小型平板CPL/LHP的流动与传热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热毛细泵相变回路包括毛细泵抽吸两相环路(CPL)以及环路热管(LHP),由于采用工质相变传输热量以及利用毛细力提供循环的动力,因此具有传热能力强,热阻低、等温性好、效率高、无运动部件以及传输距离长等优点,从而使其成为了航天器热控以及电子器件高热流密度散热的有效方式。
     本文对CPL/LHP系统的研究现状进行了综述,介绍了CPL/LHP系统的工作原理及其运行特点,论述了CPL/LHP在实现高热流散热方面的优势,同时由于平板型CPL/LHP系统的平面型结构能更好的与器件表面贴合,相对于圆柱型蒸发器,减少了蒸发器与发热器件表面的传热热阻,提高了系统的传热效率,同时使散热表面的等温性更好。本文的工作正是对小型平板CPL/LHP系统进行研究。
     分析了小型平板CPL不同工质时系统的压力损失与毛细芯的毛细抽吸力,得出采用氨工质有着较好的传热性能和更高的毛细极限,同时得出影响系统毛细限的主要因素是蒸汽联管管径和工质的蒸汽密度,从而提出了工质传输系数作为CPL/LHP系统选取工质的重要指标。
     快速、简单、可靠的启动性能是一个先进的CPL/LHP系统所具备的基本特性,但是国内外的研究表明,由于各种原因使CPL/LHP系统在启动过程中出现了启动困难的问题,而各国学者对其的研究却非常的稀少,特别是特殊的平板结构使其具启动过程呈现出新的特点。本文分析了小型平板蒸发器预热启动过程的特点,并且对引起蒸发器启动失败的可能原因进行了理论分析,建立了小型平板蒸发器满液启动过程的非稳态数学模型,并用SIMPLE程序对模型进行求解,得出了蒸发器不同启动热流、不同的金属外壁材料以及不同的毛细多孔芯对蒸发器启动特性的影响。
     对毛细蒸发器的研究,以往都是针对蒸发器多孔芯的一个很小局部单元结构进行数学建模,没有考虑蒸发器金属外壁以及蒸汽、液体槽道的影响,这显然不能真实的反映蒸发器工作过程,更不能对系统的传热性能进行有效的评价,同时散热表面温度水平也不能得出。本文首次在考虑了金属壁的边界效应的情况下,建立了蒸发器毛细多孔芯、金属壁面、蒸汽槽道以及液体槽道内传热传质的整场数学模型。并运用SIMPLE程序设计了一种新的算法对小型平板蒸发器进行了整场耦合求解。研究了不同的加热热流、入口液体过冷度、金属材料对蒸发器性能的影响,结果表明小型平板蒸发器存在着侧壁效应传热极限,它是影响系统最大传热量的一个重要极限;采用组合结构蒸发器以及蒸发器下壁增设翅片都可以提高系统的传热能力。
     针对微小型散热系统的需求,设计出新的微小型CPL/LHP平板式蒸发器,用液体补偿腔代替原来的一字形液体补偿槽道,采用更小有效孔隙半径的烧结金属芯,采用性能较好的高纯氨,来提高CPL/LHP系统的传热能力。建立了微小型蒸发器毛细芯流动与传热与相变模型,液体补偿腔的流动与传热模型,同时对蒸汽槽道、金属壁面建立了导热模型,运用SIMPLE程序对蒸发器进行了整体耦合数值求解。研究了不同的热流、多孔芯材料和外壁材料以及非均匀热流对蒸发器传热性能的影响,得出的结果为微小型平板蒸发器的设计提供了理论指导。
     分析了小型平板LHP系统的运行特性以及各部件之间流动与传热的相互关系,采用集总参数法建立了平板蒸发器、冷凝器、蒸汽联管以及液体联管的数学模型模块,运用MATALAB/Simulink对整个系统的动态平衡方程进行了仿真研究,得出了小型平板LHP的动态运行特性,为后续的试验起到了理论指导意义。
The capillary pumped loop (CPL) and the loop heat pipe (LHP) are the two-phase thermal control devices with the latent heat of evaporation of a working fluid to transfer heat and the capillary action for fluid transport, which are capable of transport large heat density and passively transporting heat over large distances with minimal temperature losses, and contain no moving parts. As a result, CPL/LHP becomes more active and interesting in many engineering domains including thermal management of satellites and spacecrafts as well as cooling of electronic devices.
