金银纳米粒子的合成及其在SERS和织物染色中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贵金属纳米粒子独特的光学性质-局域表面等离子共振(Localized SurfacePlasmon Resonance, LSPR)明显依赖于粒子的组成、形状、尺寸和周围环境,已经在表面增强光谱学、光电器件以及生物医药等诸多领域被广泛应用。因此,有效地调控贵金属纳米粒子LSPR(形貌和尺寸等)对与之相关的诸多研究和应用是十分必要的。本论文围绕金银纳米粒子的合成及其在表面增强拉曼散射(SurfaceEnhanced Raman Scattering, SERS)和织物染色中的应用,主要研究内容如下:
     1.探讨温度在光诱导合成各向异性银纳米粒子过程中作用。借助自行搭建可控温的光诱导装置,研究了温度对光化学反应的影响。利用消光光谱监测不同温度(10-90℃)下光诱导制备各向异性银纳米粒子的过程,采用透射电子显微镜对粒子形貌进行表征,探讨热效应对光诱导反应的影响。
     2.快速合成各向异性金纳米粒子,并研究其在SERS光谱中的应用。发展了一种室温下快速简便地合成从纳米枝状到微米板状金纳米粒子的湿化学方法。合成过程中没有额外引入稳定剂和结构导向剂,通过调节还原剂(香豆素480)和前驱体(氯金酸)的比例可以合成出不同形状和尺寸的金纳米粒子。以巯基吡啶(4-MPY)为探针分子对得到的金纳米粒子的SERS活性进行了评估。
     3.比较两种不同形状盘状银粒子膜的SERS活性。在石英基片上组装的三角形银纳米粒子被原位转化为圆盘状粒子。以不同形状自组装的银纳米粒子膜为SERS基底,研究了与LSPR相关的SERS增强。在不同激发波长的激发下,比较了两种粒子组装膜的SERS光谱差异。当SERS基底的表面等离子体共振(Surface Plasmon Resonance, SPR)吸收带与激发波长重叠较多时,该基底的SERS信号被极大地增强。
     4.通过加热和光诱导方法合成羟基羧酸盐稳定的金纳米粒子,并将其应用在织物和纤维的染色中。对比研究了三种羟基羧酸盐柠檬酸钠、苹果酸钠和酒石酸钠在加热和光诱导合成金纳米粒子的过程的作用。详细讨论了稳定剂和反应条件对金纳米粒子LSPR性质的影响。在一定的pH下,将得到的不同稳定剂包覆的、具有鲜艳颜色的金纳米粒子用于织物、纤维的染色,染色后的织物和纤维由于金纳米粒子的LSPR性质而表现出不同的颜色。
Localized Surface Plasmon Resonance (LSPR) is the unique optical character of noblenanoparticles (NPs). The LSPR of noble nanoparticles mainly depend on thecomposition, shape, size and surrounding environment. Among all the strategy tofabricate noble NPs, Photo-induced method is considered to be an effective strategy toproduce anisotropic metal NPs. The thermal effect in a photo-induced process isderived from light. To learn about the effect of temperature in a photo-inducedreaction is of importance for obtaining uniform and mono-disperse NPs. In addition tophoto-induced reaction, wet chemical method is also a popular way to synthesizemetal NPs. However, developing simple and efficient methods remain a challenge.Surface Enhanced Raman Scattering (SERS) is one application of noble NPs,however, SERS enhancement of anisotropic metal nanoparticles depends on manyfactors, including shape, size and aggregation extent, which are complex andentangled in most cases. To fairly compare difference in enhancement ability andgetting rid of interlacement of other factors, it is significant to develop a simplestrategy to probe the SERS properties of metal nanoparticles. The stabilizer play animportant role in the synthesis and application of metal NPs. Hydroxy carboxylate,citrate, malate and tartrate are nontoxic reagents and gold NPs stabilized by all aboveprove better biocompatible, which facilitates the application of metal NPs. Based onabove view, the thesis is outlined as follows:
     1. The role of temperature in synthesizing anisotropic silver nanoparticlesby photoinduced method.
     Exploring the themal and light effects in photo-induced reaction is important forfurther developing photo-induced method. Products of a photo-induced reactionstrongly depend on many factors, including the intensity and wavelength of lights, the pH and temperature and so on. We systematically investigated the effect oftemperature on photochemical reaction, which was carried out by a home-madedevice at exact temperatures. Extinction spectroscopy was used to monitor thephotochemical reaction process of synthesizing silver NPs at different temperature(10-90℃). The morphologies of resulant silver nanoparticles were characterized bytransmission electron microscopy (TEM). The results showed that the temperatureplayed an important role in the particle growth, the shape/size control and the stabilityin a photochemical reaction; the main product is nanoprisms with much faster growthrate and better stability at90℃.
     2. Fast synthesis of gold nanoparticles with different shape and theirapplications in SERS.
     A fast and easy method to synthesize gold NPs was developed by wet chemicalmethod at room temperature, resulting in dendritic and discal nanoparticles withnanometers to microns in size. Gold NPs with different sizes and shapes can beprepared by adjusting the ratio between the reducer (Coumarin480) and the precursor(HAucl4). Fixing chloroauric acid concentration (9.8×10-5M) and the reducing agentis increased, the as-prepared particles are similar to spherical, however, increasing theconcentration of chloroauric acid continuously to2.94×10-4, discal NPs are obtainedand the particle size became smaller. In contrast, increasing the amount of chloroauricacid, the main product is dendritic NPs. By comparing SERS intensity of the threedifferent shaped gold nanoparticles, we find the dendritic structure displayed thestrongest enhancement to4-MPY.
     3. Comparison of Surface-Enhanced Ramans scattering spectra on twokinds of silver nanoplate films.
     The shape of noble metal NPs has great impact on SERS Substrates. Weexplored the relationship between LSPR and SERS activity of assembled silver filmwith different shape. Shape conversion from silver nanoprisms to nanodisks on slideswas in situ carried out by heating. SERS spectra on silver nanoprisms and nanodiskswere compared under different excitation lines and the difference in SERS intensitieswas discussed. It is demonstrated that SERS signals were greatly enhanced when theSPR band of a SERS substrate overlapped with the wavelength of excitation laser; theEM mechanism dominated SERS enhancement. The observation about therelationship of LSPR and SERS enhancement is in favor of further development of SERS mechanism and fabrication of optimal SERS substrates.
     4. Using hydroxy carboxylate to synthesize gold nanoparticles in heating andphotochemical reactions and their application in textile colouration.
