小型平板毛细相变流体回路的运行机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热毛细泵相变回路包括毛细泵抽吸两相环路(CPL)以及环路热管(LHP),由于采用工质相变传输热量,具有传热能力强,热阻低、等温性好、效率高、无运动部件以及传输距离长等优点,从而使其成为了航天器热控以及电子器件高热流密度散热的有效方式。
     快速、简单、可靠的启动性能是一个先进的CPL/LHP系统所具备的基本特性,但是国内外的研究表明,CPL/LHP系统在启动过程中存在启动困难的问题,特别是在CPL/LHP小型化以后,侧壁导热对CPL/LHP的启动性能有明显的影响。本文通过搭建小型平板式LHP的实验平台,并在不同的热流密度下进行LHP的启动性能研究。实验结果表明,在常规条件下热流密度为1W/cm~2时系统不能正常启动,而在蒸发器底部加上冰水混合物后,LHP系统能顺利启动。分析指出,侧壁导热和背向导热对平板式CPL/LHP的启动有较大的影响,因此,必须对平板式CPL/LHP的蒸发器进行优化设计。本文建立了蒸发器毛细多孔芯、金属壁面、蒸汽槽道以及液体槽道内传热传质的整场数学模型,并运用SIMPLE程序对小型平板蒸发器进行了整场耦合求解。数值结果表明,由于CPL系统的特殊平板结构所产生的侧壁导热效应使得热流从金属侧壁及下壁反向加热液体补偿腔以及多孔芯内的液体,导致气泡的产生,从而影响系统的正常启动和工作性能,因此,侧壁导热效应在平板型蒸发器的优化设计中必要予以重视。减小液体补偿腔的高度,减小侧壁以及下壁的厚度以及增加毛细芯的高度可以提高CPL的传热能力。
     在实际的应用过程中,CPL/LHP有较大的温度波动,而目前国内外学者对CPL/LHP温度波动的研究仅仅集中在实验分析上面,理论的研究很少见到报道。本文首先从毛细相变界面的质量、动量和能量守恒方程,提出了相变界面的稳定性判据,然后建立了毛细液柱的Lucas-Washburn方程,第一次指出了毛细芯高度对系统稳定性的影响。研究表明,在高热流密度的情况下,毛细芯高度对系统的提升力的影响不能再忽略,系统工质的选择标准应该综合考虑相变潜热、毛细张力系数以及液体密度的影响。系统温度波动的源头是汽液冷凝界面,而蒸汽压力的波动导致冷凝器内液柱的共振,是系统有较大温度波动的根本原因。由于液体的不可压缩性,越靠近冷凝界面,液体的温度波动幅度越大,蒸发器的温度波动较小是因为其有较大的固有频率,同时由于毛细芯的孔径尺寸远小于压力波动的波长,使得压力波的被反射回去的结果。因此,系统应在一定的工作热流范围内运行,使蒸汽波动的频率远离冷凝器液柱的固有频率,以免导致共振。
     针对CPL系统在运行中可能存在供液不足的问题,本文在系统中加入微泵引射辅助回路,将微泵和引射器应用于CPL系统,微泵引射回路与储液器共同起作用,在运行条件恶劣时做出响应,辅助主回路循环,以提高系统的控温能力及运行稳定性。数值计算显示,在引射流体时,引射器内会出现气蚀现象,导致气泡进入蒸发器,可能会引起系统的正常运行,甚至烧干,因此,在引进新的引射回路的同时必须在引射器出口和蒸发器入口段之间加入过冷器,使得引射器出口中的气相冷凝成液体进入蒸发器,保证蒸发器的正常工作。
     在CPL/LHP的一些实际应用中发现,系统压降大于毛细芯提供的毛细压头,,针对这种传统驱动方式不能解释的现象,刘伟等提出了毛细芯热管的驱动模型,并将其推广到毛细泵流体回路(CPL)和环路热管(LHP)系统。文中以甲醇作为工质的算例表明,小型CPL回路蒸汽的流动阻力大于液体的流动阻力,尤其在高热流密度下,蒸汽侧的流动阻力占主导地位,需要较大的相变驱动压头来驱使蒸汽流动。文中还建立了工质流动阻力与界面热力学参数之间的关系式,据此,可计算回路蒸发端和冷凝端的工质温度、压力以及其它热力学参数,对系统的传热和流动性能作出评价,也可通过计算回路的流动阻力,获得冷凝端的流体温度、压力,并评估系统的热阻和均温性,从而进行CPL和LHP的优化设计。
The capillary pumped loop (CPL) and the loop heat pipe (LHP) are the two-phase thermal control devices with the latent heat of evaporation of a working fluid to transfer heat and the capillary action for fluid transport, which are capable of transport large heat density and passively transporting heat over large distances with minimal temperature losses, and contain no moving parts. As a result, CPL/LHP becomes more active and interesting in many engineering domains including thermal management of satellites and spacecrafts as well as cooling of electronic devices.
