteen patients were available for analysis.Bone-based automatic registration,gray-based automatic registration,annual registration and semi-automatic registration method were used for image registration.All registrations were accomplished by one physician.Another physician evaluated the results of each registration and selected the optimal registration method in blind.Intra-observer and inter-observer variability of this selected image registration protocol were investigated.
     Results The score of the bone-based automatic registration,gray-based automatic registration,annual registration and semi-automatic registration method was 2.4,2.7, 3.0 and 3.7,respectively.The score of the four different groups has statistics significant difference(F=42.197,P<0.001).The intra-observer variability of the selected registration method was investigated.Compared with the original results,the differences in LR(left-right),SI(superior-inferior),and AP(anterior-posterior) directions have no statistics significant difference.The inter-observer variability of the SI directions has statistics significant difference(t=-2.790,P=0.008).The difference of the registration results between radiation therapist and physician in SI(t=-2.490, P=0.018) and AP(t=-2.425,P=0.021) directions both have statistics significant difference.
     Conclusions Because of the highest score and accepted reproducibility, semi-automatic registration method was selected for kVCBCT guided lung cancer radiation.
     ⅡEstablishment of Image-guided Stereotactic Body Radiation Therapy(IG-SBRT) Technique for Lung Cancer
     3.The Comparison of CBCT and Slow CT in Determining the ITV for Lung Cancer Patient
     Purpose To compare the role of kilovoltage cone-beam CT(kVCBCT) and slow CT in determining the internal target volume(ITV) for lung cancer patient.
     Materials and Methods Fourteen patients with pathologically confirmed peripheral non-small cell lung cancer were entered into this study.There were two females and twelve males.The median age of these patients was 72 years(range:47-81).T-stages of these tumors were T1 in four patients,T2 in ten patients.There were seven tumors located in upper lobe,three in middle lobe and four in lower lobe.One fast CT(slice thickness 3 mm,revolution time 1s/slice),one slow CT(slice thickness 3 mm, revolution time 4s/slice)which limited to the tumor region and three kVCBCT scans were performed during quiet respiration for each patient.The scanning time of one kVCBCT was 2 minutes and the reconstructed slice thickness is 3 mm.Slow CT and kVCBCT were all aligned to the fast CT.After contouring the gross target volume (GTV)/ITV,5 mm margin was performed to generate clinical target volume(CTV). The volume of ITV-c(generated from the first kVCBCT) and ITV-s(generated from slow CT) were compared.Overlap volume of CTV(generated from fast CT) and ITV-c were compared with overlap volume of CTV and ITV-s.
     Results The volume of ITV-s and ITV-c had no statistics difference(p=0.099).The overlap volume of CTV and ITV-c was 64.1 cc and the overlap volume of CTV and ITV-s was 59.6 cc.These two overlap volume meet no significant statistics difference (p=0.061).
     Conclusions KVCBCT has the same role as slow CT in capturing the tumor movement and determine the ITV for lung cancer patient.
     4.The Determination of Planning Target Volume(PTV) Margin for Cone-beam CT Guided Stereotactic Lung Cancer Radiation
     Purpose To assess the planning target volume(PTV) margin,which based on the residual set-up error and intrafraction patient motion,of the kilovoltage cone-beam CT(kVCBCT) guided stereotactic radiotherapy for lung cancer patients.
     Materials and Methods From Mar 2007 to Dec 2008,20 lung patients,who received stereotactic radiotherapy in our hospital,were included in this study.After patients were positioned using their skin marks,kVCBCT scans were performed before treatment and aligned to planning CT scans using the self-developed semi-automatic alignment method.Treatment table were repositioned according to the alignment results.A second kVCBCT scan was acquired immediately after the table correction. Residual set-up errors were calculated by aligning the second kVCBCT with the planning CT,using the semi-automatic alignment method.The third kVCBCT was got after each fraction of treatment.The intrafraction patient motion was evaluated according the alignment of the third kVCBCT and planning CT.
     Results 89 kVCBCT scans were used for residual error evaluation.The average residual set-up error(±SD) was -0.2±1.3mm,0.1±1.3mm and 0.3±1.3mm in the left-right(LR),superior-inferior(SI) and anterior-posterior(AP) direction, respectively.45 kVCBCT scans were used for intrafraction patient motion assessment. The intrafraction patient motion(±SD) was 0.5±1.3 mm,-0.5±2.1 mm and 0.1±2.1 mm in the LR,SI and AP direction,respectively.According to the results of residual set-up error evaluation and intrafraction patient motion assessment,3.2,4.5 and 3.7 mm should be applied to the margin of PTV in the LR,SI and AP direction, respectively.
     Conclusions On the basis of the residual set-up error and intrafraction patient motion measurements,the margin required for the cone-beam CT guided stereotactic lung cancer radiation would be approximatively 5 mm.
