面向机车牵引的感应电机传动技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轨道交通的安全稳定运行关系到人们生活、工作及社会经济发展,提供安全、快捷、舒适的旅行始终是铁路运输的宗旨。在机车牵引交流传动系统中,牵引变流器作为核心动力部件,其正常工作与否将直接关系到整个传动系统、乃至全车安全可靠运行的成败,开展机车牵引变流器故障容错研究具有重要的现实意义。矢量控制和直接转矩控制在机车牵引中已经得到了广泛应用,然而两种控制方案依赖于电机参数,开展电机参数辨识的研究对于提高牵引控制系统性能具有重要的作用。面对牵引变流器大功率低开关频率的特点,为了在充分利用开关频率的同时降低输出谐波对系统性能的影响,同步调制策略将是牵引变流器在一定调制频率下的必然选择。为此,本文以提高在途机车运行的安全性以及控制系统的性能为目的,以牵引变流器逆变侧故障容错,电机参数辨识,同步调制为主要内容展开系统深入研究。
     针对牵引变流器逆变侧某只功率管故障,本文研究将该桥臂与对应电机相断开,使电机处于单相容错运行状态。基于双旋转磁场理论以及对称分量法,推导给出了电机单相运行下的等效电路,指出正常运行时的开环控制策略同样适用于单相容错运行,但带载能力大大降低并且缺乏自启动能力。根据电流的特点,推导了单相运行下电机的动态数学模型以及双闭环控制策略,指出电机存在两倍供电频率的转矩脉动,对于是否需要在速度环设置相应的低通滤波器来滤除该转矩脉动则需要根据系统惯量大小酌情而定。
     针对牵引变流器逆变侧某只功率管故障,本文研究将该桥臂对应的电机相端点接至直流母线中点,利用剩余两个桥臂完成对电机线电压的调制,使电机三相容错运行。由于只有四只功率管,导致基本电压空间矢量中没有零矢量。为了对零矢量进行合成,继而给出了两种开关序列,利用双傅里叶积分分析,对这两种开关序列的谐波铜耗进行了分析比较,指出两者的谐波铜耗相差近三倍。由于电机一相端点接入了直流母线中点,使得上下两只电容不停地充放电。在三相电流对称的前提下,推导了电容电压的波动表达式。这种充放电的不对称,甚至会导致上下两只电容电压向相反方向漂移。针对电容电压波动,提出了简单易行的调制策略来抵消这种波动所造成的影响。针对电容电压漂移,分别从调制策略和开关状态两个角度分析提出了简单可靠的漂移抑制方案,提高了系统运行的可靠性。
     针对d轴电压模型和无功功率模型中参数与其实际值间偏差对电机转子时间常数辨识结果的影响。本文对这两种模型的参数敏感性问题进行了详细的分析,推导给出了辨识偏差与各参数偏差间的关系式。指出d轴电压模型低速时受定子电阻变化的影响较大,但受互感变化的影响较小,而无功功率模型则切好相反。基于此,提出将d轴电压模型和无功功率模型相结合组成混合辨识模型,在不同的运行工况下,通过调节两个模型误差函数的权重,充分利用各自的优点。
     针对牵引变流器低开关频率的特点,基于FFT分析给出了两种同步调制对称方式的数学模型。在给出关于开关角度计算的超越方程的基础上,将这一求解问题转化为带约束的单目标优化问题,并利用序列二次规划法(SQP)对这一问题进行了求解。根据解曲线的特点,采用拟合的方法对曲线进行了分段多项式拟合,以便于实际工程实现。
     以TMS320LF2407A为控制芯片搭建了小功率物理实验平台,开展了三相感应电机单相容错以及三相容错两种控制方案的物理实验,实验结果验证了本文两种容错方案的正确性和可行性。
The safe operation of rail transit is directly related to people's life, work and social development. Safe, quick, comfortable travel is always the tenet of railway transportation. In locomotive traction AC drive systems, traction converter as the key power component, its safe operation is directly related to the reliable operation of the whole system. The research on the fault tolerance of traction converter therefore has important practical significance. With the wide application of vector control and direct torque control in locomotive traction, motor parameter identification will no doubt improve the dynamic property of the traction system. In order to realize the full utilization of power converter switching frequency and reduce the influence of harmonics on the system performance, the synchronous modulation seems to be an inevitable choice with the rise of the modulating frequency. As a consequence, for the reliable operation and better control performance, the inverter fault tolerance, motor parameter identification and synchronous modulation in locomotive traction are studied in detail in this dissertation.