     A prompt, simple and reliable startup performance is the basic characteristics of advanced CPL/LHP system. Whereas, a number of difficult startup problems of CPL/LHP were found in present literatures due to various reasons. An overall two-dimensional numerical model was developed to address the heat and mass transfer characteristics in the evaporator of mLHP, the numerical results showed that 'side wall thermal conductivity' had a significant effect on the heat and mass transfer in the evaporator of a mLHP. The start-up characteristics of a flat miniature loop heat pipe (LHP) with different heat loads were experimentally investigated in this paper and the experimental results showed that the mLHP couldn't start up successfully under normal condition except that a bag of ice-water was located on the bottom of the evaporator with a heat flux of 1W/cm~2. Reasons for the difficulties in its start-up were analyzed and 'side wall effect' was deduced , hence, a numerical study was addressed to investigate the optimization design of mLHP in the geometrical structure. The numerical results showed that the performance of the flat miniature LHP could be enhanced by improving the geometrical structure in a limited working space. Effects of thickness of the side wall, height of the compensation chamber and the wick on system performance were discussed in detail.
     Pulsations of the operating temperature, which take place in stable conditions of heat supply and removal, are a characteristic process inherent in some types of closed heat-transfer devices operating on the evaporation-condensation cycle, but the theoretical reports are seldom seen, hence, a mathematical model based on the Lucas -Washburn equation has developed to address the relations of the capillary height, capillary radius and the heat flux in a capillary column in un- gravity, and the formulas deduced as a consequent is used to analyze the influence of the height of the capillary wick in the capillary force and stability in a capillary loop with phase change. According to the theoretical analysis, the height of the wick will lower the capillary force in the loop, and the stability of the loop by introduced a small disturbance into the height of the capillary wick is studied in detail. The result shows that the steady state of the capillary loop with phase change is over-damped in non-gravitational condition. The root of the temperature pulsation is in the condenser, the closer to the condenser, the larger of the amplitude it is, and resonance will occur in the condenser when the frequency of the pressure pulsation is equal to the inherent frequency of the liquid column in the liquid line , therefore, a appropriate heat flux is required to keep the frequency of the liquid column far away from the pressure pulsation frequency in the vapor line.
     An accessorial loop with a micro-pump and ejector is applied into the Capillary Pumped Loop(CPL) to enhance the heat transfer capability of CPL. A 3-D model is developed to investigate the operation performance of the ejector. The numerical results show that the primary loop will not only can operate normally but the mass flux can be enhanced with a accessorial loop. However, vapor can be found in the outlet of the ejector and it can flow into the evaporator, which is a big disadvantage for system, hence, a sub-cooler is necessary to locate between the outlet of the ejector and the inlet of the evaporator to condense the mixed fluid into liquid.
     A phase change driving mechanism in Capillary Pumped Loop (CPL) and Loop Heat Pipe (LHP) is pointed out in this paper . A mathematical model has been developed to describe this driving mechanism. The calculating examples presented in the paper with methanol as working fluid shows that flow resistance in vapor side is larger than that in liquid side. Especially in the case of high heat flux, flow resistance in vapor side is dominative part of the whole system pressure drop, so that a remarkable phase change pressure head is needed to drive vapor flow. The formulas reflecting relations between thermodynamics parameters and flow resistance have been developed to quantitatively evaluate characteristics of heat transfer and flow in the system by calculating working fluids' temperature, pressure and other parameters in the evaporating and condensing interfaces, and to predict thermal resistance and temperature uniformity of the system, thereby guiding the design of CPL and LHP. The model established can be extended to all heat pipes with capillary wick or micro-groovy channels.