     5.The Optimal Beam Margin Selection for Imaging-guided Stereotactic Lung Cancer Radiation
     Purpose To select the optimal beam margin for kilovoltage cone-beam CT(kVCBCT) guided stereotactic lung cancer radiotherapy.
     Materials and Methods Three lung cancer patients with different volume of gross target volume(GTV)(2.02cc,22.23cc and 50.36cc) were entered into this study.In order to evaluate the impact of beam margin on the dose distribution of stereotactic radiotherapy plan,five plans with different beam margin(0 mm,1 mm,2 mm,3 mm and 4 mm) were generated for each patient.All the plans were normalized to ensure that 95%of the planning target volume(PTV) at least receives the prescription dose and compared quantitatively.Based on these plans,the relationships between the beam margin and quantities such as the percentage of PTVC received dose, homogeneity index(HI),gradient score index(GSI) and the normal lung dose were assessed for different patients.In this study,clinical target volume(CTV) was established 0 mm.PTVC was the region of potential CTV to receive the incidental dose.
     Results The dose of 95%PTVC and HI were enlarged when beam margin become bigger and bigger.The 95%PTVC received dose of the three different patients was 31.0Gy,29.5Gy and 31.5Gy with 2 mm beam margin.The biggest GSI of the three patients were 32.2,51.4 and 80.8,when beam margin was established as 1 mm,2mm and 1mm,respectively.The minimal mean lung dose of the first patient was 333.3cGy with 1mm beam margin.The minimal mean lung dose of the other two patients was 464.0cGy and 493.3cGy,when beam margin established as 0 mm.
     Conclusions Based on the dose of 95%PTVC,the relationship between GSI and normal lung dose,2 mm may be the optimal beam margin for the imaging-guided stereotactic radiation lung cancer patients.
     ⅢClinical Application of the Image-guided Stereotactic Body Radiation Therapy(IG-SBRT) Technique for Lung Cancer
     6.Clinical Outcomes of the Image-guided Stereotactic Body Radiation Therapy (IG-SBRT) for StageⅠNon-Small Cell Lung Cancer
     Purpose To evaluate the safety and efficacy of kilovoltage cone-beam CT(kVCBCT) guided stereotactic body radiation therapy for stageⅠnon-small cell lung cancer (NSCLC).
     Materials and Methods Eligible patients included clinical staged T1 or T2(≤7 cm), N0,M0,biopsy-confirmed NSCLC.SBRT treatment dose was 50Gy total in four fractions for peripherally located tumor or 48Gy in six fractions for centrally located tumor within 1-2 weeks.Daily kVCBCT guidance was performed for all patients to ensure the precise and accuracy of the treatment.
     Results From May 2007 to Feb 2009,14 patients with 15 tumors(3 with stage T1 and 12 with stage T2) were entered into this study.The median volume of GTV was 32.48cc(4.48-116.16cc).Of 14 patients,1 died of brain metastases and 1 died of pneumonia for the re-radiation of the recurrent mediastinal lymph node at a median follow-up period of 14 months.The 1-year crude local control rates and the 1-year overall survival rates were 100%and 90.6%,respectively.Three patients developed Grade 2 pneumonitis.Two patients developed Grade 2 chest wall pain.No therapy-related toxicity of Grade≥3 was observed.
     Conclusions IG-SBRT seems feasible and effective for stageⅠNSCLC.With the help of image guidance,even bigger tumor can be treated safely by this precise and accuracy method.
引文
1.Bernier J,Hall EJ,Giaccia A.Radiation oncology:a century of achievements.Nat Rev Cancer 2004;4:737-47.
    2.Webb S,Evans PM.Innovative techniques in radiation therapy:editorial,overview,and crystal ball gaze to the future.Semin Radiat Oncol.2006,16:193-8.
    3.Intensity Modulated Radiation Therapy Collaborative Working Group.Intensity-modulated radiotherapy:current status and issues of interest.Int J Radiat Oncol Biol Phys.2001,51(4):880-914.
    4.Jaff ray DA.Emergent technologies for 3-dimensional image guided radiation delivery.Semin Radiat Oncol 2005;15:208-16.
    5.Dawson LA,Jaffray DA.Advances in image-guided radiation therapy.J Clin Oncol.2007,25:938-46.
    6.Ling CC,Yorke E,Fuks Z.From IMRT to IGRT:frontierland or neverland?Radiother Oncol.2006,78:119-22.
    7.Verellen D,De Ridder M,Linthout N,et al.Innovations in image-guided radiotherapy.Nat Rev Cancer 2007;7:949-60.
    8.Xing L,Thorndyke B,Schreibmann E,et al.Overview of image-guided radiation therapy.Med Dosim 2006;31:91-112.
    9.王艳阳,傅小龙.CT在影像引导下放疗中应用的历史与现状.中国癌症杂志,2006,16:448-453.
    10.戴建荣,胡逸民.图像引导放疗的实现方式.中华放射肿瘤学杂志,2006,15:132-135.
    11.Timmerman RD,Kavanagh BD,Cho LC,et al.Stereotactic body radiation therapy in multiple organ sites.J Clin Oncol.2007,25(8):947-52.
    12.王艳阳,傅小龙.体部肿瘤立体定向放疗研究进展.实用肿瘤杂志,2008,23:78-81.
    13.McGarry RC,Papiez L,Williams M,et al.Stereotactic body radiation therapy of early-stage non-small-cell lung carcinoma:phase Ⅰ study.Int J Radiat Oncol Biol Phys,2005,63(4):1010-1015.
    14.Timmerman R,McGarry R,Yiannoutsos C,et al.Excessive toxicity when treating central tumors in a phase Ⅱ study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer.J Clin Oncol,2006,24(30):4833-4839.
    15. Onishi H, Araki T, Shirato H, et al. Stereotactic hypofractionated high-dose irradiation for stage I nonsmall cell lung carcinoma: clinical outcomes in 245 subjects in a Japanese multiinstitutional study. Cancer, 2004,101(7): 1623-1631.
    
