基于Cayley图的结构化P2P覆盖网络拓扑构造及资源定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于应用层的覆盖网络技术正迅速兴起并得到广泛的应用。结构化P2P覆盖网络凭借其去中心化、扩展性好、容错性高等优点,日益在互联网信息共享方面显示出巨大潜力。而拓扑构造和资源定位是结构化P2P覆盖网络研究两个核心问题,直接影响了结构化P2P覆盖网络的可用性和系统效率。
     结构化P2P覆盖网络的拓扑性质决定了其拓扑维护的代价以及节点间路由寻址的性能。常数度结构化P2P覆盖网络在保证了高效路由的同时具备稳定性强、控制信息少、网络负载小等优点,而利用小世界网络理论构造的覆盖网络较小的平均路径长度和较大的聚类系数等优点有利于提高网络的路由效率,这两点对近年来的覆盖网络拓扑研究都产生了一定的影响。结合这些因素构造具有优良特性的结构化网络拓扑是结构化P2P覆盖网络构造的重要研究方向。
     分布式哈希表技术使结构化P2P覆盖网络能准确定位具有精确标识符的资源,但对于不具备精确标识符的资源却非常困难。在结构化P2P覆盖网络没有目录服务器、各个节点没有全局索引的前提下,为资源定位提供更强大的查询手段是结构化P2P覆盖网络能否得到广泛应用的重要因素。
     论文以上述两个核心问题为主线,主要开展了以下几方面的研究工作:
     1.具有小世界网络特性的常数度结构化P2P覆盖网络拓扑构造。基于群论中的半直积方法和具有小世界网络特性的凯莱图模型,提出了一种新型的常数度结构化覆盖网络CayDHT。CayDHT继承了凯莱图的点可迁特性,具有简单高效的路由算法,而常数度特性使得构造大规模的对等网络称为可能。理论分析和实验表明,CayDHT具有O (l)大小的常数路由表、 O (log N)大小的网络直径和优良的容错能力,并具有小世界网络的特性。
     2.结构化P2P覆盖网络的多关键字搜索研究。一般来说,在结构化P2P覆盖网络中通过多关键字来定位资源需要分布式倒排索引等额外机制。水平切分和垂直切分是分布式倒排索引的两种主要存储方式,本文讨论和分析了结构化P2P覆盖网络在这两种模式下实现多关键字超集搜索的关键问题,并基于CayDHT对这两种模式进行了详细的理论分析和实验对比。
     3. CayDHT的复杂搜索(盲目搜索)研究。和其他结构化P2P覆盖网络一样,基于分布式哈希表的CayDHT对于不限定搜索形式的复杂搜索缺乏支持,引入传统非结构化覆盖网络的基于广播/洪泛的盲目搜索方法是必要的。本文通过分析CayDHT拓扑的性质,结合凯莱图的点可迁特性,提出了一种基于虚拟搜索树的复杂搜索算法(VTCS),无需额外维护树结构,具有良好的负载平衡特性,可以在O(logN)的时间复杂度内完成无冗余消息的搜索分发。
     4.结构化P2P覆盖网络的分区复杂搜索研究。基于复杂搜索和盲目搜索的资源定位都依赖于初始化TTL参数来控制搜索的范围和减少冗余消息,而很多研究显示这种控制方法还存在比较大的缺陷。本文通过借鉴了超节点混合对等网络的优点,使用图控制集理论及网络资源布局理论,基于CayDHT提出了一种分区盲目搜索模型,该模型在搜索时只需要通过小部分搜索分发节点进行TTL参数较小的洪泛式搜索。理论分析和实验表明这种方法可以较好的控制搜索范围,并且可以保证搜索的完全性。
Overlay network technology based on application-layer is rapidly emerging and has beenwidely used in the Internet. Structured Peer-to-Peer overlay networks demonstrate many goodfeatures such as decentralization, scalability and fault tolerance, hence it indeed has a greatpotential to become a major technology for sharing information. Topology construction andthe resource locating are two important research fields of structured overlay network, whichdirectly affect the usability and efficiency of network.