引文
[1]马同泽,侯增祺,吴文铣著,热管,北京:科学出版社,1983.
    [2] Chen P C,Lin W K,The application of capillary pumped loop for cooling of electronic components.Applied Thermal Engineering,2001,21(11):1739-1754.
    [3] Butler,Loop Heat Pipes and Capillary Pumped Loops-an Applications Perspective,Space Technology and Applications International Forum,2002.
    [4] Muraoka I,Ramos F M,Vlassov V V,Experimental and theoretical investigation of a capillary pumped loop with a porous element in the condenser,Int.Comm.Heat and Mass Transfer,1998,25(8):1085-1094.
    [5] Ku J,Operational Characteristics of Loop Heat Pipes,29~(th)International Conference on Environmental System.July 12-15,1999,Denver,Colorado.
    [6] Fredley J,Pelszynske A,Accommodation of the EOS AM Instrument Set Using Capillary Pumped Heat Transport Technology,1992,SAE Paper No.921404.
    [7] Maydanik Y.F,Vershinin S,Kholodov V,Heat Transfer Apparatus,U.S.Patent 4515209,May 1985.
    [8] Ku J,Thermodynamic aspects of capillary pumped loop operation,6~(th)AIAA /ASME Joint Thermophysics and Heat Transfer Conference,Colorado,Spring CO.,June20-23,1994,AIAA-94-2059.
    [9] Ku J,Thermodynamics aspects of capillary pumped loop operation,AIAA Paper 94-2059,1994.
    [10]Michiael E.M,Ku J,Steve B,Design and testing of a high power spacecraft thermal management system,1988,NASA Technical Memor-andum,4501.
    [11]Ku J,Swanson T D,Herold K,Flow Visualization within a Capillary Evaporator,1993,SAE Paper 932236.
    [12]Butler D,Nienberg,Flight testing of the capillary pumped loop flight experiment,1995,SAE Paper 951566.
    [13]Ku J,Start-up behaviors in the CAPL2 flight experiment,1997,SAE Paper 972328.
    [14]Ottenstein L,Butler D,Ku J,et al,Flight testing of the capillary pumped loop experiment.Space Technology and Applications International Forum-STAIF,2003:55-65.
    [15]Riehl R R,Camargo H V,Heinen L,et al,Experiment investigation of a capillary pumped loop towards its integration on a scientific microsatellete,2002 ASME International Mechanical Engineering Congress & Exposition,New Orleans,Louisiana,2002 November:17-22.
    [16]邓芳芳,平板式CPL的数值模拟与系统仿真,华中科技大学硕士学位论文,2005.
    [17]王强,平板式CPL系统仿真研究,华中科技大学硕士学位论文,2004.
    [18]钱吉裕,毛细泵回路流动与换热机理研究,南京理工大学博士论文,2005.
    [19]Vincent P,Claude B,Detailed modeling of evaporator of a capillary pumped loop,Revue Generale de thermique.1996,35:434-449.
    [20]Tim J L,Issam M,Thermal transients in a capillary evaporator prior to the initiation of boiling,Int.J.Heat and Mass Transfer,2000,43(21),3937-3952.
    [21]Figus C,Le B Y,Prat M,et al,Heat and mass transfer with phase change in a porous structure partially heated:continuum model and pore network simulation.Int.J.Heat Mass Transfer,1999,42(11):2557-2569.
    [22]Cao Y,Faghri A,Analytical solutions of flow and heat transfer in a porous structure with partial heating and evaporation on the upper surface,Int.J.Heat and Mass Transfer,1994,37(10):1525-1553.
    [23]Muraoka I,Ramos F M,lassov V V.Analysis of the operational characteristic and limit of a loop heat pipe with porous element in condenser,International Journal of Heat and Mass Transfer,2001,44:2287-2297.
    [24]Pouzet E,Joly J L,Platel V,et al,Dynamic response of a capillary pumped loop subjected to various heat load transients.International Journal of Heat and Mass Transfer,2004,47(10):2293-2316.