    16. Onishi H, Shirato H, Nagata Y, et al. Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small cell lung cancer: updated results of 257 patients in a Japanese multi-institutional study. J Thorac Oncol. 2007, 2(7 Suppl 3):S94-100.
    1.Dawson LA,Jaffray DA.Advances in image-guided radiation therapy.J Clin Oncol.2007,25:938-46.
    2.戴建荣,胡逸民.图像引导放疗的实现方式.中华放射肿瘤学杂志,2006,15:132-135.
    3.Bissonnette JP.Quality assurance of image-guidance technologies.Semin Radiat Oncol.2007,17:278-86.
    4.Feldkamp LA,Davis LC,Kress JW.Practical cone-beam algorithm.J Opt Soc Am A,1984,1:612-619.
    5.余晓锷,卢广文,主编.CT设备原理、结构与质量保证.北京:科学出版社,2005.215-243.
    6.王艳阳,傅小龙.CT在影像引导下放疗中应用的历史与现状.中国癌症杂志,2006.16:448-453.
    7.Verellen D,De Ridder M,Linthout N,et al.Innovations in image-guided radiotherapy.Nat Rev Cancer.2007,7:949-60.
    8.Yoo S,Kim GY,Hammoud R,et al.A quality assurance program for the on-board imagers.Med Phys,2006,33:4431-4447.
    9.Verellen D,De Ridder M,Tournel K,et al.An overview of volumetric imaging technologies and their quality assurance for IGRT.Acta Oncol.2008;47:1271-8.
    10.Lehmann J,Perks J,Semon S,et al.Commissioning experience with cone-beam computed tomography for image-guided radiation therapy.J Appl Clin Med Phys.2007,8:2354.
    11.Bissonnette JP,Moseley DJ,Jaffray DA.A quality assurance program for image quality of cone-beam CT guidance in radiation therapy.Med Phys.2008,35:1807-15.
    12.http://www.aapm.org/pubs/reports/rpt_39.pdf
    13.Saw CB,Yang Y,Li F,et al.Performance characteristics and quality assurance aspects of kilovoltage cone-beam CT on medical linear accelerator.Med Dosim.2007,32:80-5.
    1.Dawson LA,Jaffray DA.Advances in image-guided radiation therapy.J Clin Oncol,2007,25:938-946
    2.Guckenberger M,Meyer J,Vordermark D,et al.Magnitude and clinical relevance of translational and rotational patient setup errors:a cone-beam CT study.Int.J.Radiat.Oncol.Biol.Phys.2006,65:934-942
    3.Langen KM,Zhang Y,Andrews RD,et al.Initial experience with megavoltage (MV) CT guidance for daily prostate alignments.Int.J Radiat.Oncol.Biol.Phys.2005,62:1517-1524
    4.Guckenberger M,Meyer J,Wilbert J,et al.Cone-beam CT based image-guidance for extracranial stereotactic radiotherapy of intrapulmonary tumors.Acta.Oncol.2006,45:897-906
    5.Samson MJ,van Sornsen de Koste JR,de Boer HC,et al.An analysis of anatomic landmark mobility and setup deviations in radiotherapy for lung cancer.Int.J Radiat Oncol Biol Phys.1999,43:827-832
    6.Van de Steene J,Van den Heuvel F,Bel A,et al.Electronic portal imaging with on-line correction of setup error in thoracic irradiation:clinical evaluation.Int.J Radiat Oncol Biol Phys.,1998,40:967-976
    1.王艳阳,傅小龙.CT在影像引导下放疗中应用的历史与现状.中国癌症杂志,2006,16(6):448-453.
    2.戴建荣,胡逸民.图像引导放疗的实现方式.中华放射肿瘤学杂志,2006,15(2):132-135.
    3.Meyer J,Wilbert J,Baier K,et al.Positioning accuracy of cone-beam computed tomography in combination with a HexaPOD robot treatment table.Int J Radiat Oncol Biol Phys.2007,67(4):1220-1228.
    4.Zhang L,Garden AS,Lo J,et al.Multiple regions-of-interest analysis of setup uncertainties for head-and-neck cancer radiotherapy.Int J Radiat Oncol Biol Phys.2006,64(5):1559-1569.
    5.Langen KM,Zhang Y,Andrews RD,et al.Initial experience with megavoltage (MV) CT guidance for daily prostate alignments.Int J Radiat Oncol Biol Phys,2005,62(5):1517-1524.
    6.Borst GR,Sonke JJ,Betgen A,et al.Kilo-voltage cone-beam computed tomography setup measurements for lung cancer patients;first clinical results and comparison with electronic portal-imaging device.Int J Radiat Oncol Biol Phys,2007,68(2):555-561.
    1.付杰,胡超苏,胡伟刚,等.鼻咽癌CT/MRI配准方法临床研究.中华放射肿瘤学杂志,2006,15:85-88.
    2.Meyer J,Wilbert J,Baier K,et al.Positioning accuracy of cone-beam computed tomography in combination with a HexaPOD robot treatment table.Int J Radiat Oncol Biol Phys,2007,67:1220-1228.
    3.Guckenberger M,Meyer J,Vordermark D,et al.Magnitude and clinical relevance of translational and rotational patient setup errors:a cone-beam CT study.Int J Radiat Oncol Biol Phys,2006,65:934-942.
    4.王艳阳,傅小龙,夏冰,等.肺癌影像引导放疗人工图像配准法重复性的评价.生物医学工程学进展,2008,29:156-160.
    5.Guckenberger M,Meyer J,Wilbert J,et al.Cone-beam CT based image-guidance for extracranial stereotactic radiotherapy of intrapulmonary tumors.Acta Oncol,2006,45:897-906.
    6.Letourneau D,Martinez AA,Lockman D,et al.Assessment of residual error for online cone-beam CT-guided treatment of prostate cancer patients.Int J Radiat Oncol Biol Phys,2005,62:1239-1246.
    1.Langen KM,Jones DT.Organ motion and its management.Int J Radiat Oncol Biol Phys.2001,50(1):265-78.
    2.ICRU.Report 62:Prescribing,recording and reporting photon beam therapy (supplement to ICRU report 50).Bethesda:International Commission on Radiation Units and Measurements;1999.
    3.吴开良,蒋国梁,王鹏,等.肺癌三维适形放射治疗靶体积确定的影响因素.中华放射肿瘤学杂志.2003,12(3):188-91.
    4.Lagerwaard FJ,Van Sornsen de Koste JR,Nijssen-Visser MR,et al.Multiple "slow" CT scans for incorporating lung tumor mobility in radiotherapy planning.Int J Radiat Oncol Biol Phys.2001,51(4):932-7.
    5.van S(o|¨)rnsen de Koste JR,Lagerwaard FJ,Schuchhard-Schipper RH,et al.Dosimetric consequences of tumor mobility in radiotherapy of stage Ⅰ non-small cell lung cancer--an analysis of data generated using 'slow' CT scans.Radiother Oncol.2001,61(1):93-9.
    6.de Koste JR,Lagerwaard FJ,de Boer HC,et al.Are multiple CT scans required for planning curative radiotherapy in lung tumors of the lower lobe? Int J Radiat Oncol Biol Phys.2003,55(5):1394-9.
    7.Shih HA,Jiang SB,Aljarrah KM,et al.Internal target volume determined with expansion margins beyond composite gross tumor volume in three-dimensional conformal radiotherapy for lung cancer.Int J Radiat Oncol Biol Phys.2004,60(2):613-22.
    8.Wurstbauer K,Deutschmann H,Kopp P,et al.Radiotherapy planning for lung cancer:slow CTs allow the drawing of tighter margins.Radiother Oncol.2005,75(2):165-70.
    9.Takeda A,Kunieda E,Shigematsu N,et al.Small lung tumors:long-scan-time CT for planning of hypofractionated stereotactic radiation therapy--initial findings.Radiology.2005,237(1):295-300.
    10.Mori S,Kanematsu N,Mizuno H,et al.Physical evaluation of CT scan methods for radiation therapy planning:comparison of fast,slow and gating scan using the 256-detector row CT scanner.Phys Med Biol.2006,51(3):587-600.
    11.Seki S,Kunieda E,Takeda A,et al.Differences in the definition of internal target volumes using slow CT alone or in combination with thin-slice CT under breath-holding conditions during the planning of stereotactic radiotherapy for lung cancer. Radiother Oncol. 2007, 85(3):443-9.
    
