洛伊凹陷三叠纪构造体制变迁及其油气运聚响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
洛阳-伊川凹陷(洛伊凹陷)位于河南省洛阳市境内,是在华北地块基础上继承性发育的中新生代小型山间叠合凹陷,整体呈近NW向展布的“T”字形态,东西长约120km,南北宽约20-80km,面积约5800km2;区域上处于中国中东部秦岭-大别造山带东北缘、华北板块西南缘,是中国大陆“南北划分、东西连接”的枢纽地带;正是由于洛伊凹陷处于华北板块与扬子板块相接处的北缘,为太行造山带与东秦岭-大别造山带之间构造运动产生的多应力汇聚部位,造成其多期次构造变迁和不均衡的后期改造,且凹陷勘探目的层三叠纪沉积地层均遭受不同程度剥蚀,研究其构造演化历史难度颇大,影响了区内的油气勘探进程。
     为此,本课题研究以构造地质学、地震地质学和油气盆地分析学为理论依据,运用人机连作工作站及2DMove等先进软件与计算机技术,将地质野外调查与室内研究、宏观构造与微观地质分析、石油地质学与地球物理学等多学科有机结合,以断裂-褶皱构造、剥蚀厚度与平衡剖面分析及构造运动学研究为主线,综合应用地质露头、钻探成果、二维地震等,把剥蚀厚度恢复、平衡剖面编制、古构造重塑与分析等技术充分应用于区内三叠系不同尺度构造解析和动力学分析、剖面地层缩短研究及古构造面貌分析、断裂-褶皱变动、古构造面貌演化与油气运聚响应的变化研究之中,深入系统地开展了区内现今断裂-褶皱构造组合样式、形成期次与变形特征、发育圈闭类型与特点、构造变形力学机制、三叠系各层系剥蚀与动态平衡应变特点等分析,并以此为基础完成了三叠纪断裂-褶皱变动在区内烃源岩分布、储集层形成与改造、各类圈闭的发育与分布、油气的生成与运聚等响应特点探讨,取得如下成果认识。
     (1)据钻井、地质露头、古生物和地震解释成果,在研究区内主地层单元间识别出11个不整合面、6个主要构造层,新发现对区内油气勘探具有重要意义的上古生界与三叠系之间的不整合面,在初步查明三叠系纵横向分布特点基础上,将洛伊凹陷细分为“三鼻五次凹一推覆”的基本构造格局,系统分析了不同区带因压扭-走滑作用形成的控凹、控带、控源和控藏等主要断裂的展布与级序及形成机制,以及以北西-北西西向持续活动的主断裂和仅后期活动具切割或改造作用的北东东-近东西向辅助断裂等。
     (2)依据纵横向断裂-褶皱特点,总结了其发育的挤压构造、反转构造、逆牵引构造和走滑构造等四大类7种组合样式,分析了现今各层系构造变形的“北东分带、北西分区”特点、NNE-SSW向挤压主应力的力学形成机制和应变力学特点,以及因此形成的西南缘逆冲推覆强烈变形带、中部中等变形带和北部弱变形区带等3个构造变形带;根据发现落实的圈闭形态与成因,把区内圈闭划分为构造类圈闭、地层类圈闭、岩性类圈闭、复合类圈闭等4大类型和背斜型、断背斜型构造等10个亚类,分析了各类圈闭沿区内构造带、断裂、不整合面和地层剥蚀线等分带性分布的规律,以及在不同层系继承性、上下叠置的特点等,提出上三叠统自生自储式致密砂岩类构造-复合类型圈闭是主要的油气勘探方向。
     (3)根据“点-线-面”上剥蚀厚度恢复研究认为,上三叠统是区内抬升剥蚀范围和厚度最大的层系,其最大剥蚀厚度3600m左右,一般1600-2000m左右,总剥蚀趋势由周缘向凹陷中带呈明显“环带状”由大到小变化。
     (4)典型剖面平衡复原认为,三叠纪绝大多数断裂具同生断裂性质,晚古生代-燕山期之前地层快速缩短期主要集中在晚三叠世椿树腰期-谭庄期,地层挤压缩短以北东向为主、北西向为辅,从西北到东南、由西南到东北主应力时空变化为典型“剪刀差式”变化;各时期平衡联合剖面的平衡应变分析认为,区内动态演化特征可分为海西晚期挤压类大型逆冲推覆与局部拉张同生阶段、印支早期快速强烈挤压-反转构造形成阶段、中三叠世弱挤压同生变形阶段、晚三叠世不均衡整体坳陷与冲断伴生阶段、燕山期强烈逆冲推覆差异隆升剥蚀与喜山期不均衡拉张裂陷等5个阶段;并以此重塑了海西晚期上古生界沉积后遭受不均衡显著抬升和剥蚀而形成的“三凸两凹”格局,刻画了早-中三叠世“凸者变低、凹者转深”变化特点,再现了晚三叠世三鲁断裂和宜伊断裂持续挤压后在其深盘所形成的椿树腰期的类前陆初期坳陷型深坳带,以及谭庄期更大级别的类前陆坳陷型沉积和随之以不同幅度出现的3个水下鼻状凸起在区内的不断变化特点。
     (5)据古构造面貌与断裂褶皱的关系,论述了三叠纪各时期持续性发育的断裂与水下古凸起对古沟谷与古水流的延伸与迁移的控制作用,深入分析了持续挤压环境下稳定类前陆坳陷对上三叠统巨厚浅湖-深湖相优质主力烃源岩发育的控制与改造作用,提出了持续性发育的断裂-褶皱对区内发育的不同类型圈闭具控制作用,而且水下古凸起与走滑断裂的持续性发育不但控制着区内致密砂岩的有利储集层分布,也为构造-裂缝性储集层的形成与改造创造了良好条件。根据谭庄组-椿树腰组油气运聚流体势的差异、油气运聚“分割槽”的变化和沿着小型鼻状运移梁油气的“汇聚状”运聚特点,分析了断裂对油气优势运聚“高速通道”的形成与改善所起的重要作用,及因此而形成的T1井区上三叠统“六低”型致密砂岩复合型圈闭的源内近距离运聚成藏特点。
     (6)在各项成果综合分析基础上,提出了洛伊凹陷寻村-鸦岭等继承性发育的大型构造-复合类圈闭、义马-宜阳-伊川北等各种岩性圈闭与地层型圈闭和中-下三叠统致密砂岩等3大油气勘探领域,以及三叠系的继承-再生型、改造-保存型、改造-残存型和改造-破坏型等4大类油气保存单元和近期最有利油气勘探区带寻村-鸦岭鼻状构造带等。
LuoYang-YiChuan depression (LuoYi Depression) is located in the northeastmargin of Qinling-Dabie orogenic belt and the southwestern margin of the North Chinaplate, central eastern China, its tectonic system changes is related with the Qinling-Dabie orogenic belt, the Taihang orogen and Tanlu fault closely. Due to the hub statusof "North-South division, East-West connection" and a large number of oil and gasaccumulation geological unit in the margin, LuoYi Depression win the attention ofmany domestic and international geological experts and oil and gas exploration experts.This area is a small inherited-developing Mesozoic-Cenozoic intermountain compositerift lying in the North China platform, showing the overall NW trending near a "T"shape, which from east to west is about120km, south-north is20-80km, and the area isabout5800km2. As the LuoYi depression was in phase of the northern margin of theNorth China plate and Yangtze plate, which is the converge part of a variety of stressproduced by the tectonic movement between the Taihang orogenic belt and the eastQinling-Dabie orogenic belt, and resulted in multi-stage tectonic and uneventransformation of later period, and in the depression, Triassic strata, as the explorationtarget, is subjected to varying degrees of erosion, So it is quite difficult to study itstectonic evolution history, thus affecting the process of oil and gas exploration in theregion.
     Therefore, the further use of the new, old seismic geological data to study thecharacteristics of its structure and tectonic evolution systematically, to restore itserosion thickness and the paleotectonic face of main Triassic period, to analyze thehydrocarbon geological response relations between the tectonic movement and sourcerocks, or fracture-fold, or accumulation of oil and gas, and to research the relationsbetween oil and gas generation and evolution, has important theoretical guiding significance for the favorable exploration region optimization and oil and gasexploration as soon as possible.
     1. Regional tectonic and stratigraphic-structural layer dividing
     (1)Regional tectonic
     In light of the characteristics of the gravity and magnetic field and regionalMohosurface in and around the area, combined with the reanalysis of the regionalgeophysical profile and the characteristics of Shangdan-Mianlue ophiolite beltdevelopment and distribution, it comea to summarize the regional tectonic features ofthe western Henan and adjacent areas in system, and divide the tectonic evolution ofthe Qinling orogenic belt into five stages, such as ancient Qinling ocean basin-NorthChina-Yangtze plate prototype and the largest expansion of the ancient Qinling Ocean,and so on.