    [25]Hou Z.Q,et al,Test Study on Unsteady Operation of Capillary Pumped Loop,Proc.of 10th International Heat Pipe Conference,Stuttgart,1997.
    [26]张加迅,侯增祺,反向式蒸发器芯层内蒸汽阻力的分析计算,中国空间科学技术,1999,2:8-14.
    [27]张加讯,侯增祺,曲伟,毛细抽吸两相环隔离器与蒸发器的热分析,第五届全 国热管会议论文集,无锡,1996.
    [28]曲伟,张加迅,刘纪福,用一维恒温相变界面模型研究毛细芯蒸发器温度场,中国空间科学技术,1996,3:1-10.
    [29]张加迅,侯增祺,反向式毛细芯运行机理的分析,中国空间科学技术,2000,6:43-49.
    [30]张加迅,侯增祺等,CPL技术在空间飞行器上的应用,工程热物理学报,2001,22(3):340-343.
    [31]张加迅,侯增祺,CPL储液器的温度调控方案,导弹与航天运载技术,2002,43:60-62.
    [32]刘庆志,苗建印,张加迅,多回路耦合CPL系统瞬态特性的实验研究,宇航学报,2005,26(2):126-130.
    [33]刘庆志,苗建印,张加迅,多回路耦合CPL系统的几种失效情况分析,中国空间科学技术,2005,4:19-24.
    [34]曲伟,侯增祺,张加迅,零重力条件下管内稳态流动凝结换热特性的研究,航天工业总公司第五研究院五零一设计部《毛细抽吸两相流体回路研究》课题组,毛细抽吸两相流体回路研究报,1996.7
    [35]曲伟,伊勇,侯增祺,毛细抽吸两相流体回路(CPL)的控温特性和极限特性研究,节能技术,1998,2:9-13.
    [36]曲伟,刘纪福等,毛细抽吸两相回路的启动特性研究,哈尔滨工业大学学报,31(4):74-79,1999.
    [37]王金亮,马同泽,张正芳,毛细泵环中两相循环回路的初步分析研究,空间科学学报,1995,15(4):280-287.
    [38]邓强,马同泽,张正芳,王金亮,两相毛细泵环蒸发器性能的实验研究,工程热物理学报,1998,19(3):330-334.
    [39]王金亮,马同泽,张正芳,两相毛细泵环中蒸发器的工作特性的实验研究,中国空间科学技术,1996,5:58-63.
    [40]王金亮,马同泽,张正芳,侯增祺,两相毛细泵环中工质循环脉动现象的实验 研究,中国空间科学技术,1997,6:7-14.
    [41]张学学,刘静,张超,CPL蒸发器传热和蒸发流动过程的分布参数模型,中国空间科学技术,1997,4:19-27.
    [42]王维城,俞平等,毛细抽吸两相环系统稳定性的实验研究,清华大学学报,1999,39(6):86-89.
    [43]王维城,吴晓敏,俞平,毛细抽吸两相环内温度压力稳定性分析,清华大学学报,2001,41(10):97-100.
    [44]Qu Y,PENG X F,Liu T,Flow and heat transfer characteristics in the porous wick condenser of CPL,Science in China,Ser.E,2001,44(5):499-506.
    [45]曲艺,李智敏,颜岩,彭晓峰,刘涛,多孔芯冷凝器内流动与换热特性,工程热物理学报,2001,22(3):351-353.
    [46]牟其峥,屠传经.毛细抽吸回路中反向式蒸发器管内气液两相流动的理论分析,工程热物理学报,1998,19(4):488-493.
    [47]Han Y M,Liu W,Huang X M,The numerical simulation for the unsteady heat and mass transfer process in capillary pumped loops evaporator,Journal of Astronautics,2003,24(4):397-403.
    [48]Huang X M,Liu W,Modeling for heat and mass transfer with phase change in porous wick of CPL evaporator,Heat and mass transfer,2005,31:667-673.
    [49]Liu Z C,Liu W and Nakayama A,Flow and heat transfer analysis in porous wick of CPL evaporator based on field synergy principle,Heat and mass transfer,2007,43(12):1273-1281.