     The single phase fault tolerance operation, in which the fault bridge is disconnected from the motor terminal, is studied under the fault of traction converter. Based on the double revolving field theory and method of symmetrical component, the corresponding equivalent circuit is derived, and it is pointed out that the motor can still working under traditional open loop control method, but with low loading capacity and no self-starting ability. The dynamic mathematical model of motor under this single phase operation is derived and the corresponding double closed loop control method is also presented. For the existence of torque pulsation, whether to set the low pass filter in the speed loop or not is dependent on the system inertia.
     The three phase fault tolerance scheme is discussed in detail, in which the motor terminal corresponding to the fault bridge is connected to the middle point of dc-link and the motor line-to-line voltages can be modulated as a result. In order to synthesize the zero voltage space vector which does not exist in this topology, two switching sequences are proposed and the resulting almost three times difference in harmonic copper losses is presented using double Fourier integral analysis. Because of the middle point connection with the motor terminal, the upper and lower capacitor voltage will fluctuate, even drift in opposite direction. The fluctuation is formulated providing that three phase currents are symmetrical. The effect of the fluctuation can be neutralized by compensation to modulating waveform. The drifting can be solved by modulation strategy and certain switching state two different perspectives, the reliable operation is therefore improved.
     In the procedure of rotor time constant identification with d axis voltage and reactive power two models, any parameter difference between the one used in the models and that in the motor will cause the wrong identification result. The detailed parameter sensitivity formulations of the two models are derived, pointing out that two models have opposite sensitivity to stator resistance and mutual inductance. Therefore, two models are combined as one mixed model to fully utilize their own advantage by adjusting weight factor at different conditions.
     Based on the FFT analysis, two synchronous modulation models with different symmetric form are presented. On the basis of transcendental equation solved for switching angles, the formulation is converted to one single objective optimization problem with certain constraints. The problem is solved using sequential quadratic programming. The piecewise polynomial fitting is adopted to the solved results for more easily practical implementation.
     The low power physical experiment platform is set up with TMS320LF2407A as the main controller. The single phase and three phase fault tolerance schemes are tested respectively. The results validate the correctness and feasibility of two schemes.
引文
[1]黄济荣.电力牵引交流传动与控制[M].北京:机械工业出版社,1998.
    [2]连级三.电传动机车概论[M].成都:西南交通大学出版社,2001.
    [3]王书林,赵茜.电力牵引控制系统[M].北京:中国电力出版社,2005.
    [4]R. J. Hill. Electric railway traction. Ⅱ. traction drives with three-phase induction motors[J]. Power Engineering Journal,1994,8(3):143-152.
    [5]Andreas Steimel. Electric railway traction in Europe[J]. IEEE Industry Applications Magazine,1996,6-17.
    [6]Thomas M. Jahns, Vladimir Blasko. Recent advances in power electronics technology for industrial and traction machine drives [J]. Proceedings of the IEEE, 2001,89(6):963-975.
    [7]郑琼林.交流传动机车牵引变流器的设计与控制[J].电力电子,2009,1:12-17.
    [8]O. V. Thorsen and M. Dalva. A survey of the reliability with an analysis of faults on variable frequency drives in industry[C]. European Conference on Power Electronics and Applications,1995,1033-1038.
    [9]J. A. Santisteban, R. M. Stephan. Vector control methods for induction machines:an overview[J]. IEEE Transactions on Education,2001,44(2):170-175.
    [10]陈坚.交流电机数学模型及调速系统[M].北京:国防工业出版社,1989.
    [11]Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff. Analysis of electric machinery and drive systems[M]. New York:Wiley Interscience,2002.
    [12]D. W. Novotny, T. A. Lipo. Vector control and dynamics of AC drives[M]. New York:Oxford University Press,1996.
    [13]Bimal K. Bose. Modern power electronics and AC drives[M].北京:机械工业出版社,2005.
    [14]R. Krishnan. Electric motor drives:modeling, analysis, and control[M]. Upper Saddle River, New Jersey:Prentice Hall,2001.
    [15]张皓,续明进,杨梅.高压大功率交流变频调速技术[M].北京:机械工业出版社,2006.
    [16]M. M. Bakran, H. G. Eckel, P. Eckert, et al. Comparison of multisystem traction converters for high-power locomotives[C]. Proceedings of 35th Annual IEEE Power Electronics Specialists Conference,2004,697-703.
    [17]Andreas Steimel. Direct self-control and synchronous pulse techniques for high-power traction inverters in comparison[J]. IEEE Transactions on Industrial Electronics,2004,51(4):810-820.