     (2)Stratigraphic-Structural layer dividing
     Based on the Previous research, and the recent drilling, outcrop geology,paleontology, seismic interpretation results, this is essay studies out and perfects theformation system in LuoYi Depression, identifies11unconformities and divides theLuoYi Depression into six structural layers, newly discovers and confirms theunconformity, angular unconformity between the upper Paleozoic and Triassic orparallel unconformity, of great significance to the oil and gas exploration in the region.On account of the regional unconformity identification and the construction layerdivision and perfection, it preliminarily finds out the vertical and horizontaldistribution of the upper Paleozoic strata and above, especially the Triassic.
     2. Tectonic units and fracture-fold analysis
     (1)Tectonic units dividing
     According to the latest research results and the newly worked-out bottom-Triassicstructure map, this essay details the regional tectonic units division, and divide theLuoYi Depression into the fundamental tectonic pattern of three noses, five sages, onethrust belt, that are nine third-grade structure unites——five sages successively areYiMa sag, YiYang sag, LuoYang sag, North YiChuan sag, South YiChuan sag fromnorthwest to southeast, three noses successively are XunCun-YaLing nose belt,Xinan-Longmen nose belt, Zhaizhen nose belt, the thrust belt is YiMa-YiYang-YiChuan thrust belt.
     (2)Fracture-fold analysis
     ①Fracture characteristics
     The regional pressure-shear strike-slip in the Indosinian-Yanshanian period formed four classes thrust faults and a part of normal fault of control sag fracture,control belt fracture, control source fracture and control reservoir fracture, the hedgingthrust faults were dominating, which mainly were northwest-northwest westward andnortheast eastward-near east charactering of flying geese combination, the normalfaults of northeast-near eastward, active lately and with the role of "cut" or"transform", were auxiliary, Northeast-nearly east faults are not well develop becauseof the limitation of the former, but has "cut" or later reformation to the former.
     ②Fracture-fold combination style and the formation period of fracture
     Based on outcrop and seismic interpretation results, this essay sums up sevenkinds in four types of fault-fold combination style of compressional tectonic (hedgetype, back flush, imbricate), inversion structures (simple reversal of the negative type),reverse drag structure and strike-slip structure (twisting pressure "flower" strike-slipstructure and transtensional fault-fold strike-slip structure) developing in the region,discusses the fracture of different geological history in the region, and five major faultactivity periods of the mid-late Hercynian North West weak extension rifting, Indoearly weak collision squeeze, late Indosinian subduction and collision extrusion uplift,Yanshanian orogeny and Himalayan period extensional rift since the lateCarboniferous.
     (3)Regional tectonic deformation characteristics and the mechanics of theformation
     ①Regional tectonic deformation characteristics
     As to two regional seismic-geological sections and three groups combinedseismic-geological profiles prepared, the composite analysis shows that the tectonicdeformation of every formation today in LuoYi Depression is with apparent features ofthe "North-East Zonation, North-West Division", and the tectonic deformation belt candevide into three part, the southwestern margin of thrust nappe intense deformationzone, central secondary deformation bands and northern weak deformation zone.
     ②The mechanics of the fracture formation
     According to the vector superposition analysis of the main regional fracture stressfounded and implemented, the main stress of the region are mainly subjected to twogroups working together to NNE-SSW, the middle and late Hercynian ischaracteristiced by unilateral extrusion-local tension.Tectonic deformationperformance is gradually weakened from south to north, Indosinian is extrusion ofasymmetric bilateral, and Northwest-North East thrust is strong. Yanshanian becomes to a greater intensity of land squeezed orogenic and powerful thrust nappe region, andforces the southern edge of imbricate nappe belt to expand gradually to northeastwave-likely. The region's leading to uneven strike-slip rift in Himalayan period.
     (4)Trap type and pattern
     In LuoYi depression,4types and10sub-types traps were confirmed: structuraltrap(incline, fault incline, fault nose, fault-block),lithologic traps (elongate lense,upward pitchout, fracture-vug) and complex trap (structure-fault-unconformity,structure-strata-unconformity). The plane distribution pattern of these traps alongstructure belt, fault, unconformity surface and erosion line were analyzed, and we alsoanalyze the vertical inheritance and overlay relationship in different strata. In this area,the formation of traps was determined by the property heterogeneity of sedimentaryrocks, which was caused by the Songqi paleouplift and northern margin paleoslope thatwere formed by multiple structural movements.
     3. Construction of erosion thickness and paleostructure feature indifferent period of Triassic
     (1)Characteristics of strata erosion in different period of Triassic
     Through the research of2wellbores,28inlines and17crossline profile, it wasconcluded that upper Triassic bears the largest erosion area and thickness, with themaximum erosion3600m, average of1600-2000m. Total erosion trend is decreased as"Ring-Zoster" from the margin to the center area of the depression.The largest erosionthickness lies in southern YiYang-YiChuan of the southwest thrusting-nappe zone,followed by Songqi area in southeast YiChuan. Uneroed areas were only found inshiling villiage of YiYang and YiMa-MianChi, and these areas spread in anunsymmetrical oval shape in west-east and north-west trending respectively. As for themiddle-lower Triassicthe, errossion features were similar to that of upper Triassic, onlywith the erosion thickness and scope decreasing from shallow to deep.
     (2)Kinetic charactristics of balance shortening and balance strain indifferent periods of Triassic.
     ①Through17typical profile in this area, it was concluded that in Triassic most ofthe faults have the features of syngenetic fault. Strata rapid shortening period beforeLater Paleozoic to Yanshan period mainly exist in later Triassic ChunShuyao-Tanzhuanperiod, and strata squeezing shortening is basically northeast,secondly northwest.Themain time-space change from northwest to southeast and southwest to northeastappeared the typical "scissors difference feature", which means, from YiMa-YiYang innorthwest to YiChuan in southeast, the early squeezing strain was strong in northwest,and weak in southwest.
     ②Through the balance strain kineti analysis of15combined balance profile,itwas concluded that the dynamic evolution in this area can be divided into5stages:large-scale thrusting-nappe and local extention syngenetic stage in later Haixi Period,rapidly extensive compression-inversion structure formation stage in earlier YinziTriassic,weak compression contemporaneous deformation stage in middle Triassic,unbalanced entire depression and thrust accompanying stage in later Triassic, extensivethrusting-nappe and difference uplift erosion in Yanshan period and unbalancedextensional rift stage.
     (3)Reconstruction and analysis of paleostructure feature of Triassic
     Through the restoration of structural recovery, including eliminating the effect offault, incline, erosion, compression the complication reposition of fault-strata, and theanalysis of the5paleostructure feature from later Haixi Period, it was concluded thatupper Paleozoic was significantly and unbalanced upraised, and inordinately eroded.As a result, a pattern of "three convex, two concave" was formed before the depositionof Triassic. This pattern gave birth to the overthrust of YiYi Fault north-east further,thechanges of structure pattern about "high becomes higher, concave changing shallow"after deposition of Triassic,and "convex becomes low, concave turn to deep" inMiddle-Triassic and the overall depression in large in Late-Triassic. Especially, inChunShuyao period, two deeper depressions were formed in the deep plate of SangLuand Yiyi fault. Meanwhile the3earlier bigger nose-like structures still maintained theunder-water bulge shape,which is the gradually raising nose-structure-belt northwestMianChi-YiMa-Xin'an in the north-west, which is Yiyang-Xuncun Southfaulted-anticline-anticline underwater-uplift in central zone. At the same time,YaLing-YiChuan structural nose was gradually into one in the north-west withYiYang-XunCun nose structures,and it is adjacent across SongShan-QiShan GentleLow-Uplift Underwater via the small sag in the South-East. In Tanzhuan period of laterTriassic, the LuoYi depression evolved into a Mesozoic larger-size deep depressionstage.Two deep depression zones(connected closely and with deep subside) and3under-water low bulges were formed.
     4. The control action of fault-structure change to hydrocarbonmigration and accumulation in different periods of Triassic
     (1)Steadily developed faults and under-water paleo-bulges control thestretch and migration of paleo-valley and paleocurrent
     In earlier-middle Triassic, under the control of Yiyi fault, LuoYi depressionmainly consisted of large delta and shallow lake sedimentary system,and it depositedred-purple red sandshale layer in dry and hot environment.In middle Triassic, largedelta sediment shrinked and shallow lake sediment expended gradually. In laterTriassic,upper triassic sediment under the control of Shanlu fault expended,while deltzone became smaller and tranformed into shallow-deep lake and delt sedimentarysystem in oxygenfree environment, with a set of thicker gray-dark graysnadshalesediment. In YiMa-MianChi of the northwest part, and easternRuyang-zhaizhen western Ruyang-YiYang of the southeast part, the3large deltsedimentary systerms shriked gradually.