     Citrate, malate and tartrate can be used to synthesize gold NPs using heating andphotochemical methods. NPs synthesized by the heating method from citrate weremore uniform than those from malate and tartrate by the same method. The formationrates of gold NPs by heating were influenced considerably by the pH of solutions; therate increased with a decrease of pH. NPs from photochemical synthesis were eggshaped and non-uniform regardless of the ligand used. The colour of the NPs may betuned by particle size, which is affected by ligand and synthesis method. Gold NPscan be used to colour wool fabric, silk and nylon fibres using conventional exhaustdyeing from a slightly acidic bath.
引文
[1] Gramotnev, D. K.; Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nat. Photonics2010,4,83-91.
    [2] Mie, G. Contributions to the Optics of Turbid Media, Especially Colloidal Metal Solutions.Ann. Phys.1908,25,377-445.
    [3] Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer: NewYork,1988.
    [4] Brongersma, M. L.; Shalaev, V. M. The Case for Plasmonics. Science2010,328,440-441.
    [5] Julien, F. H.; Alexandrou, A. Controlling Artificial Atoms. Science1998,282,1429-1430.
    [6] Stroscio, J. A.; Eigler, D. M. Atomic and Molecular Manipulation with the Scanning TunnelingMicroscope. Science1991,254,1319-1326.
    [7] Yanson, A. I.; Bollinger, G. R.; van den Brom, H. E.; Agrait, N.; van Ruitenbeek, J. M.Formation and manipulation of a metallic wire of single gold atoms. Nature1998,395,783-785.
    [8] Darling, S. B.; Bader, S. D. A materials chemistry perspective on nanomagnetism. J. Mater.Chem.2005,15,4189-4195.
    [9] Sanders, A. W.; Routenberg, D. A.; Wiley, B. J.; Xia, Y.; Dufresne, E. R.; Reed, M. A.Observation of Plasmon Propagation, Redirection, and Fan-Out in Silver Nanowires. NanoLett.2006,6,1822-1826.
    [10] Brongersma, M. L.; Shalaev, V. M. The Case for Plasmonics. Science2010,328,440-441.
    [11] Gramotnev, D. K.; Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nat. Photonics2010,4,83-91.
    [12] Faraday, M. The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) toLight. Philos. Trans. R. Soc.1857,147,145-181.
    [13] Willets K. A.; Van Duyne, R. P. Localized Surface Plasmon Resonance Spectroscopy andSensing. Annu. Rev. Phys. Chem.2007.58,267–297.
    [14] Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer:New York,1988.
    [15] Knobloch, H.; Brunner, H.; Leitner, A.; Aussenegg, F.; Knoll,W. Probing the evanescent fieldof propagating plasmon surface polaritons by fluorescence and Raman spectroscopies. J.Chem. Phys.1993,98,10093-10095.
    [16] Zhang, X. Y.; Zhao, J.; Whitney, A. V.; Elam, J. W.; Van Duyne, R. P. Ultrastable Substratesfor Surface-Enhanced Raman Spectroscopy: Al2O3Overlayers Fabricated by Atomic LayerDeposition Yield Improved Anthrax Biomarker Detection. J. Am. Chem. Soc.2006,128,10304-10309.
    [17] Sanders, A. W.; Routenberg, D. A.; Wiley, B. J.; Xia, Y. N.; Dufresne, E. R.; Reed, M. A.Observation of Plasmon Propagation, Redirection, and Fan-Out in Silver Nanowires NanoLett.2006,6,1822-1826.
    [18] Bohren, C. F.; Huffman, D. R. Absorption and Scattering of Light by Small Particles; WileyInterscience: New York,1983.
    [19] Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; Van Duyne, R. P.; Zou, S. L.Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy. MRS Bull.2005,30,368-375.
    [20] Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. Femtosecond Spectroscopy ofHeterogeneous Electron Transfer: Extraction of Excited-State Population Dynamics fromPump-Probe Signals. J. Phys. Chem. B2003,107,607-611.
    [21] Lee, K. S.; El‐Sayed, M. A. Gold and Silver Nanoparticles in Sensing and Imaging:Sensitivity of Plasmon Response to Size, Shape, and Metal Composition. J. Phys. Chem. B2006,110,19220-19225.
    [22] Ghosh, S. K.; Nath, S.; Kundu, S.; Esumi, K.; Pal, T. Solvent and Ligand Effects on theLocalized Surface Plasmon Resonance (LSPR) of Gold Colloids. J. Phys. Chem. B2004,108,13963-13971.
    [23] Bohren, C. F.; Huffman, D. R. Absorption and Scattering of Light by Small Particles; WileyInterscience: New York,1983.
    [24] Perez-Juste, J.; Pastoriza-Santos, I.; Liz-Marz_an, L. M.; Mulvaney, P. Coord. Gold nanorods:Synthesis, characterization and applications. Chem. Rev.2005,249,1870-1901.
    [25] Novo, C.; Gomez, D.; Perez-Juste, J.; Zhang, Z. Y.; Petrova, H.; Reismann, M.; Mulvaney, P.;Hartland, G. V. Contributions from radiation damping and surface scattering to the line widthof the longitudinal plasmon band of gold nanorods: a single particle study. Phys. Chem. Chem.Phys.2006,8,3540-3546.
    [26] Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. PhotoinducedConversion of Silver Nanospheres to Nanoprisms. Science2001,294,1901-1903.
    [27] Underwood, S.; Mulvaney, P. Effect of the Solution Refractive Index on the Color of GoldColloids. Langmuir1994,10,3427-3430.
    [28] Prikulis, J.; Hanarp, P.; Olofsson, L.; Sutherland, D.; Kall, M. Optical Spectroscopy ofNanometric Holes in Thin Gold Films. Nano Lett.2004,4,1003-1007.
    [29] Su, K. H.; Wei, Q. H.; Zhang, X.; Mock, J. J.; Smith, D. R.; Interparticle Coupling Effects onPlasmon Resonances of Nanogold Particles. Nano Lett.2003,3,1087-1090.
    [30] Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. A DNA-based method forrationally assembling nanoparticles into macroscopic materials. Nature1996,382,607-609.
    [31] Shalaev, V. M. Botet, R.; Jullien, Resonant light scattering by fractal clusters. R. Phys. Rev. B1991,44,12216-12225.
    [32] Kinnan, M. K.; Chumanov, G. Surface Enhanced Raman Scattering from Silver NanoparticleArrays on Silver Mirror Films: Plasmon-Induced Electronic Coupling as the EnhancementMechanism. J. Phys. Chem. C2007,111,18010-18017.