     1. Topological properties determine the costs of topology maintenance and the routingperformance between nodes. Constant degree structure P2P overlay network provides notonly efficient routing but strong stability, less control message and network overhead, besides,low average distance and high clustering coefficient are two main attractive properties ofSmall-world network for overlay network which implies a small latency lookup andpreferable routing efficiency. These two factors have already had a significant impact uponresearch of overlay network topology. Combining these factors to construct a structurednetwork topology with good properties is an important research direction in P2P networktopology construction.
     2. By utilizing distributed hash tables, structured peer-to-peer network can provide exact-match search and locate the resource effectively. However, it is difficult to locate a resourcethat does not own an exact identifier when facing diversified search styles and complexqueries. Therefore, on the premise of lacking directory server and global index an efficientnovel distributed retrieval model that support complex queries is the key issue whether thestructure overlay network can be widely used.
     The thesis focuses on these two problems, and makes the main research subjects andcontributions as follows:
     1. Construction of constant degree structure P2P overlay network topology with small-world features. Based on the semidirect products of finite group and Cayley graph with small-world features, a new constant degree P2P overlay network CayDHT is proposed. CayDHTinherits the vertex-transitive property of Cayley graph, its simple routing scheme and constantrout table make it possible to construct large scale network. The simulations and experimentsshowed that this model provides O(1) routing table, O(logN) query path, good robustness andsmallworld properties.
     2. Multi-keyword search of Structured P2P overlay network. Generally speaking, instructured P2P network to locate a resource by multi-keywords requires additional mechanism such as distributed inverted index. Horizontal partition and vertical partition are two principalpattern of distributed inverted index. We discuss and analyses the key problem of multi-keyword superset search under these two patterns, and we also evaluate exhaustively thesetwo patterns by simulation and theoretical analysis under CayDHT.
     3. Complex/blind search of CayDHT. Like other structured P2P overlay networks,CayDHT does not provide any methods for complex/blind search too, so introducing flexibleblind search of traditional unstructured P2P network is necessary. By analyzing the topologyproperty of CayDHT, an efficient blind search scheme named Virtual Tree based ComplexSearch of CayDHT (VTCS) is proposed. The algorithm guarantees that query messages canvisit every node within O(logN) hops while does not need to maintain extra data structure, andwhat's more, the algorithm shows good load-balancing.
     4. Complex/blind search base on partition. Typically, the blind search depends on theTTL parameter to control the scope of the search and reduce the redundant messages.However, many studies have shown the TTL mechanism has some defects. By introducingthe advantage of super-peer based P2P network, with the help of dominating sets of graphtheory and solution to resource placement of network, we propose a novel search algorithmbased on partitioning the whole network. The algorithm can guarantees the completeness ofsearch result while only need to search the subzone with small TTL parameter. Theoreticalanalysis and simulation show that the method can control the search scope more effectively.
引文
[1] D. Clark, B. Lehr, S. Bauer, et al. The growth of internet overlay networks: Implicationsfor architecture, industry structure and policy[C]. In: the proceedings ofTelecommunications Policy Research Conference.2005:1-50
    [2] S. Androutsellis-Theotokis, D. Spinellis. A survey of peer-to-peer content distributiontechnologies[J]. ACM Computing Surveys (CSUR),2004,36(4):335-371
    [3] M. Ripeanu, I. Foster. Peer-to-peer architecture case study: Gnutella network[J].University of Chicago, Chicago,2001:
    [4] I. Clarke, O. Sandberg, B. Wiley, et al. Freenet: A distributed anonymous informationstorage and retrieval system[C]. In.2001:46-66
    [5] Q. Lian, Z. Zhang, M. Yang, et al. An empirical study of collusion behavior in the MazeP2P file-sharing system[C]. In:27th International Conference on Distributed ComputingSystems.2007:56-56
    [6]卢锡城,李东升.虚拟计算环境中的覆盖网技术[J].计算机学报,2008,31(009):1516-1524
    [7]张一鸣,卢锡城,李东升.虚拟计算环境中的嵌入式DHT覆盖网技术[J].中国科学:信息科学,2010,40(2):216-227
    [8]张一鸣,卢锡城,李东升.虚拟计算环境中的DHT拓扑构建技术研究综述[J].中国科学:信息科学,2011,41(9):1037-1053
    [9]卢锡城,王怀民,王戟.虚拟计算环境iVCE:概念与体系结构[J].中国科学: E辑,2006,36(10):1081-1099
    [10] A. Cavalli, D. Vieira. Working around bgp: An improvement of bgp sessionmaintenance[C]. In: International conference on Networking and Services.2006:41-41
    [11]王旸旸,毕军,吴建平.互联网覆盖路由技术研究[J]. Journal of Software,2009,20(11):2988-3000
    [12] D. G. Andersen. Resilient Overlay Networks[D]. MASSACHUSETTS INSTITUTE OFTECHNOLOGY,1998.