     The research progress in the CPL/LHP technology is briefly reviewed, and the operational principles and characteristics of CPL/LHP systems are introduced in this paper. CPL/LHP is especially well suited for thermal management of dissipating high heat flux, at the same time, due to the flat plate evaporator has the advantages of perfect thermal contact between evaporator surface and electronics devices surface, and low thermal resistance and isothermal heated surface, our primary interest in this investigation is small scale flat plate CPL/LHP.
     The total pressure loss along small scale flat plate CPL loop and maximum capillary pressure of the evaporator wick for different working fluids are obtained The analysis results showed that ammonia working fluid had better performance and higher capillary limit, and capillary limit is affected significantly by vapor line radius and working fluid density. The working fluid transmission coefficient is introduced as an important criterion of choosing working fluid in the CPL/LHP system.
     The speediness, simpleness and robustness should be the startup characteristics of advanced CPL/LHP system, but many investigations indicate that there are some problems which plague the applications of CPL/LHP, such as startup difficulty and not being robust. Few researchers focus on the startup process of CPL/LHP, especially on the startup process of small scale flat plate evaporator, which appears the new characteristics during startup process. The features of startup process and the reasons which result in the failure of small-scale flat-plate type capillary pumped loop(CPL)evaporator during the preheating stage are analyzed in the present work. The unsteady heat transfer model of evaporator in the fully-flooded startup stage is presented, and the model is solved by SIMPLE algorithm. The influences of heat flux, wick material and metallic wall material on the evaporator performance are discussed in detail.
     In the previous works on the capillary evaporator, the computational domain adopted is a single segment of wick structure in the evaporator, which is only a very small part of wick, and it leads to some shortages in evaluating the overall evaporator performance by those models. Firstly, these models can not predict the influences of metallic wall, vapor grooves and compensation cavity on heat and mass transfer of the capillary evaporator, the heated surface temperature which is very important in estimating the performance of thermal management system can not obtained, too. Two-dimensional mathematical model of the small-scale flat plate CPL/LHP evaporator is presented to simulate heat and mass transfer in the capillary porous structure and heat transfer in the vapor grooves and metallic wall for the first time. The overall evaporator is solved with SIMPLE algorithm as a conjugate problem. The influences of heat flux, liquid subcooling and metallic wall material on the evaporator performance are discussed in detail. The numerical results show that there exists a side wall effect heat transfer limit for small scale flat plate CPL/LHP evaporator, and the evaporator with combined wall or fins in the bottom can improve the heat transfer capacity remarkably. The conjugate model offers a numerical investigation in the explanation of the robustness of the flat plate CPL/LHP operation.
     Due to dissipating high heat flux requirements of small system, new miniature flat plate CPL/LHP evaporator have been designed, which utilizes the compensation cavity replacing the liquid grooves, uses the metallic sintered wick with smaller effective capillary radius and utilizes the high pure ammonia to improve the heat transfer capacity of CPL/LHP. The overall numerical model for the global evaporator of miniature flat plate CPL/LHP is developed to describe the heat and mass transfer with phase change in the porous wick , liquid flow and heat transfer in the compensation cavity and heat transfer in the vapor grooves and metallic wall. The governing equations for different zones are solved as a conjugate problem. The influences of uniform heat flux, liquid subcooling, wick material, metallic wall material and non-uniform heat flux on the evaporator performance are studied in detail. The results are useful for the evaporator design and performance optimization of miniature flat plate CPL/LHP.
     The dynamic operational characteristics of small scale flat plate LHP has been analyzed, and the mathematical models of flat plate evaporator, condenser, vapor liquid transport line and liquid transport line are developed based on the nodal method. MATALAB/Simulink is used to perform the simulation to obtain the operational parameters. The dynamic parameters are useful for the design of subsequent experiment of CPL/LHP.
引文
[1] Ryan J. McGlen, Roshan Jachuck, Song Lin. Integrated thermal management techniques for high power electronic devices [J]. Applied Thermal Engineering, 2004, 24(8): 1143–1156.
    [2] Sahiti N, Durst F and Geremia P. Selection and optimization of pin cross-sections for electronics cooling, Applied Thermal Engineering, 2007, 27(1):111-119.
    [3] Nadalini R., Bodendieck F. The thermal control system for a network mission on Mars: The experience of the Netlander mission, Acta Astronautica, 2006, 58(11), 564-575.