    [33] Haynes, C. L.; McFarland, A. D.; Van Duyne, R. P. Surface-Enhanced Raman Spectroscopy.Anal.Chem.2005,77,338-346.
    [34] Jensen, T. R.; Van Duyne, R. P.; Johnson, S. A.; Maroni, V. A. Surface-Enhanced InfraredSpectroscopy: A Comparison of Metal Island Films with Discrete and Nondiscrete SurfacePlasmons. Appl. Spectrosc.2000,54,371-377.
    [35] Geddes, C. D.; Aslan, K.; Gryczynski, I.; Malicka, J.; Lakowicz, Noble-metal surfaces formetal enhanced fluorescence. J. R. Rev. Fluoresc.2004,1,365-401.
    [36] Kneipp, K.; Moskovits, M.; Kneipp, H.; Bohr, H. Surface-Enhanced Raman Scattering,Springer: Berlin, Heidelberg,2006.
    [37] Bennett, H. E.; Peck, R. L.; Burge, D. K.; Bennett, J. M. J. Appl. Phys.1969,40,3351-3360.
    [38] Kunzmann, A.; Andersson, B.; Thurnherr, T.; Krug, H.; Scheynius, A.; Fadeel, B. Biochim.Biophys. Acta, Gen. Subj.2010, DOI:10.1016/j.bbagen.2010.04.007.
    [39] Rivas, L. Sanchez-Cortes, S.; Garcia-Ramos, J. V.; Morcillo, G. Mixed Silver/Gold Colloids:A Study of Their Formation, Morphology, and Surface-Enhanced Raman Activity. Langmuir2000,16,9722-9728.
    [40] Tao, A. R.; Habas, S.; Yang, P. D. Shape Control of Colloidal Metal Nanocrystals. Small2008,4,310-325.
    [41] Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Shape-Controlled Synthesis of MetalNanocrystals: Simple Chemistry Meets Complex Physics?. Angew. Chem., Int. Ed.2009,48,60-103.
    [42] Turkevich, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth processes inthe synthesis of colloidal gold. Discuss. Faraday Soc.1951,11,55-75.
    [43] Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse GoldSuspensions. Nat. Phys. Sci.1973,241,20-22.
    [44] Bastus, N. G.; Comenge, J.; Puntes, V. Kinetically Controlled Seeded Growth Synthesis ofCitrate-Stabilized Gold Nanoparticles of up to200nm: Size Focusing versus OstwaldRipening. Langmuir,2011,27,11098–11105.
    [45] Isaac, O. G.; Neus, G. B.; Victor, P. Influence of the Sequence of the Reagents Addition in theCitrate-Mediated Synthesis of Gold Nanoparticles. J. Phys. Chem. C2011,115,15752–15757.
    [46] Ji, X.; Song, X.; Li, J.; Bai, Y.; Yang, W.; Peng, X. Size Control of Gold Nanocrystals inCitrate Reduction: The Third Role of Citrate. J. Am. Chem. Soc.2007,129,13939–13948.
    [47] Lee, P. C.; Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and goldsols. J. Phys. Chem.1982,86,3391-3395.
    [48] Pillai, Z. S.; Kamat, P. V. What Factors Control the Size and Shape of Silver Nanoparticles inthe Citrate Ion Reduction Method?. J. Phys. Chem. B2004,108,945-951.
    [49] Henglein, A.; Giersig, M. Formation of Colloidal Silver Nanoparticles: Capping Action ofCitrate. J. Phys. Chem. B1999,103,9533-9539.
    [50] Dong, X.; Ji, X.; Wu, H.; Zhao, L.; Li, J.; Yang, W. Shape Control of Silver Nanoparticles byStepwise Citrate Reduction. J. Phys. Chem. C2009,113,6573-6576.
    [51] Caswell, K. K.; Bender, C. M.; Murphy, C. J. Seedless, Surfactantless Wet ChemicalSynthesis of Silver Nanowires. Nano Lett.2006,3,667-669.
    [52] Millstone, J. E.; Hurst, S. J; Me′traux, G. S.; Cutler, J. I.; Mirkin, C. A. Colloidal Gold andSilver Triangular Nanoprisms. small2009,5,646–664.
    [53] Zhang, Q.; Li, W.; Moran, C.; Chen, J.; Wen, L. P.; Xia, Y. Seed-Mediated Synthesis of AgNanocubes with Controllable Edge Lengths in the Range of30200nm and Comparison ofTheir Optical Properties. J. Am. Chem. Soc.2010,132,11372-11378.
    [54] Jana, N. R.; Gearheart, L.; Murphy, C. J. Seed-Mediated Growth Approach forShape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using aSurfactant Template. Adv Mater.2001,13,1389-1393.
    [55] Pietrobon, B.; McEachran, M.; Kitaev, V. Synthesis of Size-Controlled Faceted PentagonalSilver Nanorods with Tunable Plasmonic Properties and Self-Assembly of These Nanorods.ACS Nano2008,3,21-26.
    [56] Sun, Y.; Yin, Y.; Mayers, B. T.; Herricks, T.; Xia, Y. Uniform Silver Nanowires Synthesis byReducing AgNO3with Ethylene Glycol in the Presence of Seeds and Poly(VinylPyrrolidone). Chem. Mater.2002,14,4736-4375.
    [57] Pietrobon, B.; Kitaev, V. Photochemical Synthesis of Monodisperse Size-Controlled SilverDecahedral Nanoparticles and Their Remarkable Optical Properties. Chem. Mater.2008,20,5186-5190.
    [58] Pietrobon, B.; McEachran, M.; Kitaev, V. Synthesis of Size-Controlled Faceted PentagonalSilver Nanorods with Tunable Plasmonic Properties and Self-Assembly of These Nanorods.ACS Nano2008,3,21-26.
    [59] Zeng, J.; Zheng, Y.; Rycenga, M.; Tao, J.; Li, Z.-Y.; Zhang, Q.; Zhu, Y.; Xia, Y. Controllingthe Shapes of Silver Nanocrystals with Different Capping Agents. J. Am. Chem. Soc.2010,132,8552-8553.
    [60] Kilin, D. S.; Prezhdo, O. V.; Xia, Y. Shape-controlled synthesis of silver nanoparticles: Abinitio study of preferential surface coordination with citric acid. Chem. Phys. Lett.2008,458,113-116.
    [61] Chambers, S. A. Epitaxial film crystallography by high-energy Auger and X-rayphotoelectron diffraction. Adv. Phys.1991,40,357-415.