    [50]Liu W,Huang X M,A new mathematical model for operation of porous wick in the CPL evaporator,Proc.Of the 21th international conference of refrigeration,Washington DC,USA,2003.
    [51]Huang X M,Liu M,Numerical study of the phase change heat transfer in a capillary structure of CPL evaporator,Shanghai,China,the 13~(th)Int.Heat Pipe Conference,2004.
    [52]Liu Z C,Liu W,Design and experiment research of a plat type CPL with wicked condenser,Proc.Of the 5th Int.Symposium on multiphase flow,heat mass transfer and energy conservation,Xi'an,China,2005.
    [53]Liu Z C,Liu W,Systematic analysis and engineering design of a new type CPL,Advanced in systems science and applications,2005,5(1):147-153.
    [54]Liu Z C,Liu W,The numerical simulation of the flow and heat transfer for the
    porous wick in CPL evaporator,proceeding of the 3~(rd)international symposium on heat transfer enhancement and conservation,Guangzhou,China,2004.
    [55]李强,杨贤飞,宣益民,CCPL启动特性的理论分析,自然科学进展,2005,15(7):856-862.
    [56]李强,宣益民,陈小波,小型CPL用高性能烧结毛细芯的研制,粉末冶金技术,2005,23(5):330-333.
    [57]李强,陈小波,钱吉裕,小型CPL启动与运行特性的实验研究,自然科学进展,2006,16(9):1186-1190.
    [58]Kaya T,Ku J,Mathematical Modeling of Loop Heat Pipes,SAE Paper 990477,1999,1-10.
    [59]Maidanik Y F,Loop heat pipe,Applied thermal engineering,2005,25:635-657.
    [60]Maidanik Y F,Loop heat pipes design,investigation,prospects of use in aerospace techniques,SAE Paper 941185,1994.
    [61]Dickey J T,Peterson G P,Experimental and analytical investigationof a Capillary Pumped Loop,AIAA J.Thermophysics and heat transfer,1994,8,602-607.
    [62]Kaya T,Ku J,Ground testing of loop heat pipes of spacecraft thermal control,AIAA 33~(th)Thermophysics conference,Norfolk,VA,1-8,AIAA993447,1999.
    [63]Chang,C S,Huang B J,Maydanik Y F,Feasibility of a mini LHP for CPU cooling of a Notebook PC,Proc.of 12th Int.Heat Pipe Conference,Russia:Moscow,2002,390-393
    [64]Pastukhov V G.,Maydanik Y F,Vershinin C V,Korukov M A,Miniature loop heat pipes for electronic cooling,Appl.Therm.Eng.2003(23):1125-1135.
    [65]Kaya T,Hoang T T,Mathematical modelling of loop heat pipes and experimental validation,Journal of Thermophysics and Heat Transfer,1999,13(3):314-320.
    [66]Chuang P Y,An improved steady-state model of loop heat pipes based on experimental and theoretical analyses,PhD thesis,The Pennsylvania State University,2003.
    [67]Hamdan M O,Loop heat pipe(LHP)modelling and development by utilizing coherent porous silicon(CPS)wicks,PhD thesis,University of Cincinnati,2003.
    [68]Kaya T,Goldak J,Numerical analysis of heat and mass transfer in the capillary structure of a loop heat pipe,Int.J.Heat Mass Transfer,2006,49:3211-3220.
    [69]Ku J,Operating characteristics of loop heat pipes,International Conference On Environmental Systems,Denver,July 1999(SAE paper 1999-01-2007).
    [70]Ku J,Ottenstein Rogers P,Cheung K.Investigation of low power operation in a loop heat pipe,in:31st International Conference On Environmental Systems,Orlando,July 2001(SAE paper 2001-01-2192).
    [71]Lee W H,Park K H,Lee K J,Study on working characteristics of loop heat pipe using a sintered metal wick,in:13th IHPC,Shanghai,China,21-25 September 2004,pp.265-269.
    [72]Boo J H,Chung W B,Thermal performance of a small-scale loop heat pipe with PP wick,in:13th IHPC,Shanghai,China,21-25 September 2004,pp.259-264.