    [18]Sonia Leva, Adriano Paolo, Paolo Colombaioni. Dynamic analysis of a high-speed train[J]. IEEE Transactions on Vehicular Technology,2008,57(1):107-119.
    [19]国家中长期科学和技术发展规划纲要 (2006-2020),http://www.gov.cn/jrzg/2006-02/09/content_183787.htm.
    [20]Gary W. Chang, Hsin-Wei Lin Shin-Kuan Chen. Modeling characteristics of harmonic currents generated by high-speed railway traction drive converters [J]. IEEE Transactions on Power Delivery,2004,19(2):766-773.
    [21]王德军.故障诊断与容错控制方法研究[D].吉林大学图书馆,2004.
    [22]Debaprasad Kastha, Bimal K. Bose. Investigation of fault modes of voltage-fed inverter system for induction motor drive[J]. IEEE Transactions on Industry Applications,1994,30(4):1028-1038.
    [23]B. A. Welchko, T. A. Lipo, T. M. Jahns, et al. Fault tolerant three-phase AC motor drive topologies; a comparison of features, cost, and limitations [J]. IEEE Transactions on Power Electronics,2004,19(4):1108-1116.
    [24]D. U. Campos-Delgado, D. R. Espinoza-Trejo, E. Palacios. Fault-tolerant control in variable speed drives:a survey[J]. IET Electric Power Applications,2008,2(2): 121-134.
    [25]Auzani Jidin, Jurifa Mat Lazi, Abd Rahim Abdullah, et al. Speed drive based on torque-slip characteristic of the single phase induction mo tor [C]. International Conference on Power Electronics and Drives Systems,2005,771-775.
    [26]Edward Randolph Collins. Torque and slip behavior of single-phase induction motors driven from variable-frequency supplies [J]. IEEE Transactions on Industry Application,1992,28(3):710-715.
    [27]Debaprasad Kastha, Bimal K. Bose. Fault mode single-phase operation of a variable frequency induction motor drive and improvement of pulsating torque characteristics[J]. IEEE Transactions on Industrial Electronics,1994,41(4): 426-433.
    [28]Debaprasad Kastha, Bimal K. Bose. On-line search based pulsating torque compensation of a fault mode single-phase variable frequency induction motor drive[J]. IEEE Transactions on Industry Applications,1995,31(4):802-811.
    [29]Debaprasad Kastha, A. K. Majumdar. An improved starting strategy for voltage-source inverter fed three phase induction motor drives under inverter fault conditions[J]. IEEE Transactions on Power Electronics,2000,15(4):726-732.
    [30]H. W. Van Der Broeck, J. D. Van Wyk. A comparative investigation of a three-phase induction machine drive with a component minimized voltage-fed inverter under different control options[J]. IEEE Transactions on Industry Applications,1984, IA-20(2):309-320.
    [31]R. L. de Araujo Ribeiro, C. B. Jacobina, E. R. C. da Silva, et al. Fault-tolerant voltage-fed PWM inverter AC motor drive systems [J]. IEEE Transactions on Industrial Electronics,2004,51(2):439-446.
    [32]G. A. Covic, G. L. Peters. DC link imbalance compensation in four-switch inverter AC motor drives [J]. Electronics Letters,1997,33(13):1101-1102.
    [33]G. L. Peters, G. A. Covic, J. T. Boys. Eliminating output distortion in four-switch inverters with three-phase loads[J]. IEE Proceedings on Electric Power Applications, 1998,145(4):326-332.
    [34]F. Blaabjerg, D. O. Neacsu, J. K. Pedersen. Adaptive SVM to compensate DC-link voltage ripple for four-switch three-phase voltage-source inverters [J]. IEEE Transactions on Power Electronics,1999,14(4):743-752.
    [35]Tian-Hua Liu, Jen-Ren Fu, T. A. Lipo. A strategy for improving reliability of field-oriented controlled induction motor drives [J]. IEEE Transactions on Industry Applications,1993,29(5):910-918.
    [36]T. Elch-Heb, J. P. Hautier. Remedial strategy for inverter-induction machine system faults using two-phase operation[C]. Proceedings of 5th European conference on Power Electronics and Applications,1993,5:151-156.
    [37]Andre M. S. Mendes, A. J. Marques Cardoso. Fault-tolerant operating strategies applied to three-phase induction-motor drives [J]. IEEE Transactions on Industrial Electronics,2006,53(6):1807-1817.
    [38]Andre M. S. Mendes, Xose M. Lopez-Fernandez, Antonio J. Marques Cardoso. Thermal performance of a three-phase induction motor under fault tolerant operating strategies [J]. IEEE Transactions on Power Electronics,2008,23(3):1537-1544.