    [13] D. Pendarakis, S. Shi, D. Verma, et al. ALMI: An application level multicastinfrastructure[C]. In: Proceedings of the3rd conference on USENIX Symposium onInternet Technologies and Systems.2001:1-5
    [14] A. El-Sayed, V. Roca, L. Mathy. A survey of proposals for an alternative groupcommunication service[J]. Network, IEEE,2003,17(1):46-51
    [15] Y. Chu, S. G. Rao, S. Seshan, et al. A case for end system multicast[J]. Selected Areas inCommunications, IEEE Journal on,2002,20(8):1456-1471
    [16] S. Rhea, C. Wells, P. Eaton, et al. Maintenance-free global data storage[J]. InternetComputing, IEEE,2001,5(5):40-49
    [17] F. Dabek, M. F. Kaashoek, D. Karger, et al. Wide-area cooperative storage with CFS[J].ACM SIGOPS Operating Systems Review,2001,35(5):202-215
    [18] W. Zheng, J. Hu, M. Li. Granary: Architecture of object oriented Internet storageservice[C]. In: IEEE International Conference on E-Commerce Technology for DynamicE-Business.2004:294-297
    [19] A. Rowstron, P. Druschel. Pastry: Scalable, distributed object location and routing forlarge-scale peer-to-peer systems[C]. In: IFIP/ACM international conference on distributedsystems platforms (Middleware).2001:329-350
    [20] I. Stoica, R. Morris, D. Liben-Nowell, et al. Chord: a scalable peer-to-peer lookupprotocol for internet applications[J]. IEEE/ACM Transactions on networking,2003,11(1):17-32
    [21] S. Ratnasamy, P. Francis, M. Handley, et al. A scalable content-addressable network[J].ACM SIGCOMM Computer Communication Review,2001,31(4):161-172
    [22] D. Malkhi, M. Naor, D. Ratajczak. Viceroy: A scalable and dynamic emulation of thebutterfly[C]. In.2002:183-192
    [23] X. Li, J. Yu. A Novel P2P Overlay Network Based on Cycloid and Folded Hypercube[C].In.2008:374-379
    [24] D. Li, X. Lu, B. Wang, et al. Delay-bounded range queries in DHT-based peer-to-peersystems[C]. In:26th IEEE International Conference on Distributed Computing Systems.2006:64-64
    [25] C. Tang, S. Dwarkadas. Hybrid global-local indexing for effcient peer-to-peerinformation retrieval[C]. In: Proceedings of the1st conference on Symposium onNetworked Systems Design and Implementation-Volume1.2004:16-16
    [26] Y. Joung, L. Yang, C. Fang. Keyword search in dht-based peer-to-peer networks[J].IEEE Journal on Selected Areas in Communications,2007,25(1):46-61
    [27] N. J. A. Harvey, M. B. Jones, S. Saroiu, et al. Skipnet: A scalable overlay network withpractical locality properties[C]. In: Proceedings of the4th conference on USENIXSymposium on Internet Technologies and Systems.2003:9-9
    [28] J. Aspnes, G. Shah. Skip graphs[J]. ACM Transactions on Algorithms (TALG),2007,3(4):37
    [29] K. Aberer, P. Cudré-Mauroux, A. Datta, et al. P-Grid: a self-organizing structured P2Psystem[J]. ACM SIGMOD Record,2003,32(3):29-33
    [30] H. V. Jagadish, B. C. Ooi, Q. H. Vu. Baton: A balanced tree structure for peer-to-peernetworks[C]. In: Proceedings of the31st international conference on Very large databases.2005:661-672