    [73]Cheung K H.,Hoang T,Ku J,Thermal performance and operational characteristics of loop heat pipe(NRL LHP),in:International Conference On Environmental Systems,Danvers,July 1998(SAE paper 981813).
    [74]Hamdan M,Gerner F M,Henderson H T,Steady-state model of a loop heat pipe with coherent porous silicon(CPS)wick in the evaporator,in:19th Annual IEEE SEMI-THERM,San Jose,California,11-13 March 2003,9.
    [75]Delil A M,Baturkin V,Friedrikhson Y,et al.,Experimental results on heat transfer phenomena in miniature loop heat pipe with a flat evaporator,in:12th IHPC,Moscow,19-24 May 2002.
    [76]Triem T H,Kaya T,Mathematical Modeling of Loop Heat Pipes with Two-phase Pressure Drop,Proc.of 33~(rd)Thermophysics Conference,28 June-1 July,1999/Norfolk,VA,AIAA-99-3448.
    [77]苗建印,曹剑锋,侯增祺,LHP在模拟空间环境下的性能试验研究,工程热物理学报,2003,24(1):88-90.
    [78]向艳超,姚伟,李劲东,环路热管蒸发器毛细芯传热流动特性的一维分析,中 国空间科学技术,2005,4(2):16-22.
    [79]向艳超,李劲东,张加迅,并联蒸发器环路热管实验研究,中国空间科学技术,2006,6(3):27-32.
    [80]曹剑峰,范含林,热电致冷器和毛细泵驱动的小型热公用回路,中国空间科学技术,2007,6(3):24-28.
    [81]张红星,林贵平,曹剑峰,回路热管性能的地面实验研究,宇航学报,2003,24(5):468-472.
    [82]张红星,林贵平,丁汀等,环路热管温度波动现象的实验分析,北京航空航天大学学报,2005,31(2):116-120.
    [83]Zhang H X,Lin G P,Ding T,Experimental study on start-up characteristics of loop heat pipes,Science in China,Ser.E,2005,48(2):131-144.
    [84]柏立战,林贵平,张红星,环路热管稳态建模及运行特性分析,北京航空航天大学学报,2006,32(8):894-898.
    [85]任川,吴清松,带环向槽环路热管主芯中流动和传热的数学模型和数值模拟,宇航学报,2007,28(3):740-746.
    [86]Ren C,Wu Q S,Hu M B,Heat transfer with flow and evaporation in loop heat pipe's wick at low or moderate heat fluxes,Intemational Journal of Heat and Mass Transfer,2007,50(12):2296-2308.
    [87]任川,吴清松,孔隙率和渗透率对LHP主芯性能影响研究,工程热物理学报,2007,28(4):634-636.
    [88]莫青,蔡京辉,梁惊涛等,液氮温区低温回路热管的实验研究—第一部分:结构设计和实验系统,真空与低温,2005,11(1):19-21.
    [89]莫青,蔡京辉,梁惊涛等,槽道热管在加快低温回路热管主蒸发器降温过程中作用的实验研究,低温工程,2005,4:14-17.
    [90]Yu J L,Chen H,Zhao H,An experimental investigation on capillary pumped loop with the meshes wick,International Journal of Heat and Mass Transfer,2007,50(21):4503-4507.
    [91]万忠民,刘伟,张亮,明廷臻,实现电子器件散热的微小型平板LHP蒸发器传 热特性研究,电子器件,2007,30(6):2197-2204
    [92]Maidanik Y F,Solodovnik N N,Fershtater Y G,Investigation of Dynamic and Stationary Characteristics of a Loop Heat Pipe,in:IX International Heat Pipe Conference,May 1-5,1995,Albuquerque,New Mexico
    [93]Ku J,Ottenstein L,Kaya T,et al,Testing of a Loop Heat Pipe Subjected to Variable Accelerating Forces,Part 1:Start-up,SAE paper No.2000-01-2489,2000
    [94]Chem Y M,Groll M,Mertz R and Maydanik Y F,Steady-state and transient performance of a miniature loop heat pipe.International Journal of Thermal Science,45(2006),1084-1090
    [95]Zhang H X,Lin G P,Ding T,et al,Investigation of startup behaviors of a loop heat pipe,Journal of Thermophysics and Heat Transfer,2005,19(4):509-518
    [96]Hoang T T,Baldauff R W,Cheung K H,Start-up behavior of an ammonia loop heat pipe,AIAA paper No.2005-5630
    [97]Zhang H X,Theoretical and experimental investigation of the two-phase heat transfer technology of loop heat pipes.Beijing:school of aeronautical science and engineering of Beijing university of aeronautics and astronautics,2006(in Chinese)
    [98]Agarwa D K,Welch S W,Biswas G,Planar Simulation of Bubble Growth in Film Boiling in Near-Critical Water Using a Variantof the VOF Method.Journal of Heat Transfer,Transactions of the ASME,June 2004,126:329-338.