    [4] Roger R., Riehl, Thiago, Dutra. Development of an experimental loop heat pipe for application in future space missions, Applied Thermal Engineering, 2005, 25(1), 101-112.
    [5] Clayton S, Martin D, Baumann J. Mars surveyor thermal management using a fixed conductance capillary pumped loop, SAE Paper 972467, 1997, 899-910.
    [6]张亚平,冯全科,余小玲.微热管在电子器件冷却中的应用[J],国外电子元器件, 2006, 9:11-15.
    [7] Chen PinChih, Lin WeiKeng. The application of capillary pumped loop for cooling of electronic components. Applied Thermal Engineering, 2001, 21(11):1739-1754.
    [8] [8]李庆友,王文,周根明.电子元器件散热方法研究[J],电子器件, 2005,28(4), 937-941.
    [9]刘伟等,多孔介质传热传质理论与应用,北京:科学出版社,2006.
    [10] Butler D, Ottenstein L, Ku J. Design evolution of the capillary pumped loop (CAPL-2) flight experiment, SAE Paper 961431, 1996, 1-13.
    [11] Theodore D, Swanson C, Gajanana, et al. NASA thermal control technologies for robotic spacecraft, Applied Thermal Engineering, 2003, 23(9), 1055-1065.
    [12] Ku J. Capillary pumped loop technology development, Proc. of 6th Int. Heat Pipe Conference, 1987.
    [13] Kroliczek E J, Ku J. Design. Development and test of a capillary pumped loop heatPipe. AIAA 19th Thermophysics Conference, Snowmass, Colorado, June 25-28, 1984. AIAA-84-1720.
    [14] Ku J, Kroliczek E J, Taylor W J. Functional and performance tests of two capillary pumped loop engineering models. AIAA /ASME 4th Joint Thermophysics and Heat Transfer Conference, June2-4, 1986 /Boston, Massa-chusetts. AIAA-86-1248.
    [15] Ku J. Thermodynamic aspects of capillary pumped loop operation, 6th AIAA /ASME Joint Thermophysics and Heat Transfer Conference, Colorado, Spring CO., June20-23, 1994, AIAA-94-2059.
    [16] Ku J. Thermodynamics aspects of capillary pumped loop operation, AIAA Paper 94-2059, 1994.
    [17] Michiael E.McCabe,Ku Jentung and Steve Benner,Design and testing of a high power spacecraft thermal management system , 1988 , NASA Technical Memor-andum,4501.
    [18] Ku J, Swanson T D, Herold K. Flow Visualization within a Capillary Evaporator, 1993, SAE Paper 932236.
    [19] Butler, D., and Nienberg. Flight testing of the capillary pumped loop flight experiment, 1995, SAE Paper 951566.
    [20] Ku J. Start-up behaviors in the CAPL2 flight experiment, 1997, SAE Paper 972328.
    [21] Ottenstein L, Butler D. Flight testing of the two-phase flow flight experiment, 1998, SAE Paper 981816.
    [22] Ottenstein L, Butler D, Ku J, et al. Flight testing of the capillary pumped loop 3 experiment. Space Technology and Applications International Forum-STAIF, 2003:55-65.
    [23] Riehl R R, Camargo H V, Heinen L, et al. Experiment investigation of a capillary pumped loop towards its integration on a scientific microsatellete, 2002 ASME International Mechanical Engineering Congress & Exposition, New Orleans, Louisiana, 2002 November:17–22.
    [24]邓芳芳,平板式CPL的数值模拟与系统仿真,华中科技大学硕士学位论文,2005.
    [25]王强,平板式CPL系统仿真研究,华中科技大学硕士学位论文,2004.
    [26]钱吉裕,毛细泵回路流动与换热机理研究,南京理工大学博士论文, 2005.
    [27] Wulz H, Embacher E. Capillary pumped loops for space applications: experimental and theoretical studies on the performance of capillary evaporator designs. AIAA/ASME, 5th Joint thermophysical and heat transfer conference, Seattle, WA, AIAA, 90-1739.
    [28] Vincent Platel, Claude Butto. Detailed modeling of evaporator of a capillary pumped loop, Revue Generale de thermique.1996,35:434-449.
