毛细抽吸两相循环系统设计分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛细抽吸两相循环系统是一种利用工质相变传输热量,由毛细力驱动系统循环的装置。作为一种热控系统,毛细抽吸两相回路因具有高效、可靠、节能等优点,愈来愈多地被应用到航天飞行器热控、高热流密度电子设备的冷却等诸多领域。系统以蒸发器多孔芯中液相与汽相间形成的弯月面所提供的毛细压头作为驱动力,驱动系统循环。通过工质的相变,系统在小温差下实现较大的热负荷传输。
     国内外的研究表明,由于各种原因,传统的毛细抽吸两相循环系统存在启动困难和运行过程中压力和温度的波动等问题,这严重制约其应用发展。国内外许多学者就此问题开展了广泛而深入的研究,积极探索解决的方法。
     本文首先介绍了毛细抽吸两相循环系统的工作原理和运行特点,对国内外毛细抽吸两相循环系统的研究状况进行了评述,指出了已有系统存在的缺点和不足。针对这些问题,结合国内外的研究经验,在本实验室设计并制造的新型平板式毛细泵循环(Capillary Pumped Loop)系统上进行了启动及变工况等大量的相关实验。实验证明,该系统具有良好的启动性能,稳定的变工况运行性能,为今后的进一步研究奠定了良好的基础。
     为了符合热负荷不断向高热流密度发展的趋势,本文初步设计了具有圆盘式蒸发器的小型环路热管(Loop Heat Pipe)系统,以期能够解决具有10W/cm2以上高热流密度热负荷的散热需求。本文针对所设计的小型圆盘式蒸发器,利用ANSYS仿真软件对其进行了强度分析,结果显示其应力、应变均符合设计要求;利用FLUENT仿真软件对其进行了启动前的瞬态热分析,模拟出启动前蒸发器内部的温度分布,这对以后的实验工作有重要的指导意义。
     最后,本文针对现有的CPL系统提出了改进措施,并对以后搭建LHP系统实验平台和进行相关的实验工作进行了展望。
The Capillary Pumped Loop is such a system, of which the driven potential depends on the phase change of the working fluid and the capillary force. With high efficiency, high dependability, and energy saving, as a two-phase thermal-control system, it is applied in many fields such as controlling heat transfer on spacecrafts, cooling electronic devices with high power density. The system drives the working-media circulation by the capillary pressure across the surface tension formed at the liquid-vapor interface, transferring the great heat loads with low temperature difference by phase change.
     However, many investigations about the system indicate that there are problems that plague the application of it, such as being difficult to start-up and being unsteady when pressure oscillated during operation. Therefore, how to restrain the hydrodynamic oscillation and improve the start-up ability is the crucial issue on the system research. Many researchers are now investigating these problems.
     This thesis introduced the operation principles and characteristics of the Capillary Pumped Loop system, and gave some comments on the systems that had already been made. Based on their experience and what we had learned, we designed a new type CPL with flat evaporator. In order to better understand and analyze its operation theory and working performance, we had done lots of experiments on the new type system about the start-up and unsteady operation capabilities. The results indicated that the new type system had great start-up ability and steady working performance.
     In order to accord with the trend of electronic devices having higher and higher power density, we designed a new type miniature LHP system with disk evaporator, hoping to resolve the heat dissipation problems when the power density is above 10W/cm2. The structure of the disk evaporator was introduced in this article. The simulations for strength analysis were taken with 3-D model created using ANSYS, the results indicated that both the strain and the stress were under control. Also the simulations for transient thermal analysis before the evaporator start-up were taken; the results show the temperature distributions in the evaporator at different time. The studies were meaningful and helpful for the experimental research in the future.