    [31] J. Albrecht, D. Patterson, A. Vahdat. Distributed resource discovery on planetlab withsword[C]. In: First Workshop on Real, Large Distributed Systems.2004:
    [32] M. Cai, M. Frank, J. Chen, et al. Maan: A multi-attribute addressable network for gridinformation services[J]. Journal of Grid Computing,2004,2(1):3-14
    [33] S. B. Akers, B. Krishnamurthy. A group-theoretic model for symmetric interconnectionnetworks[J]. IEEE Transactions on Computers,1989,38(4):555-566
    [34] H. Shen, C. Z. Xu, G. Chen. Cycloid: a constant-degree and lookup-efficient P2P overlaynetwork[J]. Performance Evaluation,2006,63(3):195-216
    [35] M. Kaashoek, D. Karger. Koorde: A simple degree-optimal distributed hash table[J].Peer-to-Peer Systems II,2003:98-107
    [36] P. Fraigniaud, P. Gauron. D2B: A de Bruijn based content-addressable network[J].Theoretical Computer Science,2006,355(1):65-79
    [37] K. Lui, D. Yau. Small-World Overlay P2P Networks: Construction and HandlingDynamic Flash Crowd[J]. Computer Networks Journal,2006,50(15):2727¨C2746
    [38] W. Xiao, B. Parhami. Cayley graphs as models of deterministic small-world networks[J].Information Processing Letters,2006,97(3):115-117
    [39] W. Xiao, Y. Qin, B. Parhami."Extended Clustering Coefficients of Small-WorldNetworks," Computational Science–ICCS2007, pp.67-73,2007.
    [40] W. Xiao, L. Peng. On general models of complex networks with some applications[C].In: Web Society,2009. SWS '09.1st IEEE Symposium on.2009:153-156
    [41] A. Kumar, S. Merugu, J. Xu, et al. Ulysses: A robust, low-diameter, low-latency peer-to-peer network[J]. European Transactions on Telecommunications,2004,15(6):571-587
    [42] D. Li, X. Lu, J. Wu. Fissione: A scalable constant degree and low congestion dht schemebased on kautz graphs[C]. In: IEEE INFOCOM.2005:1677-1688
    [43]李东升.基于对等模式的资源定位技术研究[D].长沙,国防科学技术大学,2005.
    [44] W. H. Kautz. Design of optimal interconnection networks for multiprocessors[J].Architecture and design of digital computers,1969:249¨C272
    [45]陈贵海,须成忠,沈海英, et al.一种新的常数度数的P2P覆盖网络[J].计算机学报,2005,28(007):1084-1095
    [46] P. Fraigniaud, E. Lazard. Methods and problems of communication in usual networks[J].Discrete Applied Mathematics,1994,53(1):79-133
    [47] D. R. Duh, G. H. Chen, D. F. Hsu. Combinatorial properties of generalized hypercubegraphs[J]. Information Processing Letters,1996,57(1):41-45
    [48] F. Preparata, J. Vuillemin. The cube-connected cycles: a versatile network for parallelcomputation[J]. Communications of the ACM,1981,24(5):309
    [49] K. Day, A. Tripathi. A comparative study of topological properties of hypercubes andstar graphs[J]. IEEE Transactions on Parallel and Distributed Systems,1994,5(1):31-38
    [50] I. Stojmenovic. Honeycomb networks: Topological properties and communicationalgorithms[J]. IEEE Transactions on Parallel and Distributed Systems,1997,8(10):1036-1042
    [51] J. S. J. T. C. Tuan. Uni-Directional Alternating Group Graphs[J]. Journal of InformationScience and Engineering,1999,15:419-427