    [62] Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. Shaping binary metalnanocrystals through epitaxial seeded growth. Nat. Mater.2007,6,692-697.
    [63] Yoo, H.; Millstone, J. E.; Li, S.; Jang, J.-W.; Wei, W.; Wu, J.; Schatz, G. C.; Mirkin, C. A.Core Shell Triangular Bifrustums. Nano Lett.2009,9,3038-3041.
    [64] Cho, E. C.; Camargo, P. H. C.; Xia, Y. Synthesis and Characterization of Noble-MetalNanostructures Containing Gold Nanorods in the Center. Adv. Mater.2010,22,744-748.
    [65] Jin, R.; Charles Cao, Y.; Hao, E.; Metraux, G. S.; Schatz, G. C.; Mirkin, C. A. Controllinganisotropic nanoparticle growth through plasmon excitation. Nature2003,425,487-490.
    [66] Pietrobon, B.; Kitaev, V. Photochemical Synthesis of Monodisperse Size-Controlled SilverDecahedral Nanoparticles and Their Remarkable Optical Properties. Chem. Mater.2008,20,5186-5190.
    [67] Zhang, J.; Li, S.; Wu, J.; Schatz, G.; Mirkin, C. Plasmon-Mediated Synthesis of SilverTriangular Bipyramids. Angew. Chem. Int. Ed.2009,48,7787-7791.
    [68] Zhou, J.; An, J.; Tang, B.; Xu, S.; Cao, Y.; Zhao, B.; Xu, W.; Chang, J.; Lombardi, J. R.Growth of Tetrahedral Silver Nanocrystals in Aqueous Solution and Their SERSEnhancement. Langmuir2008,24,10407-10413.
    [69] Kabashin, A. V.; Delaporte, P.; Pereira, A.; Gro, D.; Torres, R.; Sarnet, T.; Sentis, M.Nanofabrication with pulsed lasers. Nanoscale Res. Lett.2010,5,454-463.
    [70] Kamat, P. V. Photophysical, Photochemical and Photocatalytic Aspects of MetalNanoparticles. J. Phys. Chem. B2002,106,7729-7744.
    [71] Takami, A.; Yamada, H.; Nakano, K.; Koda, S. Size Reduction of Silver Particles in AqueousSolution by Laser Irradiation. Jpn. J. Appl. Phys.1996,35,781-783.
    [72] Rycenga, Matthew; Cobley,Claire M.; Zeng, Jie; Li, Weiyang; Moran, Christine H.; Zhang,Qiang; Qin, Dong; Xia, You, nan Controlling the Synthesis and Assembly of SilverNanostructures for Plasmonic Applications. Chem. Rev.2011,111,3669–3712
    [73] Wu, X.; Redmond, P. L.; Liu, H.; Chen, Y.; Steigerwald, M.; Brus, L. PhotovoltageMechanism for Room Light Conversion of Citrate Stabilized Silver Nanocrystal Seeds toLarge Nanoprisms. J. Am. Chem. Soc.2008,130,9500-9506.
    [74] Xue, C.; Metraux, G. S.; Millstone, J. E.; Mirkin, C. A. Mechanistic Study of PhotomediatedTriangular Silver Nanoprism Growth. J. Am. Chem. Soc.2008,130,8337-8344.
    [75] Redmond, P. L.; Brus, L. E.“Hot Electron” Photo-Charging and Electrochemical DischargeKinetics of Silver Nanocrystals. J. Phys. Chem. C2007,111,14849-14854.
    [76] An, J.; Tang, B.; Ning, X.; Zhou, J.; Zhao, B.; Xu, W.; Corredor, C.; Lombardi, J. R.Photoinduced Shape Evolution: From Triangular to Hexagonal Silver Nanoplates. J. Phys.Chem. C2007,111,18055-18059.
    [77] Zheng, X. L.; Xu, W. Q.; Corredor, C.; Xu, S. P.; An, J.; Zhao, B.; Lombardi, J. R.Laser-Induced Growth of Monodisperse Silver Nanoparticles with Tunable Surface PlasmonResonance Properties and a Wavelength Self-Limiting Effect. J. Phys. Chem. C2007,111,14962-14967.
    [78] Tang, B.; An, J.; Zheng, X.; Xu, S.; Li, D.; Zhou, J.; Zhao, B.; Xu, W. Silver Nanodisks withTunable Size by Heat Aging. J. Phys. Chem. C2008,112,18361–18367.
    [79] Zhou, J.; An, J.; Tang, B.; Xu, S.; Cao, Y.; Zhao, B.; Xu, W.; Chang, J.; Lombardi, J. R.Growth of Tetrahedral Silver Nanocrystals in Aqueous Solution and Their SERSEnhancement. Langmuir2008,24,10407-10413.
    [80] Tang, B.; Xu, S.; An, J.; Zhao, B.; Xu, W. Photoinduced Shape Conversion andReconstruction of Silver Nanoprisms. J. Phys. Chem. C2009,113,7025–7030.
    [81] Zheng, X.; Zhao, X.; Guo, D.; Tang, B.; Xu, S.; Zhao, B.; Xu, W.; Lombardi, J. R.Photochemical Formation of Silver Nanodecahedra: Structural Selection by the ExcitationWavelength. Langmuir2009,25,3802-3807.
    [82] Martin, C. R. Nanomaterials: A Membrane-Based Synthetic Approach. Science1994,266,1961-1966.
    [83] Cushing, B. L.; Kolesnichenko, V. L.; O’Connor, C. Recent Advances in the Liquid-PhaseSyntheses of Inorganic Nanoparticles. J. Chem. Rev.2004,104,3893-3946.
    [84] Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and Properties ofNanocrystals of Different Shapes. Chem. Rev.2005,105,1025-1102.
    [85] Yener, D. O.; Sindel, J.; Randall, C. A.; Adair, J. H. Synthesis of Nanosized Silver Platelets inOctylamine-Water Bilayer Systems. Langmuir2002,18,8692-8699.
    [86] Zhang, D.; Qi, L.; Ma, J.; Cheng, H. Formation of Silver Nanowires in Aqueous Solutions ofa Double-Hydrophilic Block Copolymer. Chem. Mater.2001,13,2753-2755.
    [87] Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet chemical synthesis of silver nanorods andnanowiresof controllable aspect ratio. Chem. Commun.2001, DOI:10.1039/b100521i,617-618.
    [88] Zheng, X. W.; Zhu, L. Y.; Yan, A. H.; Wang, X. J.; Xie, Y Controlling synthesis of silvernanowires and dendrites in mixed surfactant solutions. J. Colloid Interface Sci.2003,268,357-361.