     (2)Stable faulted reservoirs in continuous extrusion environment make theupperTriassic develope the thick high-quality hydrocarbon source rocks
     Since the late Indosinian continuous extrusion environment makes the area"foreland basin-like" large inherited depression in the Late Triassic. In warm moistancient environments,the study area has an original thickness of about4000-5000m ofthe Upper Triassic the ChunShuyao group-Tanzhuang dark strata deposited. AlthoughSuffered from intense weathering and erosion during the late Indosinian to the LateYanshanian,by late Triassic stable warped lacustrine-delta front facies make the studyarea remained high-quality source rocks with a considerable thickness. Among them,the Upper Triassic ChunShuyao group-Tan Zhuang group remained the distributionarea of3000-4100km2, dark gray mudstone and carbonaceous shale total thickness of800-2200m, organic carbon0.29-5.05%, an average of1.52%. From four aspects ofkerogen macerals, hydrogen carbon and oxygen carbon atomic ratio, hydrocarbonsource rock pyrolysis hydrogen index, chloroform bitumen"A" family compositioncharacteristics,it was confirmed its parent that was type II2-type III, and there were asmall amount of II1type. Ro is0.5-1.3%, Tmax is396-527C, OEP was1with all madethem low mature-mature medium-good source rocks.
     (3)The continuous development of underwater ancient uplift and strike-slipfaults not only control dense sandstone in the region favorable reservoirdistribution, but also creat good condition for the formation and transformationof the structure fractured reservoir.
     Because of the on going activities, such as Yiyi fault strike-slip fracture with theraw pulse in the Late Triassic, there structrual transfer zones with nose-like underwaterbulges properties exsited along the Strike-Slip fault zone, controll the main zone of theUpper Triassic tight sandstone development of LuoYi depression, and even the geographical distribution and the distribution form of tight sandstone with goodphysical properties of the conditions favorable reservoir strata. Actual drilling to actionproves that sustained activity of the fault created good conditions fo formation andtransformation of various Structure-fractured reservoirs, especially, since Indosinianfracture-folding, so that tight sandstone reservoir and mudstone of upper Triassic ofLuoYi depression obtaine a better transformation in different degrees, and it effectivelyimproved oil and gas reservoir space and reservoir performance.
     (4)Continuouly developing of fracture-fold controls the development ofdifferent types of traps in the region
     Research shows that the North East and compression in the late Hercyniancompression and uneven uplift denudation laid "three convexes and more concaves"basis of the Triassic trap development, Indosinian further extrusion and the Uplifts anddepression-folding created dood condition for inheritance and diversified developmentof the region traps. Different times of inheritance fracture-folding made the regionpresent "banded (transverse)-stereoscopic pavilion-style (longitudinal)" law ofdistribution. Tectonic framework of different periods controlled distribution ofdifferent trap types.
     (5)Breaking–tectonism movements plays an important control role onhydrocarbon migration and accumulation in different periods of the region
     ①According to hydrocarbon migration and accumulation of fluid potentialanalysis of Tan zhuang and the ChunShuyao group, we believe that,since thedeposition of TanZhuang group,there are three more obvious oil and gas potentialareas with inherited development under control of the faults and tectonic, and two oiland gas migration "Split groove",So the mature oil and gas generated in UpperTriassic transport along the small nose-shaped beam as "like aggregation state" toancient nose convexes of the MianChi-YiMa, SongQi,YiYang-XunCun. Althoughbecause of the Indosinian-Himalayan fault-fold,the accumulation pattern, small nosetransport beam and convergence zone have been greatly changed, but now UpperTriassic oil and gas accumulation still had there quite obvious "convergence areas"similar with those in late Indosinian.②According to the analysis of well T1UpperTriassic tight sandstone oil and gas characteristics, in the region persistent activity faultwas well T1typical low porosity, low permeability, low pressure, low density, lowabundance, and low productivity which equals "six low" type, Upper Triassicsandstone complex oil and gas reservoir source within short distance migration and accumulation, which played an important role in forming and improving high-speedchannel of favorasle oil and gas migration and accumulation, and mainly presented infollowing four aspects in "pass the source fracture" constitutes the basis for oil and gasmigration and accumulation, the spatial extension of the fracture distance rangedetermines the maximum range and scale of the Upper Triassic hydrocarbon migrationand accumulation, the fracture activity period controled main layer of the oil and gasmigration and accumulation in the region, in Yanshan period, the fault activities mainlydestroyed the oil and gas reservoirs, and oil and gas reservoir adjustment iscomplementary.
     5. oil and gas exploration area and favorable zone evaluation
     (1) To sum up all the outcomes above, LuoYi depression was divided intoXunCun–YaLing inheritance development of large structure-composite trapexploration area, YiMa-YiYang-YiChuan north of lithologic trap and stratigraphic trapexploration field, and the middle-Lower Triassic dense sandstone exploration areasthree major oil and gas exploration fields.(2) According to the remnant of the UpperTriassic source rocks and their inherited, transformative and destructive characteristics,hydrocarbon generation center in ancient and modern, paleostructure feature, strengthof tectonic deformation and subdivisions of tectonic units today, and so on, in LuoYidepression today in Triassic oil-gas save unit is mainly divided into a total of4majorcategories, which were inheritance-regenerative, transformation-save type,transformation conservation, transformation-residual type and transformation-destruction type,(3) Comprehensive analysis, the XunCun-YaLing nose-like structuralbelt is the most favorable exploration areas about oil-gas recently, theXin'an-Longmen nose-like structural belt and ZhaiZhen nose-like structure belt arefavorable exploration areas about oil-gas recently.YiMa Sag, YiYang Sag, YiChuanSouth Sag, YiChuan North Sag and LuoYang Sag are favorable exploration areas aboutoil-gas.
引文
[1]曹代勇,王昌贤.豫西煤田重力滑动构造形成条件分析[J].河南地质,1994,12(1):28-35.
    [2]曹孟起,牛滨华,蔡希玲.第73届SEG年会地震数据处理新技术简介[J].勘探地球物理进展,2004,27(3):228-231.
    [3]曹孟起,刘占族.叠前时间偏移处理技术及应用[J].石油地球物理勘探,2006,41(3):286-289.
    [4]陈传诗,曹运兴.河南义马盆地侏罗-白垩纪充填历史[J].河南地质,1989,7(3):37-43.
    [5]陈传诗,曹运兴.河南义马煤田的逆冲推覆构造[J].河南地质,1991,9(3):31-36.
    [6]陈发景,汪新文.盆地构造分析与油气勘探[J].勘探家,1996,1(1):25-28.
    [7]陈发景,汪新文.中国中、新生代含油气盆地成因类型、构造体系及地球动力学模式[J].现代地质,1997,11(4):409-424.
    [8]陈发景,汪新文.中国西北地区早-中侏罗世盆地原型分析[J].地学前缘,2000,7(4):459-469.
    [9]陈国达.地洼学说-活化构造及成矿理论体系概论[M].长沙:中南工业大学出版社1996:1-455.
    [10]陈建平,陈建军,张立平.酒西盆地油气形成与勘探方向新认识(三)——油气运移、成藏规律和勘探方向[J].石油勘探与开发,2001,28(3):12-16.
    [11]陈金华,章伯乐.河南义马组珠蚌类化石:兼论华南、华北早、中侏罗世珠蚌类生物群对比[J].古生物学报,1997,36(3):131-139.
    [12]陈亮,孙勇,裴先治,等.德尔尼蛇绿岩40Ar/39Ar年龄:青藏最北端古特提斯洋盆存在和延展的证据[J].科学通报,2001,46(5):424-426.
    [13]陈衍景.豫西板块构造和地质演化概述[J].河南地质情报,1993,4:7-9.
    [14]陈增智,柳广弟,郝石.修正的镜质体反射率剥蚀厚度恢复方法[J].沉积学报,1999,17(1):141-144.
    [15]陈昭年,陈发景.反转构造与油气圈闭[J].地学前缘,1995,2(3):96-102.
    [16]程建远,王寿全,宋国龙.地震勘探技术的新进展与前景展望[J].煤田地质与勘探,2009,37(2):55-58.
    [17]程日辉,林畅松,崔宝琛.沉积型式与构造控制研究进展[J].地质科技情报,2000,19(1):11-15.
    [18]董云鹏,张国伟,赖绍聪,等.随州花山蛇绿构造混杂岩的厘定及其大地构造意义[J].中国科学(D辑),1999,29(3):222-231.
    [19]杜建波,于明德,郭双亭,等.东秦岭-大别造山带北侧油气资源潜力分析与区带评价[R].河南油田分公司石油勘探开发研究院,2010.
    [20]樊双虎,蔡海东.豫西伊川-汝阳地区新生代玄武岩特征及岩浆起源[J].西安地质学院学报,1993,15(3):32-39.
    [21]方伍宝.三维叠前深度偏移的建模技术[J].石油物探,2002,41(2):132-135.
    [22]韩嵩,蔡美峰.节理岩体物理模拟与超声波试验研究[J].岩石力学与工程学报,2007,26(5):1026-1033.