    12. Underberg RW, Lagerwaard FJ, Slotman BJ, et al. Use of maximum intensity projections (MIP) for target volume generation in 4DCT scans for lung cancer. Int J Radiat Oncol Biol Phys. 2005, 63(1):253-60.
    
    13. Rietzel E, Liu AK, Doppke KP, et al. Design of 4D treatment planning target volumes. Int J Radiat Oncol Biol Phys. 2006, 66(1):287-95.
    
    14. Wolthaus JW, Sonke JJ, van Herk M, et al. Comparison of different strategies to use four-dimensional computed tomography in treatment planning for lung cancer patients. Int J Radiat Oncol Biol Phys. 2008, 70(4): 1229-38.
    
    15. Harsolia A, Hugo GD, Kestin LL, et al. Dosimetric advantages of four-dimensional adaptive image-guided radiotherapy for lung tumors using online cone-beam computed tomography. Int J Radiat Oncol Biol Phys. 2008, 70(2):582-9.
    
    16. Wang Z, Wu QJ, Marks LB,et al. Cone-beam CT localization of internal target volumes for stereotactic body radiotherapy of lung lesions. Int J Radiat Oncol Biol Phys. 2007, 69(5): 1618-24.
    
    17. Stevens CW, Munden RF, Forster KM, et al. Respiratory-driven lung tumor motion is independent of tumor size, tumor location, and pulmonary function. Int J Radiat Oncol Biol Phys. 2001, 51(1):62-8.
    
    18. Shirato H, Seppenwoolde Y, Kitamura K, et al. Intrafractional tumor motion: lung and liver. Semin Radiat Oncol. 2004, 14(1):10-8.
    
    19. Hugo G, Vargas C, Liang J, et al. Changes in the respiratory pattern during radiotherapy for cancer in the lung. Radiother Oncol. 2006, 78(3):326-31.
    
    20. Shirato H, Suzuki K, Sharp GC, et al. Speed and amplitude of lung tumor motion precisely detected in four-dimensional setup and in real-time tumor-tracking radiotherapy. Int J Radiat Oncol Biol Phys. 2006, 64(4):1229-36.
    
    21. Neicu T, Berbeco R, Wolfgang J, et al. Synchronized moving aperture radiation therapy (SMART): improvement of breathing pattern reproducibility using respiratory coaching. Phys Med Biol. 2006, 51(3):617-36.
    
    22. Hugo GD, Liang J, Campbell J, et al. On-line target position localization in the presence of respiration: a comparison of two methods. Int J Radiat Oncol Biol Phys. 2007, 69(5): 1634-41.
    
    23. Juhler N(?)ttrup T, Korreman SS, Pedersen AN, et al. Intra- and interfraction breathing variations during curative radiotherapy for lung cancer.Radiother Oncol.2007,84(1):40-8.
    24.Michalski D,Sontag M,Li F,de Andrade RS,et al.Four-dimensional computed tomography-based interfractional reproducibility study of lung tumor intrafractional motion.Int J Radiat Oncol Biol Phys.2008,71(3):714-24.
    25.Feldkamp LA,Davis LC,Kress JW.Practical cone-beam algorithm.J Opt Soc Am A,1984,1:612-619.
    26.柳澄.充分发挥各向同性扫描的优势,开拓多层CT新的应用领域.医学影像学杂志.2007,17(1):1-3.
    1. van Herk M. Errors and margins in radiotherapy. Semin Radiat Oncol, 2004, 14:52-64.
    
    2. Letourneau D, Martinez AA, Lockman D, et al. Assessment of residual error for online cone-beam CT-guided treatment of prostate cancer patients. Int J Radiat Oncol Biol Phys, 2005, 62:1239-1246.
    
    3. Xu F, Wang J, Bai S, et al. Detection of intrafractional tumour position error in radiotherapy utilizing cone beam computed tomography. Radiother Oncol. 2008, 89(3):311-9.
    
    4. Guckenberger M, Sweeney RA, Wilbert J, et al. Image-guided radiotherapy for liver cancer using respiratory-correlated computed tomography and cone-beam computed tomography. Int J Radiat Oncol Biol Phys. 2008, 71(1):297-304.
    
    5. Guckenberger M, Meyer J, Wilbert J, et al. Intra-fractional uncertainties in cone-beam CT based image-guided radiotherapy (IGRT) of pulmonary tumors. Radiother Oncol. 2007, 83(1):57-64.
    
    6. Grills IS, Hugo G, Kestin LL, et al. Image-guided radiotherapy via daily online cone-beam CT substantially reduces margin requirements for stereotactic lung radiotherapy. Int J Radiat Oncol Biol Phys. 2008, 70(4): 1045-56.
    
    7. Hoogeman MS, Nuyttens JJ, Levendag PC, et al. Time dependence of intrafraction patient motion assessed by repeat stereoscopic imaging. Int J Radiat Oncol Biol Phys. 2008,70(2):609-18.
    
    8. Purdie TG, Bissonnette JP, Franks K, et al. Cone-beam computed tomography for on-line image guidance of lung stereotactic radiotherapy: localization, verification, and intrafraction tumor position. Int J Radiat Oncol Biol Phys. 2007,68(1):243-52.
    
    9. Drabik DM, MacKenzie MA, Fallone GB. Quantifying appropriate PTV setup margins: analysis of patient setup fidelity and intrafraction motion using post-treatment megavoltage computed tomography scans. Int J Radiat Oncol Biol Phys. 2007, 68(4): 1222-8.
    
    10. Guckenberger M, Meyer J, Wilbert J, et al. Precision of image-guided radiotherapy (IGRT) in six degrees of freedom and limitations in clinical practice. Strahlenther Onkol. 2007, 183(6):307-13.
    