    [89] Bae, D. S.; Kim, E. J.; Bang, J. H.; Kim, S. W.; Han, K. S.; Lee, J. K.; Kim, B. I.; Adair, J. H.Synthesis and Characterization of Silver Nanoparticles by a Reverse Micelle Process. Met.Mater. Int.2005,11,291-294.
    [90] Zhang, D. B.; Qi, L. M.; Ma, J. M.; Cheng, H. M. Synthesis of Submicrometer-Sized HollowSilver Spheres in Mixed Polymer–Surfactant Solutions. Adv. Mater.2002,14,1499-1502.
    [91] Maillard, M.; Giorgio, S.; Pileni, M.-P. Tuning the Size of Silver Nanodisks with SimilarAspect Ratios: Synthesis and Optical Properties. J. Phys. Chem. B2003,107,2466-2470.
    [92] Noritomi, H.; Igari, N.; Kagitani, K.; Umezawa, Y.; Muratsubaki, Y.; Kato, S. Synthesis andsize control of silver nanoparticles using reverse micelles of sucrose fatty acid esters. ColloidPolym. Sci.2010,288,887-891.
    [93] Jana, N. R.; Gearheart, L.; Murphy, C. J. Seed-Mediated Growth Approach forShape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using aSurfactant Template. Adv Mater.2001,13,1389-1393.
    [94] Zhang, W. Z.; Qiao, X. L.; Chen, J. G.; Wang, H. S. Preparation of silver nanoparticles inwater-in-oil AOT reverse micelles. J. Colloid Interface Sci.2006,302,370-373.
    [95] Egorova, E. M.; Revina, A. A. Synthesis of metallic nanoparticles in reverse micelles in thepresence of quercetin. Colloids Surf. A2000,168,87-96.
    [96] Shemer, G.; Krichevski, O.; Markovich, G.; Molotsky, T.; Lubitz, I.; Kotlyar, A. B. Chiralityof Silver Nanoparticles Synthesized on DNA. J. Am. Chem. Soc.2006,128,11006-11007.
    [97] Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G. DNA-templated assembly and electrodeattachment of a conducting silver wire. Nature1998,391,775-778.
    [98] Antonietti, M.; Wenz, E.; Bronstein, L.; Seregina, M. Synthesis and characterization of noblemetal colloids in block copolymer micelles. Adv. Mater.1995,7,1000-1005.
    [99] Bagwe, R. P.; Khilar, K. C. Effects of Intermicellar Exchange Rate on the Formation of SilverNanoparticles in Reverse Microemulsions of AOT. Langmuir2000,16,905-910.
    [100] Zhang, Z. Q.; Patel, R. C.; Kothari, R.; Johnson, C. P.; Friberg, S. E.; Aikens, P. A. StableSilver Clusters and Nanoparticles Prepared in Polyacrylate and Inverse Micellar Solutions.J. Phys. Chem. B2000,104,1176-1182.
    [101] Yang, R.; Sui, C.; Gong, J.; Qu, L. Silver nanowires prepared by modified AAO templatemethod. Mater. Lett.2007,61,900-903.
    [102] Nicewarner-Pena, S. R.; Freeman, R. G.; Reiss, B. D.; He, L.; Pena, D. J.; Walton, I. D.;Cromer, R.; Keating, C. D.; Natan, M. J. A. Submicrometer Metallic Barcodes. Science2001,294,137-141.
    [103] Ito, T.; Okazaki, S. review article Pushing the limits of lithography. Nature2000,406,1027-1031.
    [104] Haynes, C.; Van Duyne, R. Nanosphere Lithography: A Versatile Nanofabrication Tool forStudies of Size-Dependent Nanoparticle Optics. J. Phys. Chem. B2001,105,5599-5611.
    [105] Stewart, C. R.; Anderton, M. E.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.;Nuzzo, R. G. Nanostructured Plasmonic Sensors. Chem. Rev.2008,108,494-521.
    [106] Le Ru, E. C.; Etchegoin, P. G.; Grand, J.; Felidj, N.; Aubard, J.; Levi, G.; Hohenau, A.;Krenn, J. R. Curr. Surface enhanced Raman spectroscopy on nanolithography-preparedsubstrates. Appl. Phys.2008,8,467-470.
    [107] Reyntjens, S.; Puers, R. Focused ion beam induced deposition: fabrication ofthree-dimensional microstructures and Young's modulus of the deposited material. J.Micromech. Microeng.2000,10,181-188.
    [108] Fischer, U. C.; Zingsheim, H. P. Submicroscopic pattern replication with visible light. J Vac.Sci. Technol.1981,19,881-885.
    [109] Xu, Q.; Bao, J.; Capasso, F.; Whitesides, G. Surface Plasmon Resonances of Free-StandingGold Nanowires Fabricated by Nanoskiving. Angew. Chem., Int. Ed.2006,45,3631-3635.
    [110] Sun, Y.; Xia, Y. Increased Sensitivity of Surface Plasmon Resonance of Gold NanoshellsCompared to That of Gold Solid Colloids in Response to Environmental Changes. Anal.Chem.2002,74,5297-5305.
    [111] Mock, J. J.; Smith, D. R.; Schultz, S. Local Refractive Index Dependence of PlasmonResonance Spectra from Individual Nanoparticles. Nano Lett.2003,3,485-491.
    [112] McPhillips, J.; Murphy, A.; Jonsson, M. P.; Hendren, W. R.; Atkinson, R.; Hoo k,F.; Zayats, A. V.; Pollard, R. J. High-Performance Biosensing Using Arrays ofPlasmonic Nanotubes. ACS Nano2010,4,2210–2216.
    [113] Marinakos, S. M.; Chen, S. H.; Chilkoti, A. Plasmonic Detection of a Model Analyte inSerum by a Gold Nanorod Sensor. Anal. Chem.2007,79,5278-5283.
    [114] Cheng, C. S.; Chen, Y. Q.; Lu, C. J. Organic vapour sensing using localized surface plasmonresonance spectrum of metallic nanoparticles self assemble monolayer. Talanta2007,73,358-365.
    [115] Chen, K. J.; Lu, C. J. A vapor sensor array using multiple localized surface plasmonresonance bands in a single UV–vis spectrum. Talanta2010,81,1670-1675.
    [116] Martin-Moreno, L. Plasmonic circuits: Detecting unseen light. Nat. Phys.2009,5,457-458
    [117] Economou, E. N. Surface Plasmons in Thin Films. Phys. Rev.1969,182,539-554.