    [23]何春波,汤良杰,黄太柱,等.塔里木盆地塔中地区底辟构造与油气关系[J].大庆石油学院学报,2009,33(5):5-10.
    [24]何登发,白武明,孟庆任.塔里木盆地地球动力学演化与含油气系统旋回[J].地球物理学报,1998,4(增刊):77-87.
    [25]何登发,赵文智.中国叠合型盆地复合含油气系统的基本特征[J].地学前缘,2000,7(3):23-37.
    [26]何登发,贾承造,童晓光,等.含油气区构造学研究进展[J].石油勘探与开发,2004,31(5):1-7.
    [27]何登发,贾承造,王桂宏.叠合盆地概念辨析[J].石油勘探与开发,2004,31(1):1-8.
    [28]何汉漪.二十一世纪的地震勘探技术[J].地学前缘(中国地质大学,北京),2000,7(3):267-273.
    [29]何将启,周祖翼,江兴歌,等.优化孔隙度法计算地层剥蚀厚度:原理及实例[J].石油实验地质,2002,1224(6):561-565.
    [30]何明喜,常辉,韩玉戟,等.伊川盆地上三叠统油气成藏条件及类型[J].河南石油,1995,9(3):17-23.
    [31]何明喜,张育民,刘喜杰,等.东秦岭(河南部分)新生代拉伸造山作用与盆岭伸展构造[M].西安:西北大学出版社,1995:82-104.
    [32]何生,王青玲.关于用镜质体反射率恢复地层剥蚀厚度的问题讨论[J].地质论评,1989,35(2):119-125.
    [33]胡斌.河南济源晚三叠世-中侏罗世陆相地层[J].地层学杂志,1991,15(1):48-52.
    [34]胡见义,徐树宝,童晓光.渤海湾盆地复式油气聚集(带)的形成和分布[J].石油勘探与开发,1986,13(1):1-8.
    [35]胡少华.基于地震资料的构造-沉积综合分析法——一种剥蚀厚度恢复新方法[J].石油地球物理勘探,2004,39(4):479-483.
    [36]胡圣标.利用镜质体反射率数据估算地层剥蚀厚度[J].石油勘探与开发,1999,26(4):42-45.
    [37]胡望水,薛天庆.底辟构造成因类型[J].江汉石油学院学报,1997,19(4):1-6.
    [38]黄汲清.试论地槽褶皱带的多旋回发展[J].中国科学,1979,9(4):384-397.
    [39]黄泽光,高长林,吉让寿,等.南华北地区中新生代盆地演化[J].石油与天然气学报,2005,26(2):252-256.
    [40]贾承造,姚慧君,魏国齐,等.塔里木盆地板块构造演化和主要构造单元地质构造特征[A].塔里木盆地油气勘探论文集[C].乌鲁木齐:新疆科技卫生出版社,1992:207-225.
    [41]贾承造.中国塔里木盆地构造特征与油气[M].北京:石油工业出版社,1997.
    [42]江为为,郝天珧,宋海斌.鄂尔多斯盆地地质地球物理场特征与地壳结构[J].地球物理学进展,2000,15(3):45-53.
    [43]蒋洪堪,战双庆,王宏勋.十堰至洛阳大地电磁测深观测结果[J].物探与化探,1990,14(4):285-291.
    [44] Kenneth E,Williams,Barbara J,et al.玻利维亚南部泥盆系Chaco盆地中深部天然气的勘探:层序地层学、预测和钻井结果[A].美国勘探地球物理学家学会第65届年会论文集
    [C],1995.
    [45]康明,孟凡顺,任宝山,等.豫西义马组的时代及杨树庄组的创建[J].地层学杂志,1984,8(3):194-198.
    [46]康明.河南义马中生代含煤地层[J].地层学杂志,1988,12(2):81-92.
    [47]康玉柱.构造体系控制油气分布的研究[J].石油实验地质,2001,23(2):133-140.
    [48]赖绍聪,张国伟,董云鹏,等.秦岭-大别勉略构造带蛇绿岩与相关火山岩性质及其时空分布[J].中国科学D辑:地球科学,2003,33(12):1174-1183.
    [49]李炳华.秦岭-桐柏-大别造山带深部构造及其与南北两侧陆块关系之探讨[J].陕西地质,2001,19(1):59-70.
    [50]李春昱.对亚洲地质构造发展的新认识,中国及邻区大地构造论文集[M].北京:地质出版社,1981:1-21.
    [51]李春昱,汤耀庆.亚洲古板块划分以及有关问题[J].地质学报,1983,57(1):1-10.
    [52]李德生.中国含油气盆地构造类型[J].石油学报.1982,3(3):1-12.
    [53]李德生.渤海湾盆地复合油气田的开发前景[J].石油学报,1986,7(1):l-21.
    [54]李德生.中国含油气盆地构造学[M].北京:石油工业出版社,2002.
    [55]李德威.大陆动力学的哲学探索[J].大自然探索,1997,16(2):107-110.
    [56]李国胜,杨锐.义马煤田侏罗-白垩纪的构造演化与古植物气候[J].河南地质,1990,8(4):38-42.
    [57]李宏伟,米利华.河南伊川中生代盆地控油构造及石油勘探前景分析[J].河南理工大学学报(自然科学版),2009,28(4):441-444.
    [58]李连生,朱军,李辉,等.泌阳凹陷斜坡带断裂特征与油气聚集[J].西南石油学院学报,2004,26(2):4-6.
    [59]李明杰,谢结来,潘良云.祁连山北缘冲断带西段构造特征[J].地学前缘,2005,12(4):438-444.
    [60]李曙光,Hart S R,郑双根,等.中国华北、华南陆块碰撞时代的钐-钕同位素年龄证据[J].中国科学(B),1989,3:227-228.
    [61]李曙光,陈移之,张国伟,等.一个距今10亿年侵位的阿尔郫斯型橄榄岩体-北秦岭晚古生代板块构造体制的证据[J].地质评论,1991,37(3):235-241.
    [62]李思田.沉积盆地的动力学分析-盆地研究领域的主要趋向[J].地学前缘,1995,2(3-4):1-8.
    [63]李思田.盆地动力学与能源资源-世纪之交的回顾与展望[J].地学前缘,2000,7(3):1-9.
    [64]李思田.大型油气系统形成的盆地动力学背景[J].地球科学(中国地质大学学报),2004,29(5):505-512.
    [65]李四光.地质力学方法[M].北京:科学出版社,1979:1-136.
    [66]李伟.恢复地层剥蚀厚度方法综述[J].中国海上油气(地质),1996,10(3):167-171.
    [67]李文勇,夏斌,路文芬.东秦岭的地球物理、构造分带特征及演化[J].地质与勘探,2004,40(1):36-40.
    [68]李余生,谢继容,覃建雄.豫西上三叠统生储油条件及含油气远景评价.[M].四川:科学技术出版社,1999:94-98.
    [69]粱顺军,梁顺宾.山地高陡构造地震资料采集质量分析、评价及建议[J].石油地球物理勘探,2002,37(增刊):180-188.
    [70]林畅松,李思田,任建业.断陷潮盘层序地层研究和计算机模拟[J].地学前缘,1995,2(3-4):124-132.
    [71]林畅松,潘元林,肖建新,等.“构造坡折带”——断陷盆地层序分析和油气预测的重要概念[J].地球科学(中国地质大学学报),2000,25(3):260-266.
    [72]林德超,劳子强,席文祥,等.河南省区域地质志[M].北京:地质出版社,1989:215-243。
    [73]刘传喜.华北板块南部豫西大滑动构造探索[J].河南地质情报,2000,2:19-23.
    [74]刘传喜.河南嵩山滑动构造特征分析[J].中州煤炭,2006,143(5):19-23.
    [75]刘和.河南古生代箕山刍议[J].中国煤田地质,1990,2(4):29-32.
    [76]刘和甫.沉积盆地地球动力学分类及构造样式分析[J].地球科学(中国地质大学学报),1993,18(6):699-724.
    [77]刘和甫.前陆盆地类型及褶皱-冲断层样式[J].地学前缘,1995,2(3-4):59-67.
    [78]刘和甫.伸展构造及其反转作用[J].地学前缘,1995,2(1-2):113-124.
    [79]刘和甫,夏义平,殷进根,等.走滑构造带与盆山耦合机制[J].地学前缘,1999,6(3):121-132.
    [80]刘和甫,梁惠社,李晓清,等.中国东部中新生代裂陷盆地与伸展山岭耦合机制[J].地学前缘,2000,7(4):477-486.
    [81]刘和甫.盆地-山岭耦合体系与地球动力学机制[J].地球科学(中国地质大学学报),2001,26(6):581-596.
    [82]刘和甫,李小军,刘立群.地球动力学与盆地层序及油气系统分析[J].现代地质,2003,17(1):80-85.