    11. Yan D, Lockman D, Martinez A, et al. Computed tomography guided management of interfractional patient variation.Semin Radiat Oncol.2005,15(3):168-79.
    12.Hugo GD,Yan D,Liang J.Population and patient-specific target margins for 4D adaptive radiotherapy to account for intra- and inter-fraction variation in lung tumour position.Phys Med Biol.2007,52(1):257-74.
    13.Purdy JA.Current ICRU definitions of volumes:limitations and future directions.Semin Radiat Oncol.2004,14(1):27-40.
    14.Borst GR,Sonke JJ,Betgen A,et al.Kilo-voltage cone-beam computed tomography setup measurements for lung cancer patients;first clinical results and comparison with electronic portal-imaging device.Int J Radiat Oncol Biol Phys,2007,68:555-561.
    15.王艳阳,傅小龙,徐志勇,等.千伏锥形束CT引导放疗系统最小误差与剩余误差分析.中华放射医学与防护杂志,2008,28:166-169.
    16.Ahn PH,Ahn AI,Lee CJ,et al.Random positional variation among the skull,mandible,and cervical spine with treatment progression during head-and-neck radiotherapy.Int J Radiat Oncol Biol Phys.2009,73(2):626-33.
    17.Stroom JC,de Boer HC,Huizenga H,et al.Inclusion of geometrical uncertainties in radiotherapy treatment planning by means of coverage probability.Int J Radiat Oncol Biol Phys.1999,43(4):905-19.
    18.van Herk M,Remeijer P,Rasch C,et al.The probability of correct target dosage:dose-population histograms for deriving treatment margins in radiotherapy.Int J Radiat Oncol Biol Phys,2000,47:1121-1135.
    19.Craig T,Moiseenko V,Battista J,et al.The impact of geometric uncertainty on hypofractionated external beam radiation therapy of prostate cancer.Int J Radiat Oncol Biol Phys.2003,57(3):833-42.
    1. Miller RC, Bonner JA, Kline RW. Impact of beam energy and field margin on penumbra at lung tumor-lung parenchyma interfaces. Int J Radiat Oncol Biol Phys,1998, 41(3):707-13.
    
    2. Osei EK, Darko J, Mosseri A, et al. EGSNRC Monte Carlo study of the effect of photon energy and field margin in phantoms simulating small lung lesions. Med Phys. 2003, 30(10):2706-14.
    
    3. Yorke E, Harisiadis L, Wessels B, et al. Dosimetric considerations in radiation therapy of coin lesions of the lung. Int J Radiat Oncol Biol Phys. 1996, 34(2):481-7.
    
    4. Baumann M, Saunders MI, Joiner MC. Modified fractionation [A]. Steel GG. Basic Clinical Radiobiology [M]. London: Hodder Arnold 2002.147-157.
    
    5. Jin L, Wang L, Li J, et al. Investigation of optimal beam margins for stereotactic radiotherapy of lung-cancer using Monte Carlo dose calculations. Phys Med Biol. 2007, 52(12):3549-61.
    
    6. Han C, Liu A, Schultheiss TE, et al. Dosimetric comparisons of helical tomotherapy treatment plans and step-and-shoot intensity-modulated radiosurgery treatment plans in intracranial stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2006, 65(2):608-16.
    
    7. Wagner TH, Bova FJ, Friedman WA, et al. A simple and reliable index for scoring rival stereotactic radiosurgery plans. Int J Radiat Oncol Biol Phys. 2003,57(4):1141-9.
    
    8. Jin JY, Ajlouni M, Chen Q, et al. Quantification of incidental dose to potential clinical target volume (CTV) under different stereotactic body radiation therapy (SBRT) techniques for non-small cell lung cancer - tumor motion and using internal target volume (ITV) could improve dose distribution in CTV. Radiother Oncol. 2007,85(2):267-76.
    
    9. Timmerman RD, Kavanagh BD. Stereotactic body radiation therapy . Curr Probl Cancer, 2005, 29(3):120-157.
    
    10. Smith V, Verhey L, Serago CF. Comparison of radiosurgery treatment modalities based on complication and control probabilities. Int J Radiat Oncol Biol Phys. 1998,40(2):507-13.
    