    [29] Juric D and Tryggvason G.. Direct numerical simulation of flow with phase change, 34th Aerospace Science Meeting&Exhibit, January 15-18, 1996/Reno, NV, AIAA-96-0857.
    [30] Tim J., LaClair, Issam Mudawar, Thermal transients in a capillary evaporator prior to the initiation of boiling, Int. J. Heat and Mass Transfer, 2000, 43(21), 3937-3952.
    [31] Figus C, Le Bray Y, Prat M, et al. Heat and mass transfer with phase change in a porous structure partially heated: continuum model and pore network simulation. Int. J. Heat Mass Transfer, 1999, 42(11):2557-2569.
    [32] Cao Y, Faghri A. Analytical solutions of flow and heat transfer in a porous structure with partial heating and evaporation on the upper surface, Int. J. Heat and Mass Transfer, 1994, 37(10):1525-1553.
    [33] Demidov A S, Yatsenko E S. Investigation of heat and mass transfer in the evaporation zone of a heat pipe operating by the‘inverted meniscus’principle, Int. J. Heat Mass Transfer, 1994, 37(14):2155-2163.
    [34] Yan Y H., Ochterbeck J M., Numerical Investigation of the Steady-State Operation of a Cylindrical Capillary Pumped Loop Evaporator, Journal of Electronic Packaging, 2003, 125(2):251-260.
    [35] Ku J. An experimental study of pressure oscillation and hydrodynamic stability in a capillary pumped loop,National Heat Transfer Conference,Portland,OR,USA,ASME HTD307,25,1995.
    [36] Ku Jentung. Operational characteristics of Loop Heat Pipes, 29th International Conference on Environmental System, July 12-15, 1999, Denver, Colorado.
    [37] Muraoka I, Ramos F M and lassov V V. Experimental and theoretical investgation ofCapillary Pumped Loop with a porous element in the Condenser,Int.Comm.Heat Mass Transfer,1998, 25(8):1085-1094.
    [38] Muraoka I, Ramos F M and lassov V V. Analysis of the operational characteristic and limit of a loop heat pipe with porous element in condenser,International Journal of Heat and Mass Transfer, 2001, 44:2287-2297.
    [39] Pouzet E, Joly J L, Platel V, et al. Dynamic response of a capillary pumped loop subjected to various heat load transients. International Journal of Heat and Mass Transfer, 2004, 47(10):2293–2316.
    [40] Hou Zengqi, et al. Test Study on Unsteady Operation of Capillary Pumped Loop, Proc. of 10th International Heat Pipe Conference, Stuttgart, 1997.
    [41]张加迅,侯增祺.反向式蒸发器芯层内蒸汽阻力的分析计算,中国空间科学技术, 1999, 2:8-14.
    [42]张加讯,侯增祺,曲伟.毛细抽吸两相环隔离器与蒸发器的热分析,第五届全国热管会议论文集,无锡,1996.
    [43]曲伟,张加迅,刘纪福.用一维恒温相变界面模型研究毛细芯蒸发器温度场,中国空间科学技术, 1996, 3:1-10.
    [44]张加迅,侯增祺.反向式毛细芯运行机理的分析,中国空间科学技术, 2000, 6:43-49.
    [45]张加迅,侯增祺等. CPL技术在空间飞行器上的应用,工程热物理学报,2001,22(3):340-343.
    [46]张加迅,侯增祺. CPL储液器的温度调控方案,导弹与航天运载技术,2002,43:60-62.
    [47]刘庆志,苗建印,张加迅.多回路耦合CPL系统瞬态特性的实验研究,宇航学报, 2005, 26(2):126-130.
    [48]刘庆志,苗建印,张加迅.多回路耦合CPL系统的几种失效情况分析,中国空间科学技术, 2005, 4:19-24.
    [49]曲伟,侯增祺,张加迅,零重力条件下管内稳态流动凝结换热特性的研究,航天工业总公司第五研究院五零一设计部《毛细抽吸两相流体回路研究》课题组,毛细抽吸两相流体回路研究报告,1996.7
    [50]曲伟,伊勇,侯增祺,毛细抽吸两相流体回路(CPL)的控温特性和极限特性研究,节能技术,1998, 2:9–13.
    [51]曲伟,刘纪福等,毛细抽吸两相回路的启动特性研究,哈尔滨工业大学学报, 31(4):74–79, 1999.
    [52]王金亮,马同泽,张正芳.毛细泵环中两相循环回路的初步分析研究,空间科学学报, 1995, 15(4):280-287.