    [83]刘和甫,李晓清,刘立群,等.走滑构造体系盆山耦合与区带分析[J].现代地质,2004,18(2):139-150.
    [84]刘和甫,李晓清,刘立群,等.伸展构造与裂谷盆地成藏区带[J].石油与天然气地质,2005,26(5):537-552.
    [85]刘建华、刘福田、孙若昧,等.秦岭-大别造山带及其南北缘地震层析成像[J].地球物理学报,1995,38(1):46-54.
    [86]刘景彦,林畅松,喻岳钰,等.用声波测井资料计算剥蚀量的方法改进[J].石油实验地质,2000,22(4):302-306
    [87]刘少峰,张国伟.东秦岭-大别山及邻区盆-山系统演化与动力学[J].地质通报,2008,27(12):1943-1960.
    [88]刘绍龙.华北地区大型三叠纪原始盆地的存在[J].地质学报,1986,60(2):128-138.
    [89]刘司红,刘西宁,李平和.洛阳-伊川盆地构造演化特征及含油气远景评价[J].地质与资源,2003,12(4):228-232.
    [90]刘喜杰.洛阳地区上古生界煤成气生储盖条件研究[J].重庆石油高等专科学校学报,2003,5:26-29.
    [91]刘喜杰.豫西地区上三叠统生油岩特征研究[J].江汉石油职工大学学报,2003,16(3):47-49.
    [92]刘振宏,王世炎,张良,等.华北陆块南缘燕山期陆内造山岩浆活动特征[J].地质调查与研究,2004,27(1):35-42.
    [93]柳广弟,吴孔友,查明.断裂带作为油气散失通道的输导能力[J].石油大学学报(自然科学版),2002,26(1):16-22.
    [94]鲁兵,陈章明,关德范,等.断面活动特征及对油气的封闭作用[J].石油学报,1996,17(3):33-37.
    [95]罗群,庞雄奇,姜振学.一种有效追踪油气运移轨迹的新方法——断面优势运移通道的提出及其应用[J].地质评论,2005,51(2):156-162.
    [96]罗志立,童崇光.板块构造与中国含油气盆地[M].武汉:中国地质大学出版社,1989:1-112.
    [97]吕华.中国石油天然气的勘查与发现[M].北京:地质出版社,1992:1-437.
    [98]吕君昌,张兴辽,假松海,等.河南省义马县中侏罗统义马组兽脚类恐龙足印化石的发现及其意义[J].地质学报,2007,84(4):439-444.
    [99]吕俊祥,黄泽光,翟常博.南华北地区中新生代盆地成盆环境分析[J].石油实验地质,2005,27(2):118-123.
    [100]吕延防,李国会,王耀文.断层封闭性的定量研究方法[J].石油学报,1996,17(3):39-45.
    [101]吕延防,马福建.断层封闭性影响因素及类型化分[J].吉林大学学报(地球科学版),2003,33(2):163-166.
    [102]马如辉,王安志.利用构造恢复原理制作古构造演化图[J].天然气工业,2005,26(1):1-3.
    [103]马杏垣.关于河南嵩山区的前寒武纪地层及其对比问题[J].地质学报,1957,37(1):11-31[J].
    [104]马杏垣.重力构造概述.构造地质学进展[M].北京:科学出版社,1982:61-68.
    [105]马永生,郭彤楼,付孝悦,等.中国南方海相石油地质特征及勘探潜力分析[A].2l世纪中国暨国际油气勘探展望[C].北京:中国石化出版社,2003:537-546.
    [106]马宗晋,杜品仁,洪汉净.地球构造与动力学[M].广州:广东科技出版社,2003:1-564.
    [107]毛小平,吴冲龙,袁艳斌.地质构造的物理平衡剖面法[J].地球科学(中国地质大学学报),1998,23(2):167-170.
    [108]倪志耀,王仁民.蛇绿岩鉴别的关键问题探讨[J].火山地质与矿产,1998,19(3):242-247.
    [109]宁飞,汤良杰,朱传玲,等.挤压区局部构造转换带类型及石油地质意义[J].现代地质,2009,23(3):394-400.
    [110]庞其清.河南义马早、中三叠纪地层及介行类化石[J].河北地质学院学报,1989,12(3):325-345.
    [111]庞雄奇,金之钧,左胜杰.油气藏动力学成因模式与分类[J].地学前缘,2000,7(4):507-513.
    [112]庞振山,燕建设.华北陆块南缘熊耳期次火山岩地质地球化学特征[J].地质调查与研究,2004,27(4):234-238.
    [113]彭兆蒙,吴智平.华北地区三叠纪地层发育特征及原始沉积格局分析[J].高效地质学报,2006,12(3):343-352.
    [114]漆家福,杨桥,王子煜,等.关于编制构造演化剖面的几个问题讨论[J].地质评论,2001,47(4):388-392.
    [115]乔桂林,胡俊卿,杨云飞,等.伊川凹陷三叠系烃源岩有机地化特征及油源研究[J].河南石油,1997,11(2):5-7.
    [116]邱中建,龚再生.中国油气勘探(第一卷):总论[M].北京:石油工业出版社,地质出版社,1999:1-194.
    [117]任纪舜,肖藜薇.中国大陆含油气区大地构造[A].中国含油气盆地构造学[C].北京:石油工业出版社,2002:234-242.
    [118]石铨曾,尚玉忠,庞继群,等.河南东秦岭北麓的推覆构造及煤田分布[J].河南地质,1990,8(4):22-34.
    [119]石栓曾,周旭,李明立.栾川北部熊耳山南坡的重力滑动构造[J].河南地质,1993,11(4):262-269.
    [120]宋传中,张国伟,任升莲等.秦岭-大别造山带中几条重要构造带的特征及其意义[J].西北大学学报(自然科学版),2009,39(3):268-380.
    [121]孙晓猛,张梅生,龙胜祥,等.秦岭-大别造山带北部逆冲推覆构造与合肥盆地、周口坳陷控盆断裂[J].石油与灭然气地质,2004,25(2):191-199.
    [122]孙自明.洛阳盆地的负反转构造[J].河南地质,2001,19(3):185-190.
    [123]索书田,钟增球,游振东.大别-苏鲁造山带中朝与扬子克拉通三叠纪碰撞缝合带位置究竟在何处?[J].地质科技情报,1999,18(2):4-4.
    [124]谭成轩,王连捷,孙宝珊,等.含油气盆地三维构造应力场数值模拟方法[J].地质力学学报,1997,3(1):71-80.
    [125]汤良杰.略论塔里木古生代盆地演化[J].现代地质,1997,11(1):14-20.
    [126]汤良杰,金之钧,庞雄奇.多期叠合盆地油气运聚模式[J].石油大学学报(自然科学版),2000,24(4):67-71.
    [127]汤良杰,金之钧,贾承造,等.叠合盆地构造解析几点思考[J].石油实验地质,2001,23(3):251-255.
    [128]汤良杰,金之钧,漆家福,等.中国含油气盆地构造分析主要进展与展望[J].地质评论,2002,48(2):182-192.
    [129]汤良杰,金之钧,石宝珩,等.近年来中国含油气盆地构造研究新进展和存在问题[A].中国地质学会80周年学术文集[C].北京:地质出版社,2002:390-397.
    [130]田纳新.塔里木盆地孔雀河地区构造分析及控油气作用研究[D].北京:中国地质大学(北京),2006.
    [131]田在艺,张庆春.中国含油气沉积盆地论[M].北京:石油工业出版社,1996:1-200.
    [132]佟彦明,宋立军,曾少军,等.利用镜质体反射率恢复地层剥蚀厚度的新方法[J].古地理学报,2005,7(3):417-424.
    [133]童晓光,何登发.油气勘探原理和方法[M].北京:石油工业出版社.1999:10-30.
    [134]童晓光.塔里木盆地的地质结构和油气聚集[A].塔里木盆地油气勘探论文集[C].乌鲁木齐:新疆科技卫生出版社,l992:17-22.
    [135]汪新伟,汪新文,马永生.准噶尔盆地南缘褶皱-冲断带的构造变换带特征[J].石油与天然气地质,2007,28(3):345-354,394.
    [136]王斌.河南中部晚二叠世与早三叠世地层划分对比及几个地质问题的商榷[J].石油实验地质,1988,10(2):142-158.
    [137]王定一,王立宝.留山、马市坪盆地构造特征及其形成演化[J].石油与天然气地质,1993,14(1):53-60.
    [138]王鸿祯.从活动论观点论中国大地构造分区[J].地球科学(中国地质大学学报).1981,6(1):42-46.
    [139]王鸿桢.历史大地构造学及其研究方法.构造地质学进展[M].北京:科学出版社,1982:42-50.
    [140]王鸿桢.刘本培.李思田.中国及邻区大地构造划分和构造发展阶段[M].武汉:中国地质大学出版社,1990:3-34.