    [39]J. Klima. Analytical investigation of an induction motor fed from four-switch VSI with a new space vector modulation strategy [J]. IEEE Transactions on Energy Conversion,2006,21(4):832-838.
    [40]S. Bolognani, M. Zordan, M. Zigliotto. Experimental fault-tolerant control of a PMSM drive[J]. IEEE Transactions on Industrial Electronics,2000,47(5): 1134-1141.
    [41]M. B. de Rossiter Correa, C. B. Jacobina, E. R. Cabral da Silva, et al. An induction motor drive system with improved fault tolerance[J]. IEEE Transactions on Industry Applications,2001,37(3):873-879.
    [42]Richard Zhang, V. Himamshu Prasad, Dushan Boroyevich, et al. Three-dimensional space vector modulation for four-leg voltage-source converters [J]. IEEE Transactions on Power Electronics,2002,17(3):314-326.
    [43]Oskar Wallmark, Lennart Harnefors, Ola Carlson. Control algorithms for a fault-tolerant PMSM drive[J]. IEEE Transactions on Industrial Electronics,2007, 54(4):1973-1980.
    [44]R. L. A. Ribeiro, C. B. Jacobina, E. R. C. da Silva, et al. A fault tolerant induction motor drive system by using a compensation strategy on the PWM-VSI topology [J]. IEEE Power Electronics Specialists Conference,2001,2:1191-1196.
    [45]C. B. Jacobina, R. L. de A. Ribeiro, A. M. N. Lima, et al. Fault-tolerant reversible AC motor drive system[J]. IEEE Transactions on Industry Applications,2003,39(4): 1077-1084.
    [46]C. B. Jacobina, I. S. de Freitas, E. R. C. da Silva. Reduced-switch-count six-leg converters for three phase to three phase/four wire applications [J]. IEEE Transactions on Industrial Electronics,2007,54(2):963-973.
    [47]C. B. Jacobina, E. C. dos Santos, E. R. C. da Silva, et al. Reduced switch count multiple three-phase AC machine drive systems [J]. IEEE Transactions on Power Electronics,2008,23(2):966-976.
    [48]C. B. Jacobina, E. C. dos Santos, M. B. de Rossiter Correa, et al. Single-phase-input reduced-switch-count AC drive systems [J]. IEEE Transactions on Industry Applications,2008,44(3):789-798.
    [49]赵争鸣,闵勇.电机-控制集成系统的高故障容限研究[J].中国电机工程学报,1999,19(3):21-25.
    [50]蒋志坚,徐殿国,朱香娟.感应电动机四开关低成本逆变器的磁链轨迹改进控制研究[J].中国电机工程学报,2003,23(11):74-79.
    [51]Y. B. Ivonne,孙丹,刘学等.永磁同步电机驱动系统逆变器容错重构控制[J].电力电子技术,2008,42(7):35-36.
    [52]张兰红,胡育文,黄文新.三相变频驱动系统中逆变器的故障诊断与容错技术[J].电工技术学报,2004,19(12):1-9.
    [53]陈阿莲.新型多电平逆变器组合拓扑结构和多电平逆变器的容错技术[D].浙江大学图书馆,2005.
    [54]Lixiang Wei. The development of matrix converters with reduced number of switches [D]. University of Wisconsin-Madison,2003.
    [55]孙丽玲.异步电动机故障检测与诊断方法研究[D].华北电力大学图书馆,2007.
    [56]黄亮.电力机车交流牵引电机故障诊断技术研究[D].西南交通大学图书馆,2009.
    [57]刘玲.牵引变流器故障诊断的研究[D].西南交通大学图书馆,2010.
    [58]R. Krishnan, Frank C. Doran. Study of parameter sensitivity in high-performance inverter-fed induction motor drive systems [J]. IEEE Transactions on Industry Applications,1987, IA-23(4):623-635.
    [59]Kamarudin B. Nordin, Donald W. Novotny, Donald S. Zinger. The influence of motor parameter deviations in feedforward field orientation drive systems [J]. IEEE Transactions on Industry Applications,1985, IA-21(4):1009-1015.
    [60]R. Krishnan, Aravind S. Bharadwaj. A review of parameter sensitivity and adaptation in indirect vector controlled induction motor drive system[J]. IEEE Transactions on Power Electronics,1991,6(4):695-703.
    [61]Hamid A. Toliyat, Emil Levi, Mona Raina. A review of RFO induction motor parameter estimation techniques [J]. IEEE Transactions on Energy Conversion,2003, 18(2):271-283.