    [52] E. Cheng, M. J. Lipman. Orienting split‐stars and alternating group graphs[J].Networks,2000,35(2):139-144
    [53] B. Chen, W. Xiao, B. Parhami. Internode distance and optimal routing in a class ofalternating group networks[J]. IEEE Transactions on Computers,2006,55(12):1645-1648
    [54] C. Qu, W. Nejdl, M. Kriesell. Cayley DHTs-a group-theoretic framework for analyzingDHTs based on cayley graphs[C]. In.2004:
    [55] D. Watts, S. Strogatz. Collective dynamics of "small-world" networks[J]. Nature,1998,393(6684):440-442
    [56] K. Vanthournout, G. Deconinck, R. Belmans. A small world overlay network forresource discovery[C]. In: Euro-Par2004Parallel Processing.2004:1068-1075
    [57]李玲娟,姬同亮,王汝传.小世界现象在P2P网络中的应用研究[J].南京邮电大学学报:自然科学版,2006,26(4):86-89
    [58]汤大权,贺明科,孟庆崧.基于幂律分布和小世界特性的无结构P2P网络中搜索方法研究[J].计算机研究与发展,2007,44(9):1566-1571
    [59] W. Mader. Eine eigenschaft der Atome endlicher Graphen[J]. Archiv der Mathematik,1971,22(1):333-336
    [60] W. Xiao, H. Liu, W. Chen. CHypercube: A novel P2P overlay network[C]. In:2ndInternational Symposium on Electronic Commerce and Security, ISECS2009.2009:526-531
    [61] Y. Lu, S. Hand, P. Li′o. Keyword searching in structured overlays via content distanceaddressing[C]. In: Proceedings of the2005/2006international conference on Databases,information systems, and peer-to-peer computing.2005:259-272
    [62] H. Chen, H. Jin, J. Wang, et al. Efficient multi-keyword search over p2p web[C]. In:Proceedings of the17th international conference on World Wide Web.2008:989-998
    [63] S. Sivaraja, M. Thiyagarajah, T. Piranavam, et al. Efficient multiple-keyword search inDHT-based decentralized systems[C]. In: International Symposium on PerformanceEvaluation of Computer and Telecommunication Systems.2008:406-412
    [64] O. D. Gnawali. A keyword-set search system for peer-to-peer networks[D].Massachusetts Institute of Technology,2002.
    [65] S. Shi, G. Yang, D. Wang, et al. Making peer-to-peer keyword searching feasible usingmulti-level partitioning[J]. Peer-to-Peer Systems III,2005:151-161
    [66]周健,洪佩琳,李津生. P2P网络中一种新型的基于DHT的多关键字信息检索模型[J].电路与系统学报,2008,13(3):23-29
    [67]黄庆凤,李之棠,张冶江.基于改进的超立方体互连圈结构搜索算法[J].小型微型计算机系统,2009(008):1495-1499
    [68]赖坤锋,徐洁,李巧勤.一种基于DHT的多关键字搜索新机制[J].微计算机信息,2008,24(033):88-90
    [69]叶培顺,董建刚.支持多关键字的P2P搜索研究[J].榆林学院学报,2009,19(002):69-71
    [70] S. Sivaraja, M. Thiyagarajah, T. Piranavam, et al. Efficient multiple-keyword search inDHT-based decentralized systems[C]. In.2009:406-412
    [71] W. Mao, W. W. Chu. The phrase-based vector space model for automatic retrieval offree-text medical documents[J]. Data&Knowledge Engineering,2007,61(1):76-92
    [72] E. Fox. Extending the Boolean and vector space models of information retrieval with p-norm queries and multiple concept types[J]. Dissertation Abstracts International Part B:Science and Engineering[DISS. ABST. INT. PT. B-SCI.&ENG.],1984,44(9):
    [73]黄庆凤.结构化P2P网络性能分析与搜索算法研究[D].武汉,华中科技大学,2008.