    [141]王璞珺,杜小弟.沉积盆地分析的定量数学模拟:原理与方法[J].西安石油学院学报,1993,8(3):14-19.
    [142]王清晨,李忠.盆山耦合与沉积盆地成因[J].沉积学报,2003,21(1):24-31.
    [143]王团华,谢桂青,叶安旺,等.豫西小秦岭-熊耳山地区金矿成矿物质来源研究[J].地球学报,2009,30(1):27-38.
    [144]王毅,金之钧.沉积盆地中恢复地层剥蚀量的新方法[J].地球科学进展,1999,14(5):482-486.
    [145]王余庆.商丹断裂构造特征及其演化[J].西安地质学院学报,1992,14(1):27-34.
    [146]王岳军,张琴华.中国大陆动力学研究进展[J].地质科技情报,1995,14(2):554-559.
    [147]王运泉,阎琇璋,孟凡顺.义马煤田义马组沉积环境及其演化[J].焦作矿业学院学报,1988,12、13(2、3):179-192.
    [148]魏文博,刘天佑,往传雷.鄂尔多斯盆地构造演化与古构造运动面的地球物理研究[J].地球科学(中国地质大学学报),1993,18(5):643-652.
    [149]吴根耀,马力.“盆”“山”耦合和脱耦:进展,现状和努力方向[J].大地构造与成矿学,2004,28(1):81-97.
    [150]吴贤涛.豫西济源-义马盆地浊流沉积中的痕迹化石[J].沉积学报,1985,3:23-31.
    [151]吴正文.秦岭造山带的推覆构造格局[M].西安:西北大学出版社,1991:111-120.
    [152]吴智平,侯旭波,李伟.华北东部地区中生代盆地格局及演化过程探讨[J].大地构造与成矿学,2007,114(31(4)):385-399.
    [153]武守诚.中国板块演化与油气盆地[J].石油实验地质,1988,10(3):197-212;10(4):325-333.
    [154]夏邦栋,李培军.中国东部扬子板块同华北板块在中-晚三叠世拼接的沉积学证据[J].沉积学报,1996,14(1):13-21.
    [155]夏义平,刘万辉,徐礼贵,等.走滑断层的识别标志及其石油地质意义[J].中国石油勘探,2007,17(1):17-48.
    [156]夏竹,张少华,王学军.中国西部复杂地区近地表特征与表层结构探讨[J].石油地球物理勘探,2003,38(4):414-424.
    [157]谢玉洪,王振峰,解习农,等.莺歌海盆地坡折带特征及其对沉积体系的控制[J].地球科学(中国地质大学学报),2004,29(5):569-574.
    [158]解东宁,何明喜,周立发,等.东秦岭-大别造山带北缘逆冲推覆构造特征及油气前景[J].石油与天然气地质,2006,27(1):48-55.
    [159]熊翥.我国西部山前冲断带油气勘探地震技术的几点思考[J].勘探地球物理进展,2005,28(1):1-4,11.
    [160]徐汉林,赵宗举,杨以宁,等.南华北盆地构造格局及构造样式[J].地球学报,2003,24(1):27-33.
    [161]徐嘉炜.论走滑断层作用的几个主要问题[J].地学前缘,1995,2(2):125-136.
    [162]许效松.盆山转换与造盆、造山过程分析[J].岩相古地理,1998,18(6):1-10.
    [163]阎世信,刘怀山,姚雪根.山地地球物理勘探技术[M].北京:石油工业出版社,2000:6-14.
    [164]燕长海,刘国印,邓军.豫西南铅锌矿集区深部构造与成矿作用[J].地质调查与研究,2003,26(4):221-227.
    [165]杨世蓉,河南义马地区晚三叠世-侏罗纪孢粉组合及其地质意义[J].古生物学报,1994,33(6):765-779.
    [166]姚瑞增,赵保军,杨素梅.鸣皋地区火山岩研究新知及其成因机理探讨[J].河南地质,1989,7(1):21-22.
    [167]于明德,张辉,马荣芳,等.《地震地质信息在焉耆盆地断裂封堵性研究中的应用》[J].石油天然气学报,2005,27(6):704-707.
    [168]于明德,王璞珺,杨德彬,等.断裂封堵综合分析技术在孔雀河地区的应用,地学前缘(中国地质大学(北京);北京大学),2007,14(6):282-289.
    [169]袁明生,黄卫东,李华明,等.构造作用对油气生成和运聚的影响[J].新疆石油地质,2002,23(2):165-169.
    [170]袁学诚,徐明才,唐文榜等.东秦岭陆壳反射地震剖面[J].地球物理学报,1994,37(6):749-758.
    [171]袁照令,李大明,曲赞.高精度磁测在伊川盆地油气勘探中的应用[J].石油物探,1999,38(2):112-117.
    [172]曾玉凤,康有轩.豫西济源-义马盆地早中生代湖泊沉积体系的演化[J].河南地质,1998,16(3):191-194.
    [173]翟光明.中国石油地质志(卷一):总论[M].北京:石油工业出版社,1996:1-110.
    [174]翟光明,王建君.论油气分布的有序性[J].石油学报,2000,21(1):1-9.
    [175]翟明国,朱日祥,刘建明,等.华北东部中生代构造体制转折的关键时限[J].中国科学(D辑),2003,33(10):913-920.
    [176]张伯声.嵩阳运动和嵩山区的五台系(节要)[J].地质论评,1951,16(1):79-81.
    [177]张伯声,王战.镶嵌构造波浪运动说.构造地质学进展[M].北京:科学出版社,1982:26-33.
    [178]张传林,董永观,杨志华.秦岭晋宁期的两条蛇绿岩带及其对秦岭-大别构造演化的制约[J].地质学报,2000,74(4):313-324.
    [179]张功成,徐宏,刘和甫,等.松辽盆地反转构造与油气田分布[J].石油学报,1996,l7(2):9-l4.
    [180]张国伟,梅志超,周鼎武,等.秦岭造山带的形成及其演化[M].西安:西北大学出版社,1988:1-20.
    [181]张国伟,张宗清,董云鹏.秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J].岩石学报,1995,11(2):101-114.
    [182]张国伟,孟庆任,于在平,等.秦岭造山带的造山过程及其动力学特征[J].中国科学(D集),1996,26(3):193-200.
    [183]张国伟,程顺有,郭安林,等.秦岭-大别中央造山系南缘勉略古缝合带的再认识-兼论中国大陆主体的拼合[J].地质通报,2004,23(9-10):846-853.
    [184]张进,马宗晋,任文军.对盆山耦合研究的新看法[J].石油实验地质,2004,26(2):169-175.
    [185]张恺.中国大陆板块构造与含油气盆地评价[M].北京:石油工业出版社,1995:1-307.
    [186]张璐瑾.河南省渑池县义马含煤岩组中的孢粉组合及其意义[J].古生物学报,1965,13(1):160-181.
    [187]张乃昌.从重磁成果探讨河南深部构造及成矿作用[J].河南地质,1986,4(1):16-22.
    [188]张旗.蛇绿岩研究中的几个问题[J].岩石学报,1995,11(增刊3):228-240.
    [189]张小浩,周鼎武,赵伟波.豫西地区构造样式与油气勘探的探究[J].西北大学学报(自然科学版),2007,37(4):647-652.
    [190]张小浩.洛伊盆地中新生代构造演化及其与油气的关系[D].西安:西北大学,2007.
    [191]张亚东,董杰,肖金平.河北省构造重力推断解释[J].物探与化探,2011,35(2):143-148.
    [192]张渝昌.中国含油气盆地原型分析[M].南京:南京大学出版社,1997:84-89.
    [193]张元厚,张世红,韩以贵,等.化熊地块马超英断裂走滑构造特征及演化[J].吉林大学学报(地球科学版),2006,36(2):169-193.
    [194]张原庆,钱祥麟.盆山耦合概念及机制[J].中国地质,2001,28(3):241-242.
    [195]张文佑,钟嘉猷.舟绍断裂与断块大地构造学说的理论发展与实际意义.构造地质学进展[M].北京:科学出版社,1982:12-25.
    [196]张宗清,张国伟,唐索寒,等.秦岭勉略带中安子山麻粒岩的年龄[J].科学通报,2002,47(22):1751-1755.
    [197]张宗清,张国伟,刘敦一,等.秦岭造山带蛇绿岩花岗岩和碎屑沉积岩同位素年代学和地球化学[M].北京:地质出版社,2006:164-173.
    [198]赵殿栋,郑泽继,吕公河,等.高分辨率地震勘探采集技术[J].石油地球物理勘探,2001,36(3):263-271.
    [199]赵密福,刘泽溶,信荃麟,等.控制油气沿断裂纵向运移的地质因素[J].石油大学学报(自然科学版),2001,25(6):21-24.
    [200]赵密福,李阳,李东旭.泥岩涂抹定量研究[J].石油学报,2005,26(1):60-64.