    [99]Zhang Y W,Faghri A,Shafii M B,Capillary Blocking Forced Convective Condensation in Horizontal Miniature Channels,Journal of Heat Transfer,Transactions of the ASME,June,2001,123:501~510.
    [100]张亮,小型圆盘式LHP系统的设计与实验研究.华中科技大学硕士论文,2008.
    [101]李亭寒,华诚生等,热管设计与应用,化学工业出版社,1987
    [102]Maydanik Y F,Loop heat pipes,Applied Thermal Engineering,2005,25:635-657.
    [103]Liu Z C,Liu W,Design and Experimental Research of a Flat Type CPL with Wicked Condenser,Proc.of the 5~(th)Int.Symposium on Multiphase Flow,Heat Mass Transfer and Energy Conservation,Xi'an,China,2005.
    [104]Chen Y M,Groll M,Merta R,Maydanik Y F,Vershinin V V,Steady-state and transient performance of a miniature Loop Heat Pipe,International Journal of Thermal Science,2006,24(59):1084-1091.
    [105]Cao,Y D,Faghri A,Conjugate analysis of a flat-plate type evaporator for capillary pumped loops with three-dimensional vapor flow in the groove.International Journal of Heat and Mass Transfer,1994,37(3):401-409.
    [106]黄晓明,黄传宗,刘伟,CPL蒸发器传热传质特性的数值模拟,华中科技大学学报(自然科学版),2005,33(6):29-31.
    [107]刘志春,刘伟,杨金国等,CPL蒸发器毛细芯中流动与传热的场协同分析,工程热物理学报,2006,27(2):295-297.
    [108]Wan Z M,Liu W,Zheng Z Q,et al.Heat transfer with flow and phase change in an an evaporator of miniature flat plate capillary pumped loop.Journal of Thermal Science,2007,16(3):254-263.
    [109]Vershinin S V,Maydanik Y F,Investigation of pulsations of the operating temperature in a miniature loop heat pipe.International Journal of Heat and Mass Transfer,2007,50:5232-5240.
    [110]Kiper A M,Swanson T D,McIntosh R,Exploratory Study of Temperature Oscillations Related to Transient Operation of a Capillary Pumped Loop Heat Pipe,Proc.of National Heat Transfer Conference,ASME HTD-96,1988,1:353-359.
    [111]Kolos K R,Herold K E,1997,Low Temperature and Fluid Oscillations in Capillary Pumped Loops,Proceedings of the National Heat Transfer Conference,Baltimore,Maryland,Aug 10-12,pp.1-8.
    [112]Ku J,Swanson T D,Herold K,Kolos K,1993,Flow Visualization within a Capillary Evaporator,SAE Paper No.932236,Proceedings of the 23~(rd)International Conference on Environmental Systems,July 12-15.
    [113]O'Connell T,Hoang T,Ku J,1995,“Investigation of power turn down transients in CAPL-1 flight experiment”,AIAA Paper No.95-2067,Proceedings of the 30th AIAA Thermophysics Conference,June 19-22,San Diego,CA,pp.1-7.
    [114]Singh R,Akbarzadeh A,Mochizuki A,Operational characteristics of a miniature loop heat pipe with flat evaporator,Int.J Thermal Sciences,2008,47(11):1504-1515
    [115]Chen Y M,Groll M,et al,Steady-state and transient performance of a miniature loop heat pipe.International Journal of Thermal Sciences 45(2006)1084-1090.