    [53]邓强,马同泽,张正芳,王金亮,两相毛细泵环蒸发器性能的实验研究.工程热物理学报, 1998, 19(3): 330-334.
    [54]王金亮,马同泽,张正芳.两相毛细泵环中蒸发器的工作特性的实验研究,中国空间科学技术, 1996, 5: 58-63.
    [55]王金亮,马同泽,张正芳,侯增祺.两相毛细泵环中工质循环脉动现象的实验研究,中国空间科学技术, 1997, 6: 7-14.
    [56]张学学,刘静,张超,CPL蒸发器传热和蒸发流动过程的分布参数模型,中国空间科学技术,1997,4: 19-27.
    [57]王维城,俞平等,毛细抽吸两相环系统稳定性的实验研究,清华大学学报,1999, 39(6):86-89.
    [58]王维城,吴晓敏,俞平,毛细抽吸两相环内温度压力稳定性分析,清华大学学报, 2001,41(10): 97-100.
    [59] QU Yi, PENG Xiaofeng, LIU Tao. Flow and heat transfer characteristics in the porous wick condenser of CPL, Science in China, Ser.E, 2001, 44(5):499-506.
    [60]曲艺,李智敏,颜岩,彭晓峰,刘涛,多孔芯冷凝器内流动与换热特性,工程热物理学报,2001, 22(3): 351-353.
    [61]牟其峥,屠传经.毛细抽吸回路中反向式蒸发器管内气液两相流动的理论分析,工程热物理学报, 1998, 19(4): 488-493.
    [62] Han yan-min,Liu wei,Huang xiao-ming, The numerical simulation for the unsteady heat and mass transfer process in capillary pumped loops evaporator, Journal of astronautics
    [63] Huang X M, Liu W. Modeling for heat and mass transfer with phase change in porous wick of CPL evaporator, Heat and mass transfer, 2005, 31:667-673.
    [64] Liu Z C, Liu W and Nakayama A. Flow and heat transfer analysis in porous wick of CPL evaporator based on field synergy principle, Heat and mass transfer, 2007,43(12):1273-1281.
    [65] Liu W, Huang X M. A new mathematical model for operation of porous wick in the CPL evaporator, Proc. Of the 21th international conference of refrigeration, Washington DC, USA, 2003.
    [66] Huang xiaoming and W.Liu. Numerical study of the phase change heat transfer in a capillary structure of CPL evaporator, Shanghai, China, the 13th Int. Heat Pipe Conference, 2004.
    [67] Z. C. Liu and W. Liu. Design and experiment research of a plat type CPL with wicked condenser, Proc. Of the 5th Int. Symposium on multiphase flow, heat mass transfer and energy conservation, Xi’an, China,2005.
    [68] Liu Z C, Liu W. Systematic analysis and engineering design of a new type CPL, Advanced in systems science and applications, 2005, 5(1):147-153.
    [69] Liu Z C, Liu W. The numerical simulation of the flow and heat transfer for the porous wick in CPL evaporator, proceeding of the 3rd international symposium on heat transfer enhancement and conservation, Guangzhou, China,2004.
    [70]李强,杨贤飞,宣益民. CCPL启动特性的理论分析,自然科学进展, 2005, 15(7): 856-862.
    [71]李强,宣益民,陈小波.小型CPL用高性能烧结毛细芯的研制,粉末冶金技术, 2005, 23(5):330-333.
    [72]李强,陈小波,钱吉裕.小型CPL启动与运行特性的实验研究,自然科学进展, 2006, 16(9): 1186-1190.
    [73] Kaya, T., Ku, J. Mathematical Modeling of Loop Heat Pipes, SAE Paper 990477, 1999, 1-10.
    [74] Maidanik Y F, Vershinin S, Kholodov V. Heat Transfer Apparatus, U.S. Patent 4515209, May 1985.
    [75] Maidanik, Y. F. Loop heat pipe, Applied thermal engineering, 2005, 25:635-657.
    [76] Kaya T., Ku J. Ground testing of loop heat pipes of spacecraft thermal control, AIAA 33th Thermophysics conference, Norfolk, VA,1-8, AIAA993447,1999.
    [77] Goncharov K, Kolesnikov V. Development of propylene LHP for spacecraft thermal control systems, in: Proc. of 12th Int. Heat Pipe Conference, Moscow, Russia, 19– 24 May 2002, pp. 171–176.