引文
[1]闵桂荣编著,卫星热控制技术,北京:宇航出版社,1991
    [2]李亭寒,华诚生等编著,热管设计与应用,北京:化学工业出版社,1987
    [3]张加迅等,CPL技术在空间飞行器上的应用,工程热物理学报,22(3),2001
    [4]俞平等,毛细抽吸两相环系统稳定性的实验研究,清华大学学报,39(6),1999
    [5]曲艺等,多孔芯冷凝器内流动与换热特性,工程热物理学报,22(3),2001
    [6]李劲东等,热管流动与传热问题的模化分析,中国空间科学技术,25(3),1997
    [7]曲伟,伊勇,侯增祺,毛细抽吸两相流体回路(CPL)控温特性和极限特性研究,节能技术,1998
    [8]曲伟,刘纪福等,毛细抽吸两相回路的启动特性研究,哈尔滨工业大学学报,31(4):74-79,1999
    [9]王金亮,马同泽,张正芳,毛细泵中两相循环回路的初步分析研究。空间科学学报,15(4),1995
    [10]黄晓明,刘伟,矩形封闭腔内非饱和多孔介质的传热传质特性研究,工程热物理学报,22(4),2001
    [11]黄晓明,刘伟,申盛,韩延民,侯增祺,CPL蒸发器非饱和多孔芯内流动与传热分析,中国工程热物理学会传热传质学学术会议论文集,上海,2002
    [12]黄晓明,刘伟,韩延民,CPL冷凝器的多孔芯和槽道内蒸汽冷凝过程的分析,华中科技大学学报,32(7),2003
    [13]马同泽,侯增祺等编著,热管,北京:科学出版社,1983
    [14]刘静,张学学等,毛细抽吸两相循环原理在航天舱内热环境控制中应用可能性的探讨,航天医学与医学工程,8(4),1995
    [15]林唯耕,陈绍文,微小化毛细泵吸环路应用与笔记本计算机传热之研究,工程热物理学报,23(5),2002
    [16]宣益民,钱吉裕,李强,CPL复合毛细芯流动性能及工质特性分析,工程热物理学报,24(6),2003
    [17] I. Muraoka, et al, Experimental and Theoretical Investigation of Capillary Pumped Loop with a Porous element in the Condenser, Int. Comm., Heat and Mass Transfer, 25(8):1085-1094, 1998
    [18] C. Figus, et al., Heat and Mass transfer with phase change in a porous structure partially heated: continuous model and pore network simulation, Int. J. Heat Mass Transfer, 42:2557-2569, 1999
    [19] Y. Cao, et al., Conjugate analysis of a flat-plate type evaporator for capillary pumped loops with three-dimensional vapor in groove, Int. J. Heat Mass Transfer, 37:401-409, 1994
    [20] J. Bear, Dynamics of Fluids in Porous Media, American Elsevier Publishing Company, Inc., 1972
    [21] K.S. Udell, Heat transfer in porous media heated from above with evaporation, condensation and capillary effects, J. Heat Transfer 105, 402-409
    [22] Y.K Chuah and V.P. Carey, Analysis of boiling heat transfer and two-phase flow in porous media with non-uniform porosity, Int. J. Heat Mass Transfer 28: 147-154, 1985
    [23] J. Ku, E.J. Kroliczek, M.E. McCaabe, and S.M.B. Enner, A High Power Spacecraft Thermal Management System, AIAA Thermo physics, Plasma dynamics and Lasers Conference, San Antonio, Texas, AIAA-88-2702, June 27-29,1998,
    [24]向艳超,张加迅,侯增祺,环路热管(LHP)技术的发展现状,工程热物理学报, 125:682–684,2004
    [25]张红星,林贵平,丁汀等,环路热管温度波动现象的实验分析[J],北京航空航天大学学报, 31 (2): 116–120,2005
    [26]张红星,林贵平,环路热管启动特性的实验研究,中国科学E辑,工程科学材料科学, 35(1):17-30,2005
    [27] J. T. Ku, Operating characteristics of loop heat pipes. Society of AutomotiveEngineers. Paper No1999-01-2007, 1999
    [28] Y. F. Maidanik, N. N. Solodovnik, Y. G. Fershtater, Investigation of dynamic and stationary characteristics of a loop heat pipe. IX International Heat Pipe Conference, Albuquerque, New Mexico, 1995
    [29] Laura Ottenstein, et al., Flight Testing of the Capillary Pumped Loop 3 Experiment, Space Technology and Applications International Forum–STAIF2003, Edited by M.S. EI-Genk.