    [118] Zia, R.; Selker, M. D.; Brongersma, M. L. Leaky and bound modes of surface plasmonwaveguides. Phys. Rev. B2005,71,165431-165444.
    [119] Akimov, A. V.; Mukherjee, A.; Yu, C. L.; Chang, D. E.; Zibrov, A. S.; Hemmer, P. R.; Park,H.; Lukin, M. D. Generation of single optical plasmons in metallic nanowires coupled toquantum dots. Nature2007,450,402-406.
    [120] Yan, R.; Pausauskie, P.; Huang, J.; Yang, Direct photonic–plasmonic coupling and routing insingle nanowires. P. Proc. Natl. Acad. Sci.2009,106,21045-21050.
    [121] Link, S.; El-Sayed, M A. Spectral Properties and Relaxation Dynamics of Surface PlasmonElectronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B1999,103,8410-8426.
    [122] Maier, S. A. Local detection of electromagnetic energy transport below the diffraction limitin metal nanoparticle plasmon waveguides. Nat. Mater.2003,2,229-232.
    [123] Ditlbacher, H.; Hohenau, A.; Wagner, D.; Kreibig, U.; Rogers, M.; Hofer, F.; Aussenegg, F.R.; Krenn, J. R. Silver Nanowires as Surface Plasmon Resonators. Phys. Rev. Lett.2005,95,257403-257406.
    [124] Graff, A.; Wagner, D.; Ditlbacher, H.; Kreibig, Silver nanowires. U. Eur. Phys. J. D2005,34,263-269.
    [125] Maier, S. A.; Brongersma, M. L.; Kik, P. G.; Atwater, H. A. Observation of near-fieldcoupling in metal nanoparticle chains using far-field polarization spectroscopy. Phys. Rev. B2002,65,193408-193411.
    [126] Engheta, N. Circuits with Light at Nanoscales: Optical Nanocircuits Inspired byMetamaterials. Science2007,317,1698-1702.
    [127] Sanders, A. W.; Routenberg, D. A.; Wiley, B. J.; Xia, Y.; Dufresne, E. R.; Reed, M. A.Observation of Plasmon Propagation, Redirection, and Fan-Out in Silver Nanowires. NanoLett.2006,6,1822-1826.
    [128] Fang, Y.; Li, Z.; Huang, Y.; Zhang, S.; Nordlander, P.; Halas, N. J.; Xu, H. Branched SilverNanowires as Controllable Plasmon Routers. Nano Lett.2010,10,1950-1954.
    [129] Pyayt, A. L.; Wiley, B.; Xia, Y.; Chen, A.; Dalton, L. Nat. Integration of photonic and silvernanowire plasmonic waveguides. Nanotechnol.2008,3,660-665.
    [130] LeRu, E.; Meyer, M.; Etchegoin, P. Proof of Single-Molecule Sensitivity in SurfaceEnhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique. J. Phys. Chem.B2006,110,1944-1948.
    [131] Tam, F.; Goodrich, G. P.; Johnson, B. R.; Halas, N. J. Plasmonic Enhancement of MolecularFluorescence. Nano Lett.2007,7,496-501.
    [132] Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R.; Feld, M. Ultrasensitive Chemical Analysis byRaman Spectroscopy. Chem. Rev.1999,99,2957-2976.
    [133] Kinkhabwala, A.; Yu, Z.; Fan, S.; Avlasevich, Y.; Mullen, K.; Moerner, W. E. Largesingle-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat.Photonics2009,3,654-657.
    [134] Zhang, J.; Fu, Y.; Liang, D.; Zhao, R. Y.; Lakowicz, J. R. Enhanced Fluorescence Images forLabeled Cells on Silver Island Films. Langmuir2008,24,12452-12457.
    [135] Zhang, J.; Fu, Y.; Chowdhury, M. H.; Lakowicz, J. R. Metal-Enhanced Single-MoleculeFluorescence on Silver Particle Monomer and Dimer: Coupling Effect between MetalParticles. Nano Lett.2007,7,2101-2107.
    [136] Thomas, M.; Greffet, J.-J.; Carminati, R.; Arias-Gonzalez, J. R. Single-moleculespontaneous emission close to absorbing nanostructures. Appl. Phys. Lett.2004,85,3863-3865.
    [137] Kuhn, S.; Hakanson, U.; Rogobete, L.; Sandoghdar, V. Enhancement of Single-MoleculeFluorescence Using a Gold Nanoparticle as an Optical Nanoantenna. Phys. Rev. Lett.2006,7,017402-017406.
    [138] Moskovits, M. Surface-enhanced Raman spectroscopy: a brief retrospective. J. RamanSpectrosc.2005,36,485-496.
    [139] Banholzer, M. J.; Millstone, J. E.; Qin, L.; Mirkin, C. A. Rationally designed nanostructuresfor surface-enhanced Raman spectroscopy. Chem. Soc. Rev.2008,37,885-897.
    [140] Rycenga, M.; Camargo, P. H. C.; Li, W.; Moran, C. H.; Xia, Y. Understanding the SERSEffects of Single Silver Nanoparticles and Their Dimers, One at a Time. J. Phys. Chem. Lett.2010,1,696-703.
    [141] Kneipp, J.; Kneipp, H.; Kneipp, K. SERS—a single-molecule and nanoscale tool forbioanalytics. Chem. Soc. Rev.2008,37,1052-1060.
    [142] Sha, M. Y.; Xu, H.; Natan, M. J.; Cromer, R. Surface-Enhanced Raman Scattering Tags forRapid and Homogeneous Detection of Circulating Tumor Cells in the Presence of HumanWhole Blood. J. Am. Chem. Soc.2008,130,17214-17215.
    [143] Porter, M. D.; Lipert, R. J.; Siperko, L. M.; Wang, G.; Narayanan, R. SERS as a bioassayplatform: fundamentals, design, and applications. Chem. Soc. Rev.2008,37,1001-1011.
    [144] Kneipp, J.; Kneipp, H.; Wittig, B.; Kneipp, K. Following the Dynamics of pH in Endosomesof Live Cells with SERS Nanosensors. J. Phys. Chem. C2010,114,7421-7426.
    [145] Kruszewski, S.; Malak, H.; Ziomkowska, B.; Cyrankiewicz, M. Proc. SERS and MEF:promising techniques for biomedicine SPIE2006,6158.
    [146] Chen, Y.; Munechika, K.; Ginger, D. S. Dependence of Fluorescence Intensity on theSpectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles.Nano Lett.2007,7,690-696.