    [78] Randeep Singh, Aliakbar Akbarzadeh, Chris Dixon, et al. Miniature Loop Heat Pipe With Flat Evaporator for Cooling Computer CPU, IEEE Transaction on Components and Packaging Technologies, 2007, 30(1), 42-49.
    [79] Boo J H and Chung W B. Thermal performance of a loop heat pipe having propylene wick in a flat evaporator, in Proc. HT’05 Conf., San Francisco, CA, Jul. 2005.
    [80] Pastukhov V G., Maydanik Y F. and Vershinin S V. Miniature loop heat pipes for electronic cooling, Appl. Therm. Eng., vol. 23, pp.1125–1135, 2003.
    [81] Stéphane Launay, Valérie Sartre, Jocelyn Bonjour, Parametric analysis of loop heat pipe operation: a literature review,International Journal of Thermal Sciences, 2007, 46 : 621–636.
    [82] Kaya T, Hoang T T. Mathematical modelling of loop heat pipes and experimental validation, Journal of Thermophysics and Heat Transfer, 1999,13 (3):314–320.
    [83] Chuang P Y. An improved steady-state model of loop heat pipes based on experimental and theoretical analyses, PhD thesis, The Pennsylvania State University, 2003.
    [84] Hamdan M O, Loop heat pipe (LHP) modelling and development by utilizing coherent porous silicon (CPS) wicks, PhD thesis, University of Cincinnati, 2003.
    [85] Kaya T, Goldak J. Numerical analysis of heat and mass transfer in the capillary structure of a loop heat pipe, Int. J. Heat Mass Transfer, 2006,49:3211–3220.
    [86] Ku J. Operating characteristics of loop heat pipes, International Conference On Environmental Systems, Denver, July 1999 (SAE paper 1999-01-2007).
    [87] Ku J, Ottenstein Rogers P, Cheung K. Investigation of low power operation in a loop heat pipe, in: 31st International Conference On Environmental Systems, Orlando, July 2001 (SAE paper 2001-01-2192).
    [88] Lee W H, Park K H, Lee K J. Study on working characteristics of loop heat pipeusing a sintered metal wick, in: 13th IHPC, Shanghai, China, 21–25 September 2004, pp. 265–269.
    [89] Boo J H, Chung W B. Thermal performance of a small-scale loop heat pipe with PP wick, in: 13th IHPC, Shanghai, China, 21–25 September 2004, pp. 259–264.
    [90] Cheung K H., Hoang T, Ku J. Thermal performance and operational characteristics of loop heat pipe (NRL LHP), in: International Conference On Environmental Systems, Danvers, July 1998 (SAE paper 981813).
    [91] Hamdan M, Gerner F M, Henderson H T. Steady-state model of a loop heat pipe with coherent porous silicon (CPS) wick in the evaporator, in: 19th Annual IEEE SEMI-THERM, San Jose, California, 11–13 March 2003, 9.
    [92] Kaya T, Ku J. A parametric study of performance characteristics of loop heat pipes, in: International Conference On Environmental Systems, Denver, July 1999 (SAE paper 1999-01-2006).
    [93] Delil A M, Baturkin V, Friedrikhson Yu., et.al. Experimental results on heat transfer phenomena in miniature loop heat pipe with a flat evaporator, in: 12th IHPC, Moscow, 19–24 May 2002.
    [94] Riehl R R. Evaluating the behaviour of loop heat pipe with different compensation chamber configurations, in: 13th IHPC, Shanghai, China, 21–25, September 2004, pp. 107–112.
    [95] Riehl R R, Siqueira T A. Heat transport capability and compensation chamber influence in loop heat pipes performance, Applied Thermal Engineering, 2006, 26 (11): 1158–1168.
    [96] Goncarov K, Golovin, and kolesikov. Loop heat pipe with several evaporator. 30th ICES, Toulous, France, 2000.
    [97] James Yun, Dave Wolf, et al. Multiple evaporator Loop heat pipe, 30th ICES, Toulous, France, 2000.
    [98] Chandratilleke, R. Development of cryogenic loop heat pipes, Cryogenics, 1998, 38:263-269.
    [99]苗建印,曹剑锋,侯增祺. LHP在模拟空间环境下的性能试验研究,工程热物理学报, 2003,24(1):88-90.