    11. Nakamura JL, Verhey LJ, Smith V, et al. Dose conformity of gamma knife radiosurgery and risk factors for complications. Int J Radiat Oncol Biol Phys. 2001, 51(5):1313-9.
    1.Jemal A,Siegel R,Ward E,Hao Y,Xu J,Murray T,Thun MJ.Cancer statistics,2008.CA Cancer J Clin.2008,58(2):71-96.
    2.上海市疾病预防控制中心.2005年上海市市区恶性肿瘤发病率.肿瘤.2008,28(8):627.
    3.Shields TW.Surgical therapy for carcinoma of the lung.Clin Chest Med.1993,14:121-147.
    4.Mountain CF.A new international staging system for lung cancer.Chest.1986,89:225S-233S.
    5.Naruke T,Goya T,Tsuchiya R,Suemasu K.Prognosis and survival in resected lung carcinoma based on the new international staging system.J Thorac Cardiovasc Surg.1988,96:440-447.
    6.Adebonojo SA,Bowser AN,Moritz DM,Corcoran PC.Impact of revised stage classification of lung cancer on survival:A military experience.Chest.1999,115:1507-1513.
    7.Ginsberg RJ,Rubinstein LV.Randomized trial of lobectomy versus limited resection for T1 NO non-small cell lung cancer.Lung Cancer Study Group.Ann Thorac Surg.1995,60:615-623.
    8.Coy P,Kennelly GM.The role of curative radiotherapy in the treatment of lung cancer.Cancer.1980,45:698-702.
    9.Armstrong JG,Minsky BD.Radiation therapy for medically inoperable stage and 11 non-small cell lung cancer.Cancer Treat Rev.1989,16:247-255.
    10.Haffty B,Goldberg NB,Gerstley J,et al.Results of radical radiation therapy in clinical stage Ⅰ,technically operable non-small cell lung cancer.Int J Radiat Oncol Biol Phys.1988,15:69-73.
    11.Kaskowitz L,Graham MV,Emami B,et al.Radiation therapy alone for stage Ⅰnon-small cell lung cancer.Int J Radiat Oncol Biol Phys.1993,27:517-523.
    12.Dosoretz D,Katin MJ,Blitzer PH,et al.Radiation therapy in the management of medically inoperable carcinoma of the lung:Results and implications for future treatment strategies.Int J Radiat Oncol Biol Phys.1992,24:3-9.
    13.Le QT,Petrik DW.Nonsurgical therapy for stages Ⅰ and Ⅱ non-small cell lung cancer.Hematol Oncol Clin North Am,2005,19(2):237-261.
    14.Belderbos JS,De Jaeger K,Heemsbergen WD,et al.First results of a phase Ⅰ/Ⅱ dose escalation trial in non-small cell lung cancer using three-dimensional conformal radiotherapy.Radiother Oncol.2003,66(2):119-26.
    15.Sibley GS,Jamieson TA,Marks LB,et al.Radiotherapy alone for medically inoperable stage Ⅰ non-small-cell lung cancer:the Duke experience.Int J Radiat Oncol Biol Phys,1998,40(1):149-154.
    16.Zhao L,West BT,Hayman JA,et al.High radiation dose may reduce the negative effect of large gross tumor volume in patients with medically inoperable early-stage non-small cell lung cancer.Int J Radiat Oncol Biol Phys,2007,68(1):103-110.
    17.Jeremic B,Classen J,Bamberg M.Radiotherapy alone in technically operable,medically inoperable,early-stage(Ⅰ/Ⅱ) non-small-cell lung cancer.Int J Radiat Oncol Biol Phys.2002,54(1):119-130
    18.Rowell NP,Williams CJ.Radical radiotherapy for stage Ⅰ/Ⅱ non-small cell lung cancer in patients not sufficiently fit for or declining surgery(medically inoperable):a systematic review.Thorax.2001,56(8):628-38.
    19.Sibley GS.Radiotherapy for patients with medically inoperable Stage Ⅰ nonsmall cell lung carcinoma:smaller volumes and higher doses--a review.Cancer.1998,82(3):433-8.
    20.Hayakawa K,Mitsuhashi N,Katano S,et al.High-dose radiation therapy for elderly patients with inoperable or unresectable non-small cell lung cancer.Lung Cancer.2001,32(1):81-8.
    21.Timmerman RD,Kavanagh BD,Cho LC,et al.Stereotactic body radiation therapy in multiple organ sites.J Clin Oncol,2007,25(8):947-952.
    22.王艳阳,傅小龙.体部肿瘤立体定向放疗研究进展.实用肿瘤杂志,2008,23:78-81.
    23.Jaffray DA.Emergent technologies for 3-dimensional image-guided radiation delivery.Semin Radiat Oncol,2005,15(3):208-216.
    24.Dawson LA,Jaffray DA.Advances in image-guided radiation therapy.J Clin Oncol,2007,25:938-46.
    25.Verellen D,De Ridder M,Linthout N,et al.Innovations in image-guided radiotherapy.Nat Rev Cancer 2007;7:949-60.
    26.Blomgren H,et al.Radiosurgery for tumors in the body:Clinical experience using a new method.J Radiosurg.1998,1(1):63-74.
    27.McGarry RC,Papiez L,Williams M,et al.Stereotactic body radiation therapy of early-stage non-small-cell lung carcinoma:phase Ⅰ study.Int J Radiat Oncol Biol Phys,2005,63(4):1010-1015.
    28.Timmerman R,McGarry R,Yiannoutsos C,et al.Excessive toxicity when treating central tumors in a phase Ⅱ study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer.J Clin Oncol,2006,24(30):4833-4839.
    29.Onishi H,Araki T,Shirato H,et al.Stereotactic hypofractionated high-dose irradiation for stage Ⅰ nonsmall cell lung carcinoma:clinical outcomes in 245 subjects in a Japanese multiinstitutional study.Cancer,2004,101(7):1623-1631.
    30.Onishi H,Shirato H,Nagata Y,et al.Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage Ⅰ non-small cell lung cancer:updated results of 257 patients in a Japanese multi-institutional study.J Thorac Oncol.2007,2(7 Suppl 3):S94-100.
    31.Chang JY,Baiter PA,Dong L,et al.Stereotactic body radiation therapy in centrally and superiorly located stage Ⅰ or isolated recurrent non-small-cell lung cancer.Int J Radiat Oncol Biol Phys.2008,72(4):967-71
    32.Voroney J,Hope A,Dahele M,et al.Pain and Rib Fracture after Stereotactic Radiotherapy for Peripheral Non-small Cell Lung Cancer.Int J Radiat Oncol Biol Phys.2008,72(1 Suppl):S35-36.
    33.Dunlap N,Biedermann G,Yang W,et al.Chest Wall Volume Receiving More than 30 Gy Predicts Risk of Severe Pain and/or Rib Fracture Following Lung SBRT.Int J Radiat Oncol Biol Phys.2008,72(1 Suppl):S36.
    34.Onimaru R,Fujino M,Yamazaki K,et al.Steep dose-response relationship for stage Ⅰ non-small-cell lung cancer using hypofractionated high-dose irradiation by real-time tumor-tracking radiotherapy.Int J Radiat Oncol Biol Phys.2008,70(2):374-81.
    35.Kopek K,Paludan M,Petersen J,et al.Stereotactic Body Radiotherapy for Medically Inoperable Stage Ⅰ Non-small Cell Lung Cancer:Mature Outcome and Toxicity Results.Int J Radiat Oncol Biol Phys.2008,72(1 Suppl):S37
    36.Jin JY,Ajlouni M,Chen Q,et al.Quantification of incidental dose to potential clinical target volume(CTV) under different stereotactic body radiation therapy (SBRT) techniques for non-small cell lung cancer - tumor motion and using internal target volume(ITV) could improve dose distribution in CTV.Radiother Oncol.2007,85(2):267-76.
    37.王艳阳,傅小龙.早期非小细胞肺癌立体定向放疗研究进展.中国癌症杂志, 2008, 18: 466-469.
    
    38. Jeremic B, Classen J, Bamberg M. Radiotherapy alone in technically operable, medically inoperable, early-stage (I/II) non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2002, 54(1):119-130.
    
    39. Voroney J, Hope A, Dahele M, et al. Pain and Rib Fracture after Stereotactic Radiotherapy for Peripheral Non-small Cell Lung Cancer. Int J Radiat Oncol Biol Phys. 2008, 72(1 Suppl):S35-36.
    
    40. Dunlap N, Biedermann G, Yang W, et al. Chest Wall Volume Receiving More than 30 Gy Predicts Risk of Severe Pain and/or Rib Fracture Following Lung SBRT. Int J Radiat Oncol Biol Phys. 2008, 72(1 Suppl):S36.
    
    41. Stephans K, Djemil T, Reddy C, et al. A Comparison of Stereotactic Body Radiation (SBRT) Fractionation Schedules for Stage I Non-small Cell Lung Cancer (NSCLC): The Cleveland Clinic Experience. Int J Radiat Oncol Biol Phys. 2008, 72(1 Suppl):S38-39.
    
    42. Fukumoto S, Shirato H, Shimzu S, et al. Small-volume image-guided radiotherapy using hypofractionated, coplanar, and noncoplanar multiple fields for patients with inoperable Stage I nonsmall cell lung carcinomas. Cancer. 2002, 95(7):1546-53.
    
    43. Hof H, Herfarth KK, Münter M, et al. Stereotactic single-dose radiotherapy of stage I non-small-cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys. 2003,56(2):335-41.
    
    44. Timmerman R, Papiez L, McGarry R, et al. Extracranial stereotactic radioablation: Results of a phase I study of stage I non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2003, 57(2 Suppl):S280-281.
    