    [147] Rubim, J. C. Surface-enhanced Raman scattering (SERS) on silver electrodes as a technicaltool in the study of the electrochemical reduction of cyanopyridines and in quantitativeanalysis. Journal of Electroanalytical Chemistry1987,220,339-350.
    [148] Sheng, R. S.; Ni, F.; Cotton, T. M.; Determination of purine bases by reversed-phasehigh-performance liquid chromatography using real-time surface-enhanced Ramanspectroscopy. Analytical Chemistry1991,63,437-442.
    [149] Carron, K.; Mullen, K.; Lanouette, M.; Angersbach, H. Selective-Ultratrace Detection ofMetal Ions with SERS. Applied Spectroscopy1991,45,420-423.
    [150] Ramon, A.; Alvarez, P.; Luis, M. Traps and cages for universal SERS detection. Chem. Soc.Rev.2012,41,43–51.
    [151] Chang, K. Furtak, T. E. Surface Enhanced Raman Scattering, Plenum Press, New York,1982.
    [152] Kelly, K.; Coronado, E.; Zhao, L.; Schatz, G. The Optical Properties of Metal Nanoparticles:The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B2003,107,668-677.
    [153] Doering, W. E.; Nie, S. Single-Molecule and Single-Nanoparticle SERS: Examining theRoles of Surface Active Sites and Chemical Enhancement. J. Phys. Chem. B2002,106,311-317.
    [154] Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at asilver electrode. Chemical Physics Letters1974,26,163-166.
    [155] Kelly, K.; Coronado, E.; Zhao, L.; Schatz, G. The optical properties of metal nanoparticles:The influence of size, shape, and dielectric environment. J. Phys. Chem. B2003,107,668-677.
    [156] Moskovits, M. Surface roughness and the enhanced intensity of Raman scattering bymolecules adsorbed on metals. Journal of Chemical Physics1978,69,4159-4164.
    [157] Fan, M.; Brolo, A. G. Silver nanoparticles self assembly as SERS substrates with near singlemolecule detection limit. Physical Chemistry Chemical Physics2009,11,7381-7389.
    [158] Aroca, R. Surface enhanced vibrational spectroscopy, Wiley, Hoboken, NJ,2006.
    [159] Le Ru, E. C.; Etchegoin, P. G. Principles of Surface-Enhanced Raman Spectroscopy andRelated Plasmonic Effects, Elsevier, Amsterdam; Boston,2009.
    [160] Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.;Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J. Self-assembledmetal colloid monolayers: An approach to SERS substrates. Science1995,267,1629-1632.
    [161] Ma, Z. F.; Tian, L.; Qiang, H. A facile approach for self-assembled gold nanorods monolayerfilms and application in surface-enhanced Raman spectroscopy. Journal of Nanoscienceand Nanotechnology2009,9,6716-6720.
    [162] Toderas, F.; Baia, M.; Baia, L.; Astilean, S. Controlling gold nanoparticle assemblies forefficient surface-enhanced Raman scattering and localized surface plasmon resonancesensors. Nanotechnology2007,18,255702-255707.
    [163] Wang, C. G.; Chen, Y.; Ma, Z. F.; Wang, T. T.; Su, Z. M. Generalized fabrication ofsurfactant-stabilized anisotropic metal nanoparticles to amino-functionalized surfaces:Application to surface-enhanced raman spectroscopy. Journal of Nanoscience andNanotechnology2008,8,5887-5895.
    [164] Zhai, J. F.; Wang, Y. L.; Zhai, Y. M.; Dong, S. J. Rapid fabrication of Au nanoparticle filmswith the aid of centrifugal force. Nanotechnology2009,20,055609-055615.
    [173] Lee, S. J.; Baik, J. M.; Moskovits, M. Polarization-Dependent Surface-Enhanced RamanScattering from a Silver-Nanoparticle-Decorated Single Silver Nanowire. Nano Letters2008,8,3244-3247.
    [165] Lucotti, A.; Pesapane, A.; Zerbi, G. Use of a geometry optimized fiber-opticsurface-enhanced Raman scattering sensor in trace detection. Applied Spectroscopy2007,61,260-268.
    [167] Ko, H.; Singamaneni, S.; Tsukruk, V. V. Nanostructured surfaces and assemblies as SERSmedia. Small2008,4,1576-1599.
    [168] Fan, M.; Brolo, A. G. Silver nanoparticles self assembly as SERS substrates with near singlemolecule detection limit. Physical Chemistry Chemical Physics2009,11,7381-7389.
    [169] Addison, C. J.; Brolo, A. G. Nanoparticle-containing structures as a substrate forsurface-enhanced raman scattering. Langmuir2006,22,8696-8702.
    [170] Zhang, J.; Li, S.; Wu, J.; Schatz, G.; Mirkin, C. Plasmon-Mediated Synthesis of SilverTriangular Bipyramids. Angew. Chem. Int. Ed.2009,48,7787-7791.
    [171] Daniels, J. K.; Chumanov, G. Nanoparticle-Mirror sandwich substrates for surface-enhancedRaman scattering. Journal of Physical Chemistry B2005,109,17936-17942.
    [172] Cheng, H. W.; Huan, S.Y.; Wu, H. L.; Shen, G. L.; Yu, R. Q. Surface-enhanced Ramanspectroscopic detection of a bacteria biomarker using gold nanoparticle immobilizedsubstrates. Analytical Chemistry2009,81,9902-9912.
    [183] Pieczonka, N. P.; Goulet, P. J.; Aroca, R. F. Chemically Selective Sensing throughLayer-by-Layer Incorporation of Biorecognition into Thin Film Substrates forSurface-Enhanced Resonance Raman Scattering. Journal of the American Chemical Society2006,128,12626-12627.
    [174] Brady, C. I.; Mack, N. H.; Brown, L. O.; Doorn, S. K. Self-assembly approach tomultiplexed surface-enhanced Raman spectral-encoder beads. Analytical Chemistry2009,81,7181-7188.
    [175] Wang, H.; Kundu, J.; Halas, N. J. Plasmonic nanoshell arrays combine surface-enhancedvibrational spectroscopies on a single substrate. Angew. Chem. Int. Ed.2007,46,9040-9044.
    [176] Wang, H.; Kundu, J.; Halas, N. J. Plasmonic nanoshell arrays combine surface-enhancedvibrational spectroscopies on a single substrate. Angewandte Chemie-International Edition2007,46,9040-9044.