    [62]A. M. Khambadkone, Joachim Holtz. Vector-controlled induction motor drive with a self-commissioning scheme[J]. IEEE Transactions Industrial Electronics,1991, 38(5):322-327.
    [63]P. Castaldi, A. Tilli. Parameter estimation of induction motor at standstill with magnetic flux monitoring [J]. IEEE Transactions on Control Systems Technology, 2005,13(3):386-400.
    [64]P. J. Chrzan, H. Klaassen. Parameter identification of vector-controlled induction machines [J]. Electrical Engineering,1996,79(1):39-46.
    [65]A. Consoli, L. Fortuna, A. Gallo. Induction motor identification by a microcomputer-based structure[J]. IEEE Transactions on Industrial Electronics, 1987, IE-34(4):422-428.
    [66]S. I. Moon, A. Keyhani. Estimation of induction machine parameters from standstill time-domain data[J]. IEEE Transactions on Industrial Applications,1994,30(6): 1606-1615.
    [67]N. R. Klaes. Parameters identification of an induction machine with regard to dependencies on saturation [J]. IEEE Transactions on Industry Applications,1993, 29(6):1135-1140.
    [68]C. Wang, D. W. Novotny, T. A. Lipo. An automated rotor time constant measurement system for indirect field-oriented drives[J]. IEEE Transactions on Industrial Applications,1988,24(1):151-159.
    [69]E. Levi, M. Sokola, A. Boglietti, et al. Iron loss in rotor flux oriented induction machine:identification, assessment of detuning and compensation[J]. IEEE Transactions on Power Electronics,1996,11(5):698-709.
    [70]D. E. Borgard, G. Olsson, R. D. Lorenz. Accuracy issues for parameter estimation of field oriented induction machine drives [J]. IEEE Transactions on Industry Applications,1995,31(4):795-801.
    [71]H. A. Toliyat, A. A. Gh. Hosseiny. Parameter estimation algorithm using spectral analysis for vector controlled induction motor drives [J]. Proceedings of IEEE International Symposium on Industrial Electronics,1993,90-95.
    [72]H. Sugimoto, S. Tamai. Secondary resistance identification of an induction motor—Applied model reference adaptive system and its characteristics [J]. IEEE Transactions on Industry Applications,1987, IA-23(2):296-303.
    [73]R. Gabriel, W. Leonhard. Microprocessor control of induction motor[C]. Proceedings of International Semiconductor Power Conversion Conference,1982, 385-396.
    [74]R. Beguenane, G. A. Capolino. Induction motor rotor time constant measurement for vector control drives without rotary transducer[C]. Proceedings of IEEE International Symposium on Power Engineering Power Technology,1995,3:13-17.
    [75]L. Loron, G. Laliberte. Application of the extended Kalman filter to parameters estimation of induction motors [C]. Proceedings of 5th European Conference on Power Electronics and Applications,1993,5:85-90.
    [76]Li-Cheng Zai, C. L. DeMarco, T. A. Lipo. An extended Kalman filter approach to rotor time constant measurement in PWM induction motor drives [J]. IEEE Transactions on Industry Applications,1992,28(1):96-104.
    [77]T. Du, P. Vas, F. Stronach. Design and application of extended observers for joint state and parameter estimation in high-performance AC drives [J]. IEE Proceedings-Electric Power Applications,1995,142(2):71-78.
    [78]R. S. Pena, G. M. Asher. Parameter sensitivity studies for induction motor parameter identification using extended Kalman filter[C]. Proceedings of 5th European Conference on Power Electronics and Applications,1993,4:306-311.
    [79]R. Krishnan, P. Pillay. Sensitivity analysis and comparison of parameter compensation schemes in vector controlled induction motor drives [C]. Proceedings of IEEE Industry Applications Society Annual Meeting,1986,155-161.
    [80]Xing Yu, Matthew W. Dunnigan, Barry W. Williams. A novel rotor resistance identification method for an indirect rotor flux-orientated controlled induction machine system[J]. IEEE Transactions on Power Electronics,2002,17(3):353-364.
    [81]Suman Maiti, Chandan Chakraborty, Yoichi Hori, et al. Model reference adaptive controller-based rotor resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power[J]. IEEE Transactions on Industrial Electronics,2008,55(2):594-601.
    [82]T. M. Rowan, R. J. Kerkman, D. Leggate. A simple on-line adaption for indirect field orientation of an induction machine[J]. IEEE Transactions on Industry Applications,1991,27(4):720-727.