    [201]赵文津,冯昭贤.青藏高原大陆动力学研究:“INDEPTH”合作研究的体会[J].地球学报:中国地质科学院院报,1996,17(2):119-128.
    [202]赵文智,靳久强,薛良清,等.中国西北地区侏罗纪原型盆地形成与演化[M].北京:地质出版社,2000:1-100.
    [203]赵文智,何登发.中国复合含油气系统的基本特征与勘探技术[J].石油学报,2001,22(1):6-l3.
    [204]赵文智,张光亚,王红军,等.中国叠合含油气盆地石油地质基本特征与研究方法[J].石油勘探与开发,2003,30(2):1-8.
    [205]真柄钦次,陈荷立,等译.压实与流体运移[M].北京:石油工业出版社,1981:8-30.
    [206]郑求根,张育民,赵德勇,等.豫西地区构造演化与上三叠统地层保存和分布[J].河南石油,1998,12(2):6-10
    [207]周国藩,杨森楠.秦岭造山带的地幔结构及其形成、演化特征[J].地质科技情报,1992,11(3):19-24.
    [208]周建勋.同沉积挤压盆地构造演化恢复的平衡剖面方法及其应用[J].地球学报,2005,26(2):151-156.
    [209]周世全,梁新权,冯祖杰.河南西南部含恐龙蛋化石盆地沉积及构造特征[J].大地构造成矿学,2002,26(3):306-313.
    [210]周文戈,张本仁,赵志丹,等.豫西新生代基性火山岩地球化学特征及源区性质[J].矿物岩石,1989,18(3):51-57.
    [211]周新科,许化政,胡宗全,等.豫西地区晚三叠世原型盆地及含油气性分析[J].石油实验地质,2005,27(3):211-217.
    [212]周英,王文强,朱立新.断层封堵分析技术在油气勘探中的应用[J].石油地球物理勘探,1998,33(5):649-657.
    [213]周志炎,章伯乐.河南义马中侏罗世两种因醒目的雌性生殖器官[J].科学通报,1988,32(3):216-217.
    [214]周志炎.银杏型胚珠器官的异时发育起源[J].古生物学报,1994,32(2):131-139.
    [215]朱绍璧,秦伟军.伊川盆地油气资源条件分析[J].河南石油,1993,31(4):10-14.
    [216]朱夏.试论古全球构造与古生代油气盆地[J].石油与天然气地质,1983,4(1):1-33.
    [217]朱夏,陈焕疆,孙肇才,等.中国中、新生代构造与含油气盆地[J].地质学报,1983,57(3):235-242.
    [218]朱夏.活动论构造历史观[J].石油实验地质.1991,13(3):20l-209.
    [219]邹华耀,金燕,黄光辉.断层封闭与油气运移和聚集[J].江汉石油学院学报,1999,21(1):9-12.
    [220] AAPG.AAPG Annual meeting abstract[R].AAPG,Dallas,2004.
    [221] Allen P A,Allen J R.Basin analysis:Principle and applications[M].Blackwell ScientificPublication,1990:141-263.
    [222] Allen PA, DensmoreAL.Sediment flux from uplifting fault block[J].Basin Research,2000,12:367-380.
    [223] Aubouin J, Geosynclines[M].Elesevier Publishing Company,Amsterdam,1965.
    [224] Bally A W.Basins and subsidence:a summary[A].Dynamics of plate interiors,geodynamicsseries,Vo1.1[C].Washington,D C:American Geophysical Union and Boulder,CO:GeologicalSociety ofAmerican,1980:5-20.
    [225] Beydoun Z R.The Middle East: regional geology and petroleum resources[M].Scientific Press(Publ.),Beaconsfield,Buckinghamshire,England,1988:1-292.
    [226] Beydoun Z R.Arabian plate hydrocarbon geology and potential—a plate tectonic approach[J].American Association of Petroleum Geologists,Studies in Geology,1991a,33(77):125-144.
    [227] Beydoun Z R.Arabian plate oil and gas:why so rich and so prolific[J].Episode,1998,21(2):74-81.
    [228] Brandon M T. Probability density plot for fission-track grain age samples[J].RadiationMeasurements,1996,26(5):663-676.
    [229] Buchanan P G,Mcclay K R.Sandbox experiments of inverted listric and planar fault systems[J].Tectonophysics,1991,88(1-2):97-115.
    [230] Busby C J,Ingersoll R V.Tectonicsofsedimentarybasins[M].Oxford:BlackwellScience,1995.
    [231] Calassou S,Larroque C,Malavieille J.Transfer zones of defomation in thrust wedges:anexperimental study[J].Tectonophysics,1993,221:325-344.
    [232] Carlson W D. Mechanisms and kinetics of apatite fission-track annealing[J].AmericanMineralogist,1990,75(8):1120-1139.
    [233] Casas A M,Gapais D,Nalpas T,et al.Analogue models of transpressive systems[J].Journal ofstructural Geology,2001,23(5):733-743.
    [234] Corredor F O. Three-dimensional geometry and kinematics of the western thrust front of theeastern Cordillera[J]. Columbia AAPG SEPM,1996,5:29-30.
    [235] Cross T A. High-resolution stratigraphic correlation from the perspective of base-level cycles andsediment accommodation[J].Proceedings of Northwestern European Sequence StratigraphyCongress,1994:105-123.
    [236] Dahlstrom C D A. Balanced cross sections[J]. Canadian Journal of Earth Science,1969,6(4):743-757
    [237] Dickinson W R.Plate tectonics and sedimentation[A].Tectonics and sedimentation: society ofeconomic paleontolgists and mineralogists special publication22[C].1974:1-27.
    [238] Douglas J Cant.Geometric modeling of faces migration: theoretical development of facessuccessions and local nonconformities[J].Basin Reasearch,1991,3:51-62.
    [239] Dow W G. Kerogen studies and geological interpretations[J].Journal of GeochemicalExploration,1977,Vo1.7:79-99.
    [240] Downey M W, Threet J C, Morgan W A. Petroleum provinces of the twenty-first century
    [C].AAPG Memoir74,2002.
    [241] Dunnington H V.Aspects of Middle East oil geology[C].Geological National Conference onEarth Sciences, Edmonton, Canada(1974),1975:89-156.
    [242] Fleischer P L,Price P B.Techniques for geological dating of minerals by chemical etching offission fragment tracks[J].Geochimica.et Cosmochimica.Acta,1964,28(4):1705-1714.
    [243] Fleischer P L,Price PB,Walker R M.Nuclear tracks solid[M].Berkeley:University of CaliforniaPress,1975:133.
    [244] Graham S,Hendrix M,Wang Z,et al.Collisional successor basins of western China:impact oftectonic inheritance on sand composition[J].Geological Society ofAmerican Bulletin,1993,105:323-344
    [245] Cooper M A,Williams G D.Inversion Tectonics[M]. Blackwell Scientific Publication,1989:1-20.
    [246] Halboutv M T.Giant oil and gas fields of the decade1990-1999[C].AAPG Memoir78,2004.
    [247] Hamilton P J,Kelly S,Fallick A E.K-Ar dating of illite in hydrocarbon reservoirs[J].ClayMinerals,1989,24:215-231.
    [248] Henson F R S.Observations on the geology and petroleum occurrences of the Middle East
    [C].3rd World Petroleum Congress,Holland,1951,sect.1:118-141.
    [249] Hogg A J C,Hamilton P J,Macintyre R M.Mapping diagenetic fluid flow with a reservoir:K-Ardating in theAlwyn area(UK North Sea)[J].Marine and Petroleum Geology,1993,10:279-294.
    [250] Holdsworth R E,Turner J P. Extensional tectonics,Part l:Regional scale processes[M].GSLKeyIssues in Earth Sciences,2002,2(1).
    [251] Holdsworth R E,Turner J P. Extensional tectonics,Part2:Faulting and fault-related processes
    [M].GSLKey Issues in Earth Sciences,2003,2(2).
    [252] Horn M K.Sedimentary provinces of the world and characte-ristics of giant oil and gas fields
    [M].AAPG/Datapages Digital Product,Databaes/Data Sets,1990.
    [253] HurfordAJ,Green P F.The zeta age calibration of fission track dating[J].Isotope.Geosci.,1983,65(1):285-317.
    [254] Kahraman S.Estimating the direct P-wave velocity value of intactrock from indirect laboratorymeasurements[J].International Journal of Rock Mechanics and Mining Sciences,2002,39(1):101–104.
    [255] Kamen-Kaye M.Geology and productivity of Persian Gulf synclinorium[J].AmericanAssociation of Petroleum Geologists Bulletin,1970,54:2371-2394.
    [256] Katz B J.Lacustrine Basin exploration-case studies and modern analogs[C].AAPG Memoir50,1991.
    [257] Kevin T. Biddle.Active margin basins[C].AAPG Memoir52,1991.