    [100]向艳超,姚伟,李劲东.环路热管蒸发器毛细芯传热流动特性的一维分析,中国空间科学技术, 2005, 4(2): 16-22.
    [101]向艳超,李劲东,张加迅.并联蒸发器环路热管实验研究,中国空间科学技术, 2006, 6(3): 27-32.
    [102]曹剑峰,范含林.热电致冷器和毛细泵驱动的小型热公用回路,中国空间科学技术, 2007, 6(3):24-28.
    [103]张红星,林贵平,曹剑峰.回路热管性能的地面实验研究,宇航学报, 2003,24(5): 468-472.
    [104]张红星,林贵平,丁汀等.环路热管温度波动现象的实验分析,北京航空航天大学学报, 2005, 31(2): 116-120.
    [105] Zhang Hongxing, Lin Guiping, Ding Ting. Experimental study on start-up characteristics of loop heat pipes, Science in China, Ser.E, 2005, 48(2): 131-144.
    [106]柏立战,林贵平,张红星.环路热管稳态建模及运行特性分析,北京航空航天大学学报, 2006, 32(8):894-898.
    [107]任川,吴清松.带环向槽环路热管主芯中流动和传热的数学模型和数值模拟,宇航学报, 2007, 28(3): 740-746.
    [108] Chuan Ren, Qing-Song Wu and Mao-Bin Hu. Heat transfer with flow and evaporation in loop heat pipe’s wick at low or moderate heat fluxes, International Journal of Heat and Mass Transfer, 2007, 50(12): 2296-2308.
    [109]任川,吴清松.孔隙率和渗透率对LHP主芯性能影响研究,工程热物理学报, 2007, 28(4):634-636.
    [110]莫青,蔡京辉,梁惊涛等.液氮温区低温回路热管的实验研究—第一部分:结构设计和实验系统,真空与低温, 2005,11(1):19-21.
    [111]莫青,蔡京辉,梁惊涛等.槽道热管在加快低温回路热管主蒸发器降温过程中作用的实验研究,低温工程, 2005,4:14-17.
    [112] Jianlin Yu, Hua Chen, Hua Zhao. An experimental investigation on capillary pumped loop with the meshes wick, International Journal of Heat and Mass Transfer, 2007,50(21):4503-4507.
    [113] Lin Hung-Wen and Lin Wei-Keng. An axial heat transfer analytical model for capillary-pumped loop vapor line temperature distributions, 2007, 27(11):2086-2094.
    [114] Chernysheva M A, Vershinin S V and Maydanik Yu F. Operating temperature and distribution of a working fluid in LHP, International Journal of Heat and Mass Transfer, 2007, 50(13):2704-2713.
    [115] Zhang Jiaxun, Hou Zengqi, Sun Chenghui. Theoretical analysis of the pressure oscillation phenomena in capillary pumped loop, Journal of Thermal Science, 1998, 7(2):89-96.
    [116] Pastukhov V G. and Maydanik Y F. Low-noise cooling system for PC on the base of loop heat pipes, Applied Thermal Engineering, 2007, 27(5):894-901.
    [117] Launay S, Sartre V and Bonjour J. Parametric analysis of loop heat pipe operation: a literature review. International Journal of Thermal Sciences, 2007, 46(7):621-636.
    [118] Ku J, Kroliczek E J, McCaabe M E. A High Power Spacecraft Thermal Management System, AIAA Thermo physics, Plasma dynamics and Lasers Conference, San Antonio, Texas, AIAA-88-2702, June, 1998:27-29.
    [119] Muraoka. I, Ramos F M, Vlassov V V. Analysis of the operational characteristics and limits of a loop heat pipe with porous element in the condense [J]. International Journal of Heat and Mass Transfer, 2001, 44(12): 2287-2297.
    [120] Muraoka. I, Ramos F M. Experimental and theoretical investigation of capillary pumped loop with a porous element in the condenser, Int. Comm., Heat and Mass Transfer, 25(8), 1998:1085-1094.
    [121] Ku J. Start-up issues of capillary pumped loops, Proceedings of the 9th International Heat Pipe Conference, Albuquerque, NM, 1995, 994-1001.
    [122] Bazzo E, Riehl R R. Operation characteristics of a small-scale capillary pumped loop, Applied Thermal Engineering, 2003, 23(6):687-705.