    [83]A. Dittrich. Parameter sensitivity of procedures for on-line adaptation of the rotor time constant of induction machines with field oriented control [J]. IEE Proceedings of Electric Power Applications,1994,141(6):353-359.
    [84]Luiz Antonio de Souza Ribeiro, Cursino Brandao Jacobina, Antonio Marcus Nogueira Lima, et al. Parameter sensitivity of MRAC models employed in IFO-controlled AC motor drive[J]. IEEE Transactions on Industrial Electronics, 1997,44(4):536-545.
    [85]S. Mayaleh, N. S. Bayindir. On-line estimation of rotor-time constant of an induction motor using recurrent neural networks [C]. Proceedings of 6th IEEE Workshop on Computers in Power Electronics,1998,219-223.
    [86]E. Bim. Fuzzy optimization for rotor constant identification of an indirect FOC induction motor drive[J]. IEEE Transactions on Industrial Electronics,2001,48(6): 1293-1295.
    [87]P. Vas. Artificial-intelligence-based electrical machines and drives[M]. Oxford: Oxford University Press,1999.
    [88]M. Tsuji, S. Chen, K. Izumi, et al. A sensorless vector control system for induction motors using q-axis flux with stator resistance identification [J]. IEEE Transactions on Industrial Electronics,2001,48(1):185-194.
    [89]T. G. Habetler, F. Profumo, G. Griva, et al. Stator resistance tuning in a stator-flux field-oriented drive using an instantaneous hybrid flux estimator[J]. IEEE Transactions on Power Electronics,1998,13(1):125-133.
    [90]V. Vasic, S. Vukosavic. Robust MRAS-based algorithm for stator resistance and rotor speed identification[J]. IEEE Power Engineering Review,2001,39-41.
    [91]L. A. Cabrera, E. Elbuluk, I. Husain. Tuning the stator resistance of induction motors using artificial neural network[J]. IEEE Transactions on Power Electronics, 1997,12(5):779-787.
    [92]E. Levi. A unified approach to main flux saturation modeling in d-q axis models of induction machines[J]. IEEE Transactions on Energy Conversion,1995,10(3): 455-461.
    [93]A. Dittrich. Model based identification of the iron loss resistance of an induction machine[C]. Proceedings of IEE International Conference on Power Electronics and Variable Speed Drives,1998,500-503.
    [94]J. Jung, K. Nam. A vector control scheme for EV induction motors with a series iron loss model[J]. IEEE Transactions on Industrial Electronics,1998,45(4):617-624.
    [95]刘凤君.正弦波逆变器[M].北京:科学出版社,2002.
    [96]陈国呈.新型电力电子变换技术[M].北京:中国电力出版社,2004.
    [97]林渭勋.现代电力电子技术[M].北京:机械工业出版社,2005.
    [98]Marian P. Kazmierkowski, R. Krishnan, F. Blaabjerg. Control in power electronics: selected problems[M]. Amsterdam, Boston:Academic Press,2002.
    [99]D. Grahame Holmes, Thomas A. Lipo. Pulse width modulation for power converters: principles and practice[M]. 北京:人民邮电出版社,2010.
    [100]A. Schonung, H. Stemmler. Static frequency changers with'subharmonic'control in conjunction with reversible variable speed a.c. drives[J]. Brown Boveri Review, 1964,555-577.
    [101]Joachim Holtz. Pulsewidth modulation-a survey [J]. IEEE Transactions on Industrial Electronics,1992,39(5):410-420.
    [102]Joachim Holtz. Pulsewidth modulation for electronic power conversion[J]. Proceedings of the IEEE,1994,82(8):1194-1214.
    [103]Sidney R. Bowes, Yen-Shin Lai. The relationship between space-vector modulation and regular-sampled PWM[J]. IEEE Transactions on Industrial Electronics,1997, 44(5):670-679.
    [104]Keliang Zhou, Danwei Wang. Relationship between space-vector modulation and three-phase carrier-based PWM:a comprehensive analysis[J]. IEEE Transactions on Industrial Electronics,2002,49(1):186-196.
    [105]S. R. Bowes, D. Holliday. Comparison of pulse-width-modulation control strategies for three-phase inverter systems [J]. IEE Proceedings-Electric Power Applications, 2006,153(4):575-584.
    [106]Alexis Kwasinski, Philip T. Krein, Patrick L. Chapman. Time domain comparison of PWM schemes[J]. IEEE Power Electronics Letters,2003,1(3):64-68.