    [258] King M S,Myer L R,Rezowalli J J.Experimental studies on elastic wave propagation in acolumnar jointed rock mass[J].Geophysical Prospecting,1986,34(8):1185-1199.
    [259] Knipe R J. Juxtaposition and seal Diagrams to help analyze faults seals in hydrocarbon reservoirs[J].AAPG Bulletin,1997,81(2):187-195.
    [260] Knott S D.Fault seal analysis in the north sea[J].AAPG Bulletin,1993,77(5):778-792.
    [261] Kohn B P,Green P F.Low temperature the rmochronology:from tectonics to landscape evolution[J].Tectonophysics,2002,349(1):1-4.
    [262] KopfAJ.Significance of mud volcanism[J].Reviews of Geo-physics,2002,40(2):1-52.
    [263] Landon S M.Interiorrift basins[C].AAPG Memoir59,1994.
    [264] Le Pichon X, Sea-floor spreading and continental drift [J].Journal of GeophysicalResearch,1968,73:3661-3697.
    [265] Liewig N,Clauer N,Sommer F.Rb-Sr and K-Ar dating of clay diagenesis in Jurassic sandstone oilreservior,North Sea[J].AmericanAssociation of Petroleum Geologists Bulletin,1987,71:1467-1474.
    [266] Lindsay N C,Murphy F C.Outcrop studies of shale smear on fault-surfaces[J].InternationalAssociation of Sedimentologist Special Publication,1993:113-123.
    [267] Liu B,Phillips F M,Pohl M M,et al.An alurial surface chronology based on cosmogenic36Cldating,Ajo Mountains,SouthernArizona[J].Quaternary Research,1996,45:30-37.
    [268] Liboutry L.Tectono physiques Geodynamics[M].Paris:Masson Publication,1982:1-270.
    [269] Loorde M T, Ravnas R, Farseth R, et al.Tectonic modeling of the Middle Jurassicsynriftstratigraphy in the Oseberg-Brage area, northern Viking Graben Basin[J].Basin Research,1997,9:133-150.
    [270] Lowell J D.Structural styles in petroleum exploration[M].Tulsa:OGCLPublication,1987:1-38.
    [271] Macniocaill C,Ryan P.Continental tectonics[M].GSLSpecial Publications.1999.
    [272] Macqueen R W,Leckie D A.Foreland basins and fold belts[C].AAPG Memoir55,l992.
    [273] Mc Kenzie D P,Parker R L,The north Pacific; an example of tectonics on a sphere[J].Nature,1967,216:1276-1280.
    [274] Mccann T,Saintot A.Tracing tectonic deformation using the sedimentary reco[M].GeologicalSociety Special Publication No.208,2003.
    [275] Mcclay K R,Dooley T.Analogue models of pull-apart basins[J].Geology,1995,23(8):711-714.
    [276] Mcclay K R,White M J.Analogue modelling of orthogonal and oblique rifting[J].Marine andPetroleum Geology,1995,12(2):137-151.
    [277] Mcclay K R,Bonora M.Anolog models of restraining stepovers in strike-slip fault systems[J].AAPG,2001,85(2):233-260.
    [278] Meer S D,Drury M,Bresser H D.et a1.Deformation mecha-nisms,rheology and tectonics:currentstatusand future perspectivcs[M].Geological Society Special Publication No.200,2003.
    [279] Miall A D. Principles of sedimentary basin analysis[M].New York: Springer-VerlagPublication,1990:414-415.
    [280] Miall AD. Collisional related foreland basins[A].Tectonics of sedimentary basins[C].Oxford:Blackwell Science,1995:393-424.
    [281] Miall A D. Principles of sedimentary basin analysis[M].Berlin Heideberg, New York:Springer-Verlag,2000:381-395.
    [282] Miatl A D.The geology of stratigraphics equence [M].Berlin Heidelberg, NewYork:Springer-Verlag,1997:49-56.
    [283] Michael R. Hudec and Martin P.A. Jackson Structural segmentation, inversion, and salt tectonicson a passive margin: Evolution of the Inner Kwanza Basin,[J] Angola,GSA Bulletin, Oct2002;114:1222-1244.
    [284] Mitra S,Figueroa G C, Garcia J H,et al. Three-dimensional structural model of the Cantarell andSihil structures, Campeche Bay, Mexico[J].AAPG Bulletin,2005,89(1):1-26.
    [285] Morgan W J,Deep Mantle Convection Plumes and Plate Motions[J].TheAmericanAssociationof Petroleum Geologists Bulletin,1972b,56:203-213.
    [286] Morley C K.Geoscience of rift systems evolution of EastAfrica[M].AAPG Studies in Geology44,2000.
    [287] Pashin J,Jroshong R.Area balance in extensional structures;companrison between the BlackWarrior and Gulf Coast basins[J]. AAPG Bulletin,1997,81(9):1561.
    [288] Pyrak-Nolte L J,Myer L R,Cooking W.Transmission of seismic waves across single naturalfractures[J].Journal of Geophysical Research,1990,95(6):8617-8638.
    [289] Ravnas R,Steel R J.Architecture of marine rift-basin[J].AAPG Bull,1998.82:197-226.
    [290] Revil A.Genesis of mud volcanoes in sedimentary basins:a solitary wave-based mechanism[J].Geophysical Research Letters,2002,29(10):1574.
    [291] Schneider W. Integral formulation for migration in two and three dimensions[J].Geophysics,1978,43(1):49-76.
    [292] Scholz C A,Rosendahl B R.Coarse-clastic and stratigraphic sequence models from lakes Malawiand Tanganyika East Africa[M].AAPG Memoir50.1991:137-149.
    [293] Sehreurs G. Experiments on strike-slip faulting and block rotation[J].Geology,1994,22:567-570.
    [294] Shannon PM,Naylor D.Petroleum basin studies[M].NewYork:Springer-Verlag,1989.
    [295] Shaw J H,Shearer P M.An elusive b1indthrust fau1t beneath metropolitan los angeles[J].Science,1999,283:15l6-1518.
    [296] Sibson R H, J Mc Moore,A H Fankin. Seismic pumping-a hydrothermal fluid transportmechanism[J].Journal of geological society of London,1975,131:653-659.
    [297] Silver P G, Raymond M.Coupling of south american and african plate motion and platedeformation[J].Science,1998,279(2):60-63.
    [298] Smith D A, Sealing and nonsealing faults in Louisiana Gulf Coast salt basin[J].AAPG, Bulletin,1980,64(2):145-172.
    [299] Smith J V, Dumey D W. Experimental formation of brittle structural assemblages in obliquedivergence[J].Tectone physics,l992,216:235-253.
    [300] Steve Drury. Extensional tectonics[C].AAPG Video,1987.
    [301] Storti F,Holdsworth R E,Salvini F.Intraplate strike-slip deformation belt[sM].Geological SocietySpecial Publication No.2l0,2003.
    [302] Suppe J.Geometry and kinematics of fault bend folding[J].American Journal of Science,1983,283(7):684-721.
    [303] Suppe J,Medwedeff D A.Geometry and kinematics of fault propagation folding[J].EcolgaeGeologicae Helvetiae,1990,83(3):409-454.
    [304] Suppe J,Chou G T,Hook S C. Rates of folding and faulting determined from growlh strata
    [A].Thrust tectonics[C].Chapman&Hal1,London:1992,105-l21.
    [305] Suppe J,Connors C D,Zhang Y.Shear fault bend folding[A].Thrust tectonics and hydrocarbonsystems[C].AAPG Memoir82,2003,1-21.
    [306] Sylvester A G. Strike-slip faults[J]. Bulletin of Geological Society of America,1988,100(11):1666-1703.
    [307] Thakur S H.Data acquisition and analysis[J].SPE20749,1990.
    [308] Tikoff B,Peterson K.Physical experiments of transpressional folding[J].Journal of StructuralGeology,1998,20(6):661-672.
    [309] Tissot B.Basin development and petroleum exploration[C].AAPG Video,1990.
    [310] Tron V, Brun J. Experiments on oblique rifting in btittle-ductile systems[J].Tectonephysics,1991,188:71-84.
    [311] Vendeville B C,Mart Y,Vigncresse J L.Salt,shale,and igneous intrusions in and around Europe
    [M].GSLSpecial Publication l74,2000.
    [312] Versteeg R J.Sensitivity of prestack depth migration to the velocity model[J].Geophysics,1993,58(6):837-882.
    [313] Wilson J T, A new class of faults and their bearing on continental drift[J].Nature,1965,207:343-347.
    [314] Xiao H B,Suppe J,Origin of rollover[J].AAPG Bulletin,1992,76:509-529.
    [315] Yielding G, Freeman B, Needham D T. Quantitative fault seal prediction[J].AAPG Bulletin,1997,81(6)):897-917.
    [316] Zolnai G.Continental wrench-tectonics and hydrocarbon habitat(2nd edition)[M].AAPGContinuing Education Course Notes,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700