    [116]Zhang J T,Wang B X,Effect of capillarity at liquid-vapor interface on phase change without surfactant,Int.J.Heat and Mass Transfer,44(13):2689-2694,2002
    [117]童均耕,吴孟余,王平阳,高等工程热力学,北京:科学出版社,2006
    [118]王强,刘伟,刘志春,CPL蒸发器多孔芯内压力和温度变化的数值模拟,华中科技大学学报,32(5),87-89,2004
    [119]Wan Z M,Liu W,Nakayama A,Conjugate Numerical Investigate of Small-scale Flat Plate Capillary Pumped Looped Evaporator,Proc.of the 22nd Int.Conference of Refrigeration,Beijing,China,2007
    [120]阿巴兹 V S,拉森著 P S,罗棣庵译,对流换热,北京:高等教育出版社,1992
    [121]Khrustalev D,Faghri A,Heat transfer in the inverted meniscus type evaporator at high heat fluxes,Int.J.Heat and Mass Transfer,38(6):3091-3101,1995
    [122]Liu W,Mizukami K,Peng S W,Stability Analysis for a Bubble Nucleus in Surface Cavity,Proc.of the 9th Int.Symposium on Transport Phenomena,Singapore,1996
    [123]Lucas R,Ueber das zeitgesetz des kapillaren aufstiegs von flussigkeiten,Kolloid-Z,1918,23:15-22.
    [124]Washburn E W,The dynamics of capillary flow,Phys.Rev,1921,17(3):273-283.
    [125]Hickman K J,Vac.Sci.Technol.1972,9(2).: 960-978.
    [126]涂正凯,刘伟,黄晓明等,毛细蒸发相变界面的数学模型和机理研究,华中科技大学学报(自然科学版),2008,36(8):96-99.
    [127]Ramon G,Oronb A,Capillary rise of a meniscus with phase change.Journal of Colloid and Interface Science,2008,327:145-151.
    [128]庄骏,张红,热管技术及其工程应用,北京:化学工业出版社,2000.
    [129]Cotter T P,Theory of heat pipes.Los Alamos Scientific Lab.Report No.LA-3246-MS,1965.
    [130]Dunn P,Reay D A,Heat pipes.Oxford:Pergamon Press,1978.
    [131]Liu W,Liu Z C,et al,Performance Experiment for a New Type of CPL System.Proc.of the 13rd International Heat Transfer Conference,Sydney,Australia,2006.
    [132]Ishizuka M,Yakagawa S,Koizumi K,Development of a Self-Cooling System Utilizing Waste Heat from Electronic Equipment,Proc.of the Sixth Int.Conf.on Enhanced,Compact and Ultra-Compact Heat Exchangers:Science,Engineering and Technology,Potsdam,Germany,2007.
    [133]Jung J Y,Oh H S,A capillary-pumped loop(CPL)with microcone-shaped capillary structure for cooling electronic devices,J.Micromech.Microeng.2008,18,017002
    [134]刘伟,刘志春等,CPL系统的工程设计与理论分析,卫星热控制技术研讨会,北京,2003.
    [135]Meyer L,et al,A Silicon-Carbide Micro-Capillary Pumped Loop for Cooling High Power Devices.Proc.of the 19th IEEE SEMI-THERM Symposium,San Jose,CA,2003
    [136]Chernysheva M A,Vershinin V V, Maydanik Y F,Operating temperature and distribution of a working fluid in LHP.Int.J.Heat and Mass Transfer,50:2704-2713,2007
    [137]Butler D,Ku J,Swanson T,Loop Heat Pipes and Capillary Pumped Loops-an Applications Perspective.Space Technology and Applications International Forum-STAIF 2002,Edited by M.S.El-Gen,2002
    [138]刘志刚,刘咸定,赵冠春,工质热物理性质计算程序的编制及应用,北京:科学出版社,1992
    [139]刘伟,刘志春,杨昆,涂正凯,毛细芯热管的相变驱动机制与模型,科学通报(已录用)
    [140]孙晨,小型平面圆盘式CPL系统设计与微泵引射回路设计,华中科技大学硕士论文,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700