    [107]Donald Grahame Holmes. The significance of zero space vector placement for carrier-based PWM schemes[J]. IEEE Transactions on Industry Applications,1996, 32(5):1122-1129.
    [108]A. Kawamura, T. Haneyoshi, R. G. Hoft. Deadbeat controlled PWM Inverter with parameter estimation using only voltage sensor[J]. IEEE Transactions on Power Electronics,1988,3(2):118-125.
    [109]F. G. Turnbull. Selected harmonic reduction in static DC-AC inverters[J]. IEEE Transactions on Communication Electronics,1964,83(6):374-378.
    [110]Hasmukh S. Patel, Richard G. Hoft. Generalized techniques of harmonic elimination and voltage control in thyristor inverters part I-harmonic elimination[J]. IEEE Transactions on Industry Applications,1973, IA-9(3):310-317.
    [111]Hasmukh S. Patel, Richard G. Hoft. Generalized techniques of harmonic elimination and voltage control in thyristor inverters part II-voltage control techniques [J]. IEEE Transactions on Industry Applications,1974, IA-10(5):666-673.
    [112]Prasad N. Enjeti, Phoivos D. Ziogas, James F. Lindsay. Programmed PWM techniques to eliminate harmonics:a critical evaluation[J]. IEEE Transactions on Industry Applications,1990,26(2):302-316.
    [113]佟为明,陈向阳,胡永烜等.变频电源特定消谐技术中非线性方程组解法的研究[J].中国电机工程学报,1998,18(5):357-360.
    [114]Jason R. Wells, Brett M. Nee, Patrick L. Chapman, et al. Selective harmonic control: a general problem formulation and selected solutions [J]. IEEE Transactions on Power Electronics,2005,20(6):1337-1345.
    [115]F. Swift, A. Kamberis. A new walsh domain technique of harmonic elimination and voltage control in pulse-width modulated inverters [J]. IEEE Transactions on Power Electronics,1993,8(2):170-185.
    [116]Tsorng-Juu Liang, R. M. O'Connell, R. G. Hoft. Inverter harmonic reduction using walsh function harmonic elimination method[J]. IEEE Transactions on Power Electronics,1997,12(6):971-982.
    [117]Sidney R. Bowes, Paul R. Clark. Transputer-based harmonic-elimination PWM control of inverter drives[J]. IEEE Transactions on Industry Applications,1992, 28(1):72-80.
    [118]Sidney R. Bowes, Paul R. Clark. Simple microprocessor implementation of new regular-sampled harmonic elimination PWM techniques [J]. IEEE Transactions on Industry Applications,1992,28(1):89-95.
    [119]Sidney R. Bowes, Paul R. Clark. Regular-sampled harmonic-elimination PWM control of inverter drives[J]. IEEE Transactions on Power Electronics,1995,10(5): 521-531.
    [120]Sidney R. Bowes, Derrick Holliday. Optimal regular-sampled PWM inverter control techniques[J]. IEEE Transactions on Industrial Electronics,2007,54(3):1547-1559.
    [121]Dariusz Czarkowski, David V. Chudnovsky, Gregory V. Chudnovsky, et al. Solving the optimal PWM problem for single-phase inverters[J]. IEEE Transactions on Circuits and Systems-I:Fundamental Theory and Applications,2002,49(4): 465-475.
    [122]A. I. Mas wood, S. Wei. Genetic-algorithm-based solution in PWM converter switching[J]. IEE Proceedings-Electric Power Applications,2005,152(3):473-478.
    [123]John N. Chiasson, Leon M. Tolbert, Keith J. McKenzie, et al. Control of a multilevel converter using resultant theory [J]. IEEE Transactions on Control Systems Technology,2003,11(3):345-354.
    [124]John N. Chiasson, Leon M. Tolbert, Keith J. McKenzie, et al. A complete solution to the harmonic elimination problem[J]. IEEE Transactions on Power Electronics, 2004,19(2):491-499.
    [125]T. Kato. Sequential homotopy-based computation of multiple solutions for selected harmonic elimination in PWM inverters [J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,1999,46(5):586-593.
    [126]M. G. Egan, J. M. Murphy, E. J. Heffernan, et al. An ASIC-based PWM waveform generator for AC motor control applications [J]. IEEE International Symposium on Circuits and Systems,1988,2:1369-1372.
    [127]Jian Sun, Stephan Beineke, Horst Grotstollen. Optimal PWM based on real-time solution of harmonic elimination equations [J]. IEEE Transactions on Power Electronics,1996,11(4):612-621.
    [128]I. J. Pitel. Spectral errors in the application of pulsewidth modulated waveforms[J]. IEEE Transactions on Industry Applications,1981, IA-17(3):289-295.