    [123] WAN Zhongmin, LIU Wei. Heat Transfer with Flow and Phase Change in an Evaporator of Miniature Flat Plate Capillary Pumped Loop, Journal of Thermal Science, 2007, 16(3):254-263.
    [124] Muraoka I, Ramos F M, Vlassov V V. Experimental and theoretical investigation of a capillary pumped loop with a porous element in the condenser, Int. Comm. Heat and Mass Transfer, 1998, 25(8):1085-1094.
    [125] Ku Jentung. Operational Characteristics of Loop Heat Pipes, 29th International Conference on Environmental System. July 12-15, 1999, Denver, Colorado.
    [126] Fredley J and Pelszynske A. Accommodation of the EOS AM Instrument Set Using Capillary Pumped Heat Transport Technology, 1992, SAE Paper No. 921404.
    [127] Kiper A M, Swanson T D and McIntosh R. Exploratory study of temperature oscillation related to transient operation of a Capillary Pumped Loop heat pipe, 1989, AIAA-89-53266.
    [128] Han yan-min, Liu Wei,Huang xiao-ming. The numerical simulation for the unsteady heat and mass transfer process in capillary pumped loops evaporator. Journal of astronautics, 2003, 24(4): 397-403.
    [129] Mo Qing and Liang Jingtao. Operational performance of a cryogenic loop heat pipe with insufficient working fluid inventory, International Journal of Refrigeration, 2006, 29(4):519-527.
    [130] Devdatta P. Kulkarni and Debendra K. Das. Analytical and numerical studies on microscale heat sinks for electronic applications, Applied Thermal Engineering, 2005, 25(14):2432-2449.
    [131] Kiper A, Feric G, Amjun M. Transient analysis of a capillary pumped loop heat pipe. AIAA/ASME 5th Joint Thermophysics an Heat Transfer Conference. Seattle,WA. AIAA 90-1685.
    [132] Triem Hoang et al, Development of Two Phase Capillary Pumped Loop (CPL) Heat Transport for Spacecraft Center Thermal Bus, Space Technology and Application International Forum STAIF-2003, Edited by M.S. EI-Genk.
    [133]陶文铨编著,数值传热学(第2版)[M],西安:西安交通大学出版社, 2003.
    [134] Marco Lorenzini, Giampietro Fabbri, Sandro Salvigni. Performance evaluation of a wavy-fin heat sink for power electronics, Applied Thermal Engineering, 27(5):969-975.
    [135] Ravi Kandasamy, Wang Xiang-Qi and Arun S. Mujumdar. Application of phase change materials in thermal management of electronics, Applied Thermal Engineering, 2007, 27(17):2822-2832.
    [136] Wang Xiang-Qi, Arun S. Mujumdar and Christopher Yap. Effect of orientation forphase change material (PCM)-based heat sinks for transient thermal management of electric components, International Communications in Heat and Mass Transfer, 2007, 34(7):801-808.
    [137] Patankar, S. Numerical heat transfer and fluid flow, New York: Mcgraw-Hill, 1980
    [138] Zhao, T S, Liao Q. On capillary-driven flow and phase-change heat transfer in a porous structure heated by a finned surface: measurements and modeling. Int. J. Heat and Mass Transfer, 2000, 43(4), 1141-1155.
    [139] Zhao T S, Cheng P, Wang C Y. Buoyancy-induced flows and phase-change heat transfer in a vertical capillary structure with symmetric heating, Chemical Engineering Science, 2000, 55(14), 2653~2661.
    [140] Masao, Furukawa, Static/dynamic analysis for pumped two-phase fluid loop control, AIAA paper NO.95-2068, 1995.
    [141] Masao, Furukawa, An integrated computational method for pumped two-phase fluid loop system/subsystem design, AIAA paper No.95-2068,1995.
    [142] Masao, Furukawa. Methods and analysis for capillary pumped loop pressure temperature control, AIAA paper, No.96-1831, 1996.
    [143]马福军,赵国军,杨洋. MATLAB软件在控制系统的仿真与分析中的应用, 2003, 20(3):80-82.
    [144]刘伟,刘志春等. CPL系统的工程设计与理论分析,卫星热控制技术研讨会论文集,总装备部卫星技术专业组,2003.
    [145]邓芳芳,平板式CPL的数值模拟与系统仿真,华中科技大学硕士学位论文,2005年4月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700