    45. Uematsu M, Shioda A, Suda A, et al. Computed tomography-guided frameless stereotactic radiotherapy for stage I non-small cell lung cancer: a 5-year experience. Int J Radiat Oncol Biol Phys. 2001, 51(3):666-70.
    
    46. Bradley J, Naqa I, Trovo M, et al. SBRT for Early-stage NSCLC: The Predominant Failure Pattern is Distant. Int J Radiat Oncol Biol Phys. 2008, 69(1 Suppl):S37-38.
    
    47. Fowler JF, Tome WA, Welsh JS. Estimation of required doses in stereotactic body radiation therapy [A]. Kavanagh BD, Timmerman RD. Stereotactic Body Radiation Therapy [M]. Phliadelphia: Lippincott Williams & Wilkins 2005.7-14.
    
    48. Fowler JF, Welsh JS, Howard SP et al. Loss of biological effect in prolonged fraction delivery.Int J Radiat Oncol Biol Phys.2004,59:242-9.
    49.Chen M,Jiang GL,Fu XL,et al.The impact of overall treatment time on outcomes in radiation therapy for non-small cell lung cancer.Lung Cancer,2000,28(1):11-19.
    50.D(o|¨)rr W,Weber-Frisch M.Repopulation response of mouse oral mucosa during unconventional radiotherapy protocols.Radiother Oncol.1995,37(3):230-6.
    51.Brenner DJ.The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction.Semin Radiat Oncol.2008,18(4):234-9.
    52.Kirkpatrick JP,Meyer JJ,Marks LB.The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery.Semin Radiat Oncol.2008,18(4):240-3.
    53.Milano MT,Constine LS,Okunieff P.Normal tissue toxicity after small field hypofractionated stereotactic body radiation.Radiat Oncol.2008,3:36.
    54.Park C,Papiez L,Zhang S,et al.Universal survival curve and single fraction equivalent dose:useful tools in understanding potency of ablative radiotherapy.Int J Radiat Oncol Biol Phys.2008,70(3):847-52.
    1. Jaffray DA. Emergent technologies for 3-dimensional image-guided radiation delivery[J]. Semin Radiat Oncol, 2005,15(3):208-216.
    
    2. Herman MG Clinical use of electronic portal imaging[J]. Semin Radiat Oncol, 2005,15(3):157-167.
    
    3. Beavis AW. Is tomotherapy the future of IMRT[J]? Br J Radiol, 2004, 77(916):285-295.
    
    4. Welsh JS, Bradley K, Ruchala KJ, et al. Megavoltage computed tomography imaging: a potential tool to guide and improve the delivery of thoracic radiation therapy[J]. Clin Lung Cancer, 2004, 5(5):303-306.
    
    5. Chen YJ, Han C, Liu A, et al. Setup variations in radiotherapy of esophageal cancer: evaluation by daily megavoltage computed tomographic localization[J]. Int J Radiat Oncol Biol Phys. 2007,68(5):1537-1545.
    
    6. Kupelian PA, Lee C, Langen KM, et al. Evaluation of image-guidance strategies in the treatment of localized prostate cancer[J]. Int J Radiat Oncol Biol Phys,2008,70(4):1151-1157.
    
    7. Ramsey CR, Langen KM, Kupelian PA, et al. A technique for adaptive image-guided helical tomotherapy for lung cancer[J]. Int J Radiat Oncol Biol Phys, 2006,64(4): 1237-1244.
    
    8. Sidhu K, Ford EC, Spirou S, et al. Optimization of conformal thoracic radiotherapy using cone-beam CT imaging for treatment verification[J]. Int J Radiat Oncol Biol Phys, 2003, 55(3):757-767.
    
    9. Ford EC, Chang J, Mueller K, et al. Cone-beam CT with megavoltage beams and an amorphous silicon electronic portal imaging device: potential for verification of radiotherapy of lung cancer[J]. Med Phys, 2002, 29(12):2913-2924.
    
    10. Pouliot J, Bani-Hashemi A, Chen J, et al. Low-dose megavoltage cone-beam CT for radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2005,61(2):552-560.
    
    11. Chen J, Morin O, Aubin M, et al. Dose-guided radiation therapy with megavoltage cone-beam CT[J].Br J Radiol, 2006,79(S1):S87-s98.
    
    12. Hansen EK, Larson DA, Aubin M, et al.Image-guided radiotherapy using megavoltage cone-beam computed tomography for treatment of paraspinous tumors in the presence of orthopedic hardware[J]. Int J Radiat Oncol Biol Phys, 2006,66(2):323-326
    
    13. Jaffray DA, Drake DG, Moreau M, et al. A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets[J]. Int J Radiat Oncol Biol Phys, 1999,45(3):773-789.
    
    14. Johns HE, Cunningham JR. A precision Cobalt 60 unit for fixed field and rotation therapy[J]. Am J Roentgenol, 1959,4(1):81.
    
    15. Uematsu M, Shioda A, Tahara K, et al. Focal, high dose, and fractionated modified stereotactic radiation therapy for lung carcinoma patients: a preliminary experience[J].Cancer, 1998, 82(6): 1062-1070.
    
    16. Uematsu M, Shioda A, Suda A, et al. Intrafractional tumor position stability during computed tomography (CT)-guided frameless stereotactic radiation therapy for lung or liver cancers with a fusion of CT and linear accelerator (FOCAL) unit[J]. Int J Radiat Oncol Biol Phys, 2000,48(2):443-448.
    
    17. Uematsu M, Shioda A, Suda A, et al. Computed tomography-guided frameless stereotactic radiotherapy for stage I non-small cell lung cancer: a 5-year experience[J]. Int J Radiat Oncol Biol Phys, 2001, 51(3):666-670.
    
    18. Shiu AS, Chang EL, Ye JS, et al. Near simultaneous computed tomography image-guided stereotactic spinal radiotherapy: an emerging paradigm for achieving true stereotaxy[J]. Int J Radiat Oncol Biol Phys, 2003, 57(3):605-613.
    
    19. Cheng CW, Wong J, Grimm L, et al. Commissioning and clinical implementation of a sliding gantry CT scanner installed in an existing treatment room and early clinical experience for precise tumor localization[J]. Am J Clin Oncol, 2003, 26(3):e28-36
    
    20. Jaffray DA, Siewerdsen JH, Wong JW, et al. Flat-panel cone-beam computed tomography for image-guided radiation therapy [J]. Int J Radiat Oncol Biol Phys 2002, 53(5):1337-1349.
    