    [74] T. Hofmann. Probabilistic latent semantic indexing[C]. In: Proceedings of the22ndannual international ACM SIGIR conference on Research and development ininformation retrieval.1999:50-57
    [75] P. Reynolds, A. Vahdat. Efficient peer-to-peer keyword searching[C]. In: Middleware2003.2003:21-40
    [76] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors[J].Communications of the ACM,1970,13(7):422-426
    [77] B. Bhattacharjee, S. Chawathe, V. Gopalakrishnan, et al. Efficient peer-to-peer searchesusing result-caching[J]. Peer-to-Peer Systems II,2003:225-236
    [78] M. Bawa, T. Condie, P. Ganesan. LSH forest: self-tuning indexes for similaritysearch[C]. In: Proceedings of the14th international conference on World Wide Web.2005:651-660
    [79] C. Tang, Z. Xu, S. Dwarkadas. Peer-to-peer information retrieval using self-organizingsemantic overlay networks[C]. In: Proceedings of the2003conference on Applications,technologies, architectures, and protocols for computer communications.2003:175-186
    [80] J. Zhang, T. Suel. Efficient query evaluation on large textual collections in a peer-to-peerenvironment[C]. In: Fifth IEEE International Conference on Peer-to-Peer Computing.2005:225-233
    [81] M. W. Berry, Z. Drmac, E. R. Jessup. Matrices, vector spaces, and informationretrieval[J]. SIAM review,1999:335-362
    [82] P. Maymounkov, D. Mazieres. Kademlia: A peer-to-peer information system based onthe xor metric[J]. Peer-to-Peer Systems,2002:53-65
    [83]贾君枝,王东元,王永芳.基于Delicious中文标签特征分析[J].情报科学,2010(10):1565-1568
    [84] S. Klink, A. Hust, M. Junker, et al. Improving document retrieval by automatic queryexpansion using collaborative learning of term-based concepts[J]. Document AnalysisSystems V,2002:57-68
    [85] M. Magennis, C. J. van Rijsbergen. The potential and actual effectiveness of interactivequery expansion[C]. In: Proceedings of the20th annual international ACM SIGIRconference on Research and development in information retrieval.1997:324-332
    [86] D. Li, J. Cao, X. Lu, et al. Efficient range query processing in peer-to-peer systems[J].IEEE Transactions on Knowledge and Data Engineering,2009,21(1):78-91
    [87] Y. Joung, L. Yang. KISS: A simple prefix search scheme in P2P networks[C]. In: Proc.of the WebDB Workshop.2006:56-61
    [88] D. Bradler, J. Kangasharju, M. Muehlhaeuser. Optimally Efficient Prefix Search andMulticast in Structured P2P Networks[J]. Arxiv preprint arXiv:0808.1207,2008:
    [89] Y. Joung, L. Yang. Wildcard search in structured peer-to-peer networks[J]. IEEETransactions on Knowledge and Data Engineering,2007:1524-1540
    [90] H. Shen, C. Z. Xu. Leveraging a Compound Graph Based DHT for Multi-AttributeRange Queries with Performance Analysis[J]. IEEE Transactions on Computers,2011:
    [91] R. Li, W. Song, H. Shen, et al. A flabellate overlay network for multi-attribute search[J].Journal of Parallel and Distributed Computing,2011,71(3):407-423
    [92] Y. Shu, B. C. Ooi, K. L. Tan, et al. Supporting multi-dimensional range queries in peer-to-peer systems[J].2005:
    [93] J. Hautakorpi, G. Schultz. A Feasibility Study of an Arbitrary Search in Structured Peer-to-Peer Networks[C]. In:2010Proceedings of19th International Conference on ComputerCommunications and Networks.2010:1-8
    [94] J. Furness, M. Kolberg. A Survey of Blind Search Techniques in Structured P2PNetworks[C]. In: PGNet2010: Proceedings of The11th Annual PostGraduateSymposium on The Convergence of Telecommunications.2010:313-318
    [95] J. Furness, M. Kolberg. Considering complex search techniques in DHTs under churn[C].In: Consumer Communications and Networking Conference (CCNC),2011IEEE.2011:559-564
    [96] M. Castro, M. Costa, A. Rowstron. Should we build Gnutella on a structured overlay?[J].ACM SIGCOMM Computer Communication Review,2004,34(1):131-136
    [97] V. Kalogeraki, D. Gunopulos, D. Zeinalipour-Yazti. A local search mechanism for peer-to-peer networks[C]. In: Proceedings of the eleventh international conference onInformation and knowledge management.2002:307
    [98] Q. Lv, P. Cao, E. Cohen, et al. Search and replication in unstructured peer-to-peernetworks[C]. In: Proceedings of16th ACM International Conference on Supercomputing.2002:84-95