    [30] Triem Hoang et al, Development of Two Phase Capillary Pumped Loop (CPL) Heat Transport for Spacecraft Center Thermal Bus, Space Technology and Application International Forum STAIF-2003, Edited by M.S. EI-Genk.
    [31] Y.D. Cao and A. Faghri, Conjugate analysis of a flat-plate type evaporator for capillary pumped loops with three-dimensional vapor flow in the groove, Int. J. Heat and Mass Transfer, 37(9):401-409, 1994
    [32] A.S. Demidov, etc., Investigation of heat and mass transfer in the evaporation zone of a heat pipe operating by the“inverted meniscus”principle, Int. J. Heat and Mass Transfer, 37(14):2155-2163, 1994
    [33] C. Figus, Y. Le Bray, S. Bories, etc., Heat and mass transfer with phase change in a porous structure partially heated: continuum model and pore network simulations, Int. J Heat and Mass Transfer, 42:2557-2569,1999
    [34] Tim J. LaClair, Issam Mudawar, 2000, Thermal Transient in a Capillary Evaporator Prior to the Initiation of Boiling, International Journal of Heat and Mass Transfer, Volume: 43(21):3937-3952, 2000
    [35] E. Bazzo, R.R. Riehl, Operation characteristics of a small-scale capillary pumped loop, Applied Thermal Engineering, 23(6):687-705, 2003
    [36] Pin-Chin Chen, Wei-Keng Lin, The application of capillary pumped loop for cooling of electronic components, Applied Thermal Engineering 21, 1739-1754, 2001
    [37]曲伟,侯增祺,毛细抽吸两相流体回路的温控特性和极限特性研究,节能技术,2:9-13, 1998
    [38]曲艺,李智敏,颜岩等,多孔芯冷凝器内流动与换热特性,工程热物理学报,22(3):351-353, 2001
    [39]牟其峥,屠传经,毛细抽吸两相回路蒸发器管内传热的理论分析,浙江大学学报(工学版) 34(5):499-502, 2000
    [40]牟其峥,屠传经,毛细抽吸两相回路蒸发器管内流动的理论分析,浙江大学学报(工学版),34(3):253-256, 2000
    [41]俞平,张加迅,王维城,毛细抽吸两相环系统稳定性的实验研究,清华大学学报(自然科学版),39(6):86-89, 1999
    [42]韩延民,刘伟等,CPL冷凝器的多孔芯和槽道内蒸汽冷凝过程的分析,华中科技大学学报,31(7):58-61, 2003
    [43]黄晓明,刘伟等,CPL蒸发器非饱和多孔芯内流动与传热分析,上海理工大学学报,25(专辑):67-70, 2003
    [44]王强,刘伟等,CPL蒸发器多孔芯内压力和温度变化的数值模拟,华中科技大学学报,32(5):87-89, 2004
    [45]黄晓明,刘伟等,CPL蒸发器多孔芯传热传质特性的新数学模型,工程热物理学报,25(4):652-654, 2004
    [46] W. Liu, X.M. Huang, A new mathematical model for the operation of porous wick in the CPL evaporator, Proc. of the 21st Int. Congress of Refrigeration, Washington DC, USA, 2003
    [47] Y.M. Han, W. Liu, The numerical simulation for the unsteady heat and mass transfer process in capillary pumped loops evaporator, Journal of Astronautics, 24(4), 86-92, 2003
    [48] X.M. Huang, W. Liu, Numerical study of the phase-change heat transfer in a capillary structure of CPL evaporator, Proc. of the 13th Int. Heat Pipe Conference, Shanghai, China, 2004
    [49] Z.C. Liu, W. Liu, The numerical simulation of the flow and heat transfer for the porous wick in CPL evaporator, Proc. of the 3rd Int. Symposium on Heat TransferEnhancement and Energy Conservation, Guangzhou, China, 2004