    [129]Nikolaos Oikonomou, Joachim Holtz. Fast dynamic control of medium voltage drives operating at very low switching frequency—an overview[J]. IEEE Transactions on Industrial Electronics,2008,55(3):1005-1013.
    [130]Nikolaos Oikonomou, Joachim Holtz. Closed-loop control of medium-voltage drives operated with synchronous optimal pulsewidth modulation[J]. IEEE Transactions on Industry Applications,2008,44(1):115-123.
    [131]P. W. Clarke. Self-commutated thyristor DC-to-DC converter[J]. IEEE Transactions on Magnetics,1970,6(1):10-15.
    [132]A. M. Trzynadlowski, F. Blaabjerg, J. K. Pedersen, et al. Random pulse width modulation techniques for converter-fed drive systems-a review[J]. IEEE Transactions on Industry Application,1994,30(5):1166-1175.
    [133]A. M. Stankovic, G. C. Verghese, D. J. Pereault. Analysis and sythesis of randomized modulation schemes for power converters [J]. IEEE Transactions on Power Electronics,1995,10(6):680-693.
    [134]K. K. Tse, Henry Shu-Hung Chung, S. Y. R. Hui, et al. Analysis and spectrual characteristics of a spread-spectrum technique for conducted EMI suppression[J]. IEEE Transactions on Power Electronics,2000,15(2):253-263.
    [135]K. K. Tse, Henry Shu-Hung Chung, S. Y. R. Hui, et al. A comparative investigation on the use of random modulation scheme for DC/DC converters [J]. IEEE Transactions on Industrial Electronics,2000,47(2):253-263.
    [136]A. M. Stankovic, G. C. Verghese, D. J. Perreault. Randomized modulation of power converters via markov chains[J]. IEEE Transactions on Control Systems Technology, 1996,5(1):61-73.
    [137]Wayne J. Morrill. The revolving field theory of the capacitor motor [J]. Transactions of the American Institute of Electrical Engineers,1929,48(2):614-629.
    [138]A. E. Fitzgerald, Charles Kingsley, Jr., Stephen D. Umans. Electric machinery[M].北京:电子工业出版社,2004.
    [139]刘迪吉.航空电机学[M].北京:航空工业出版社,1992.
    [140]汤蕴璆,史乃,沈文豹.电机理论与运行[M].北京:水利电力出版社,1983.
    [141]汤蕴璆.电机学—机电能量转换[M].北京:机械工业出版社,1986.
    [142]William H. Kersting. Causes and effects of single-phasing induction motors [J]. IEEE Transactions on Industry Applications,2005,41(6):1499-1505.
    [143]Amr Saleh, Mario Pacas, Adel Shaltout. Fault tolerant field oriented control of the induction motor for loss of one inverter phase[C]. Proceedings of 32nd Annual Conference of the IEEE Industrial Electronics Society,2006,817-822.
    [144]Amr Saleh, Adel Shaltout, Mario Pacas. Fault tolerant field oriented control of induction motor for loss of one inverter phase with re-starting capability[C]. IEEE International Symposium on Industrial Electronics,2007,1340-1345.
    [145]W. R. Bennett. New results in the calculation of modulation products[J]. The Bell System Technology Journal,1933,12:228-243.
    [146]H. S. Black. Modulation theory[M]. New York:Van Nostrand,1953.
    [147]S. R. Bowes, B. M. Bird. Novel approach to the analysis and synthesis of modulation processes in power convertors[J]. Proceedings of IEE,1975,122(5): 507-513.
    [148]Brendan Peter McGrath, Donald Grahame Holmes. A general analytical method for calculating inverter DC-link current harmonics [J]. IEEE Transactions on Industry Applications,2009,45(5):1851-1859.
    [149]Heinz W. van der Broeck, Hans-Christoph Skudelny. Analytical analysis of the harmonic effects of a PWM AC drive [J]. IEEE Transactions on Power Electronics, 1988,3(2):216-223.
    [150]汤晓燕.三相感应电动机瞬间断电重新投入电网时的瞬态[J].电机与控制学报,2001,5(2):98-102.
    [151]费万民.中高压功率变换相关技术的基础研究[D].浙江大学图书馆,2004.
    [152]徐成贤,陈志平,李乃成.近代优化方法[M].北京:科学出版社,2002.
    [153]阳明盛,罗长童.最优化原理、方法及求解软件[M].北京:科学出版社,2006.
    [154]Matlab Optimization Toolbox[M]. Mathworks Incorporated,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700