    21. Letourneau D, Martinez AA, Lockman D, et al. Assessment of residual error for online cone-beam CT-guided treatment of prostate cancer patients[J]. J Radiat Oncol Biol Phys, 2005, 62(4): 1239-1246.
    1.王艳阳,傅小龙.早期非小细胞肺癌立体定向放疗研究进展.中国癌症杂志,2008,18:466-469.
    2.Ball D.Stereotactic radiotherapy for non-small cell lung cancer.Curr Opin Pulm Med.2008,14(4):297-302.
    3.Nguyen NP,Garland L,Welsh J,et al.Can stereotactic fractionated radiation therapy become the standard of care for early stage non-small cell lung carcinoma.Cancer Treat Rev.2008,34(8):719-27.
    4.Dawson LA,Jaffray DA.Advances in image-guided radiation therapy.J Clin Oncol.2007,25(8):938-46.
    5.Verellen D,De Ridder M,Tournel K,et al.An overview of volumetric imaging technologies and their quality assurance for IGRT.Acta Oncol.2008;47(7):1271-8.
    6.王艳阳,傅小龙,徐志勇,等.千伏锥形束CT引导放疗质量保证体系的建立.中华放射肿瘤学杂志,2008,17:152-155.
    7.Keall PJ,Mageras GS,Baiter JM,et al.The management of respiratory motion in radiation oncology report of AAPM Task Group 76.Med Phys.2006,33(10):3874-900.
    8.Gould MK,Kuschner WG,Rydzak CE,et al.Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer:A meta-analysis.Ann Intern Med.2003,139:879-892.
    9.Melek H,Gunluoglu MZ,Demir A,et al.Role of positron emission tomography in mediastinal lymphatic staging of non-small cell lung cancer.Eur J Cardiothorac Surg.2008,33(2):294-9.
    10.Silvestri GA,Gould MK,Margolis ML,Tanoue LT,McCrory D,Toloza E,Detterbeck F;American College of Chest Physicians.Noninvasive staging of non-small cell lung cancer:ACCP evidenced-based clinical practice guidelines(2nd edition).Chest.2007,132(3 Suppl):178S-201S.
    11.Fuwa N,Mitsudomi T,Daimon T,et al.Factors involved in lymph node metastasis in clinical stage Ⅰ non-small cell lung cancer-from studies of 604 surgical cases.Lung Cancer.2007,57(3):311-6.
    12.Timmerman RD,Park C,Kavanagh BD.The North American experience with stereotactic body radiation therapy in non-small cell lung cancer.J Thorac Oncol.2007,2(7 Suppl 3):S101-12.
    13. Onishi H, Shirato H, Nagata Y, et al. Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small cell lung cancer: updated results of 257 patients in a Japanese multi-institutional study. J Thorac Oncol. 2007,2(7 Suppl 3):S94-100.
    
    14. Timmerman R, McGarry R, Yiannoutsos C,et al. Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol, 2006,24(30):4833-4839.
    
    15. Chang JY, Baiter PA, Dong L, et al. Stereotactic body radiation therapy in centrally and superiorly located stage I or isolated recurrent non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2008, 72(4):967-71.
    
    16. Voroney J, Hope A, Dahele M, et al. Pain and Rib Fracture after Stereotactic Radiotherapy for Peripheral Non-small Cell Lung Cancer. Int J Radiat Oncol Biol Phys. 2008, 72(1 Suppl):S35-36.
    
    17. Dunlap N, Biedermann G, Yang W, et al. Chest Wall Volume Receiving More than 30 Gy Predicts Risk of Severe Pain and/or Rib Fracture Following Lung SBRT. Int J Radiat Oncol Biol Phys. 2008, 72(1 Suppl):S36.
    
    18. Stephans K, Djemil T, Reddy C, et al. A Comparison of Stereotactic Body Radiation (SBRT) Fractionation Schedules for Stage I Non-small Cell Lung Cancer (NSCLC): The Cleveland Clinic Experience. Int J Radiat Oncol Biol Phys. 2008, 72(1 Suppl):S38-39.
    
    19. Kopek K, Paludan M, Petersen J, et al. Stereotactic Body Radiotherapy for Medically Inoperable Stage I Non-small Cell Lung Cancer: Mature Outcome and Toxicity Results. Int J Radiat Oncol Biol Phys. 2008, 72(1 Suppl):S37
    
    20. Timmerman RD, Kavanagh BD, Cho LC, et al. Stereotactic body radiation therapy in multiple organ sites. J Clin Oncol, 2007, 25(8):947-952.
    
    21. Matsuo Y, Takayama K, Nagata Y, et al. Interinstitutional variations in planning for stereotactic body radiation therapy for lung cancer. Int J Radiat Oncol Biol Phys. 2007,68(2):416-25.
    
    22. Timmerman R, Paulus R, Galvin J, et al. Toxicity Analysis of RTOG 0236 Using Stereotactic Body Radiation Therapy to Treat Medically Inoperable Early Stage Lung Cancer Patients. Int J Radiat Oncol Biol Phys. 2007, 69(1 Suppl):S86.
    
    23. Takeda T, Takeda A, Kunieda E, et al. Radiation injury after hypofractionated stereotactic radiotherapy for peripheral small lung tumors: serial changes on CT. Am J Roentgenol. 2004,182(5): 1123-8.
    
    24. Hoopes DJ, Tann M, Fletcher JW, et al. FDG-PET and stereotactic body radiotherapy (SBRT) for stage I non-small-cell lung cancer. Lung Cancer. 2007,56(2):229-34.
    
    25. Bradley J, Naqa I, Trovo M, et al. SBRT for Early-stage NSCLC: The Predominant Failure Pattern is Distant. Int J Radiat Oncol Biol Phys. 2007, 69(1 Suppl):S37-38.
    
    26. Strauss GM, Herndon JE 2nd, Maddaus MA,et al. Adjuvant paclitaxel plus carboplatin compared with observation in stage IB non-small-cell lung cancer: CALGB 9633 with the Cancer and Leukemia Group B, Radiation Therapy Oncology Group, and North Central Cancer Treatment Group Study Groups. J Clin Oncol. 2008, 26(31):5043-51.
    
    27. Dahele M, Pearson S, Purdie T,et al. Practical considerations arising from the implementation of lung stereotactic body radiation therapy (SBRT) at a comprehensive cancer center. J Thorac Oncol. 2008, 3(11): 1332-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700