    [50] X.M. Huang, W. Liu, The analysis of heat and mass transfer for the porous wick in the CPL evaporator, Proc. of the 3rd Int. Symposium on Heat Transfer Enhancement and Energy Conservation, Guangzhou, China, 2004
    [51] X.M. Huang, W. Liu, Modeling for heat and mass transfer with phase change in porous wick of CPL evaporator, Heat and Mass Transfer, 41:667-673, 2005
    [52] K. S. Udell, Heat transfer in porous media considering phase change and capillary——the heat pipe effect, Int. J. Heat Mass Transfer, 28:485-495, 1985
    [53]过增元,对流换热的物理机制以及控制,科学通报[J], 45(19):2118-2122, 2001
    [54] Z.Y. Guo, D.Y. Li and B.X. Wang, A novel concept for convective heat transfer enhancement[J], Int. J. Heat Mass Transfer, 41(14):2221-2225, 1998
    [55] W.Q. Tao, Z.Y. Guo and B.X. Wang, Field synergy principle for enhancing convective heat transfer-its extension and numerical verifications, Int. J. Heat and Mass Transfer [J], 45: 3849-3856, 2002
    [56] M.G. Wohak and H. Beer, Numerical simulation of direct–contact evaporation of a drop rising in a hot, less volatile immiscible liquid of higher density-possibilities and limits of the SOLA-VOF/CSF algorithm, Numerical Heat Transfer, A 33, 561–582, 1998
    [57] D. K. Agarwa, S. W. J. Welch, G. Biswas. Planar Simulation of Bubble Growth in Film Boiling in Near-Critical Water Using a Variant of the VOF Method. Journal of Heat Transfer, Transactions of the ASME, Vol. 126 pp329-338, June 2004
    [58] Yuwen Zhang, A. Faghri, M.B. Shafii, Capillary Blocking Forced Convective Condensation in Horizontal Miniature Channels, Journal of Heat Transfer, Transactions of the ASME, Vol.123, pp.501~510, June, 2001
    [59] Mads Jakob Jense, Bubbles in Micro channels, Master Project, c960853, Technical University of Denmark, May 1st, 2002
    [60] B. D. Nichols, C. W. Hirt, R. S. Hotchkiss. SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries. Technical Report LA-8355, Los Alamos National Laboratory, August 1980
    [61] C. W. Hirt, B. D. Nichols. Volume of fluid (VOF) method for the dynamics of freeboundaries. J. Comput. Phys. 39, 201, 1981
    [62] M. D. Torrey, R. C. Mjolsness, C. W. Hirt, et al. NASA-VOF2D: A Computer Program for Incompressible Flows with Free Surfaces. Technical Report LA-10612-MS, Los Alamos National Laboratory, December 1985 (unpublished)
    [63] M. D. Torrey, R. C. Mjolsness, L. R. Stein. NASA-VOF3D: A Three-Dimensional Computer Program for Incompressible Flows with Free Surfaces. Technical Report LA-11009-MS, Los Alamos National Laboratory, July 1987 (unpublished)
    [64]单辉祖编著,材料力学,北京:高等教育出版社,1999
    [65]龚曙光编著,ANSYS基础应用及范例解析,北京:机械工业出版社,2003
    [66]杨世铭,陶文铨编著,传热学(第三版),北京:高等教育出版社,1998
    [67]王福军编著,计算流体动力学分析,北京:清华大学出版社,2004
    [68]韩占忠,王敬,兰小平编著,FLUENT流体工程仿真计算实例与应用,北京理工大学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700