    [99] B. Yang, H. Garcia-Molina. Improving search in peer-to-peer networks[C]. In:22ndInternational Conference on Distributed Computing Systems.2002:5-14
    [100] V. Vishnevsky, A. Safonov, M. Yakimov, et al. Scalable blind search and broadcastingover Distributed Hash Tables[J]. Computer Communications,2008,31(2):292-303
    [101] S. El-Ansary, L. Alima, P. Brand, et al. Efficient broadcast in structured P2Pnetworks[J]. Peer-to-Peer Systems II,2003:304-314
    [102] M. Castro, P. Druschel, A. Kermarrec, et al. SCRIBE: A large-scale and decentralizedapplication-level multicast infrastructure[J]. IEEE Journal on Selected Areas inCommunications,2002,20(8):1489-1499
    [103]. Ore. Theory of graphs[M]. Amer Mathematical Society,1962
    [104] B. Bose, B. Broeg, Y. Kwon, et al. Lee distance and topological properties of k-ary n-cubes[J]. IEEE Transactions on Computers,1995,44(8):1021-1030
    [105] M. M. Bae. Resource placement in torus-based networks[J]. IEEE Transactions onComputers,1997,46(10):1083-1092
    [106] P. Moinzadeh, H. Sarbazi-Azad, N. Yazdani. Resource Placement in Cube-ConnectedCycles[C]. In: International Symposium on Parallel Architectures, Algorithms, andNetworks.2008:83-89
    [107] G.J.Chang, G.L.Nemhauser. The k-domination and k-stability problems on graphs[R].Ithaca, NY: School of Operations Research and Industrial Engineering,Cornell University,1982:
    [108] T. W. Haynes, S. T. Hedetniemi, P. J. Slater. Domination in graphs: advancedtopics[M]. M. Dekker,1998
    [109] T. W. Haynes, S. T. Hedetniemi, P. J. Slater. Fundamentals of domination in graphs,volume208of Monographs and Textbooks in Pure and Applied Mathematics[M]. MarcelDekker,1998
    [110] C. Martinez, R. Beivide, E. Stafford, et al. Modeling Toroidal Networks with theGaussian Integers[J]. IEEE Transactions on Computers,2008,57(8):1046-1056
    [111] M. Flahive, B. Bose. The Topology of Gaussian and Eisenstein-Jacobi InterconnectionNetworks[J]. IEEE Transactions on Parallel and Distributed Systems,2010,21(8):1132-1142
    [112] M. Livingston, Q. F. Stout. Distributing resources in hypercube computers[C]. In:Proceedings of the third conference on Hypercube concurrent computers and applications:Architecture, software, computer systems.1988:222-231
    [113] C. Hsing-Lung, T. Nian-Feng. Efficient resource placement in hypercubes usingmultiple-adjacency codes[J]. IEEE Transactions on Computers,1994,43(1):23-33
    [114] C. Ge-Ming, C. S. Raghavendra. Resource Allocation in Hypercube Systems[C]. In:Proceedings of the Fifth Distributed Memory Computing Conference.1990:894-902
    [115] N. F. Tzeng, G. L. Feng. Resource allocation in cube network systems based on thecovering radius[J]. Parallel and Distributed Systems, IEEE Transactions on,1996,7(4):328-342
    [116]徐俊明.组合网络理论[M].科学出版社,2007
    [117]柴勇,刘一松,曹阳.基于分层p2p系统的失效恢复机制的改进[J].微计算机信息,2006,10:16-18
    [118] Z. Xu, Y. Hu. Sbarc: A supernode based peer-to-peer file sharing system[C]. In: EighthIEEE International Symposium on Computers and Communication.2003:1053-1058
    [119] D. Tsoumakos, N. Roussopoulos. Analysis and comparison of P2P search methods[C].In: Proceedings of the1st international conference on Scalable information systems.2006:25
    [120] V. Lo, D. Zhou, Y. Liu, et al. Scalable supernode selection in peer-to-peer overlaynetworks[C]. In: Second International Workshop on Hot Topics in Peer-to-Peer Systems.2005:18-25
    [121]刘玉枚,杨寿保,陈万明, et al. P2P系统中基于信誉感知的超级节点选择算法研究[J].中国科学院研究生院学报,2008,25(2):197-203
    [122]谭义红,罗立,林亚平, et al.超级节点网络的构建与搜索机制研究[J].小型微型计算机系统,2008,29(11):2046-2050
    [123]杨寿保,许通,胡云.用户需求适应的P2P超级节点选取机制[J].电子科技大学学报,2009,38(003):385-388
    [124] M. Schlosser, M. Sintek, S. Decker, et al. HyperCuP-hypercubes, ontologies, andefficient search on peer-to-peer networks[J]. Agents and Peer-to-Peer Computing,2003:133-134
    [125] G. Carlsson, J. Cruthirds, H. Sexton, et al. Interconnection networks based on ageneralization of cube-connected cycles[J]. IEEE Transactions on Computers,1985,100(34):769-772

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700