    [177] Cerf, A.; Molnar, G.; Vieu, C. Novel approach for the assembly of highly efficient SERSsubstrates, Applied Materials&Interfaces2009,1,2544-2550.
    [178] Pazos-Perez, N.; Ni, W.; Schweikart, A.; Alvarez-Puebla, R. A.; Fery, A.; Liz-Marzan, L. M.Highly uniform SERS substrates formed by wrinkle-confined drying of gold colloidsChemical. Science2010,1,174-178.
    [179] Oh, M. K.; Yun, S.; Kim, S. K.; Park, S. Effect of layer structures of gold nanoparticle filmson surface enhanced Raman scattering. Analytica Chimica Acta2009,649,111-116.
    [180] Ma, J. Lu, J. J.; Lu, L. H.; Hu, J. W.; Pan, J. G.; Xu, W. Q. Sonication-mediated filmassembly of gold nanoparticles at a water/hexane interface used as a SERS substrate.Chemical Journal of Chinese Universities-Chinese2009,30,2288-2290.
    [181] Porter, M. D.; Lipert, R. J.; Siperko, L. M.; Wang, G.; Narayanan, R. SERS as a bioassayplatform: fundamentals, design, and applications. Chem. Soc. Rev.2008,37,1001-1011.
    [182] Yun, S.; Park, Y. K.; Kim, S. K.; Park, S. Linker-molecule-free gold nanorod layer-by-layerfilms for surface-enhanced Raman scattering. Analytical Chemistry2007,79,8584-8589.
    [183] Oh, M. K.; Yun, S.; Kim, S. K.; Park, S. Effect of layer structures of gold nanoparticle filmson surface enhanced Raman scattering. Analytica Chimica Acta2009,649,111-116.
    [184] Wang, Y. L.; Chen, H. J.; Wang, E. K. Facile fabrication of gold nanoparticle arrays forefficient surface-enhanced Raman scattering. Nanotechnology2008,19,105604-105609.
    [185] Lu, Y.; Liu, G. L.; Lee, L. P.; High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scatteringsubstrate. Nano Letters2005,5,5-9.
    [186] De Jesus, M. A.; Giesfeldt, K. S.; Oran, J. M.; Abu-Hatab, N. A.; Lavrik, N. V.; Sepaniak, M.J. Nanofabrication of densely packed metal-polymer arrays for surface-enhanced ramanspectrometry. Applied Spectroscopy2005,59,1501-1508.
    [187] Gunnarsson, L.; Bjerneld, E. J.; Xu, H.; Petronis, S.; Kasemo, B.; Kall, M. Interparticlecoupling effects in nanofabricated substrates for surface-enhanced Raman scattering.Applied Physics Letters2001,78,802-804.
    [188] Yu, Q.; Guan, P.; Qin, D.; Golden, G.; Wallace, P. M. Inverted size-dependence ofsurface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Letters2008,8,1923-1928.
    [189] Theiss, J.; Pavaskar, P.; Echternach, P. M.; Muller, R. E.; Cronin, S. B. Plasmonicnanoparticle arrays with nanometer separation for high-performance SERS substrates. NanoLetters2010,10,2749-2754.
    [190] Martin, C. R. Nanomaterials: A membrane-based synthetic approach. Science1994,266,1961-1966.
    [191] Yao, J. L.; Tang, J.; Wu, D. Y.; Sun, D. M.; Xue, K. H.; Ren, B.; Mao, B. W.; Tian, Z. Q.Surface enhanced Raman scattering from transition metal nano-wire array and thetheoretical consideration. Surface Science2002,514,108-116.
    [192] Wang, Y.; Becker, M.; Wang, L.; Liu, J.; Scholz, R.; Peng, J.; Gosele, U.; Christiansen, S.;Kim, D. H.; Steinhart, M. Nanostructured Gold Films for SERS by BlockCopolymer-Templated Galvanic Displacement Reactions. Nano Letters2009,9,2384-2389.
    [193] Bartlett, P. N.; Birkin, P. R.; Ghanem, M. A. Electrochemical deposition of macroporousplatinum, palladium and cobalt films using polystyrene latex sphere templates. ChemicalCommunications2000, DOI:10.1039/B004398M,1671-1672.
    [194] Cintra, S.; Abdelsalam, M. E.; Bartlett, P. N.; Baumberg, J. J.; Kelf, T. A.; Sugawara, Y.;Russell, A. E. Sculpted substrates for SERS. Faraday Discussions2006,132,191-199.
    [195] D.P. dos Santos, G.F.S. Andrade, A.C. Sant’Ana, M.L.A. Temperini, Production of efficientSERS substrates by depositing gold over a polystyrene beads template. Quimica Nova2010,33,2093-2097.
    [196] Tuan, V. D. Surface-enhanced Raman spectroscopy using metallic nanostructures.Trac-Trends in Analytical Chemistry1998,17,557-582.
    [197] Stokes, D. L.; Chi, Z. H.; Tuan, V. D. Surface-Enhanced-Raman-Scattering-InducingNanoprobe for Spectrochemical Analysis. Applied Spectroscopy2004,58,292-298.
    [198] White, D. J.; Stoddart, P. R.; Nanostructured optical fiber with surface-enhanced Ramanscattering functionality. Optics Letters2005,30,598-600.
    [199] Haynes, C. L.; Van Duyne, R.P.; Plasmon-sampled surface-enhanced Raman excitationspectroscopy. Journal of Physical Chemistry B2003,107,7426-7433.
    [200] Eustis, S.; El-sayed, M. A. Why gold nanoparticles are more precious than pretty gold: noblemeta surface plasmon resonance and its enhancement of the radiative and nonradiativepropertie of nanocrystals of different shapes. Chem. Soc. Rev.2006,35,209-217.
    [201] Lee, J. H.; Park, J. H.; Kim, J. S. et al High efficiency polymer solar cells with wetdeposited plasmonic gold nanodots. Organic Electronics2009,10,416-420.
    [202] Burda, C.; Chen X. B.; Narayanan, R. et al. Chemistry and properties of nanocrystals ofdifferent shapes. Chem. Rev.2005,105,1025-1102.
    [203] Yang, W. L.; Huang, C. H.; Chang, H. T. Gold nanoparticle probes for the detection ofmercury, lead and copper ions. Analyst2011,136,863-871.
    [204] Yong, K. T.;. Roy, I.; Swihart, M. T.; Prasad, P. N. Multifunctional nanoparticles asbiocompatible targeted probes for human cancer diagnosis and therapy. J. Mater. Chem.2009,19,4655-4672.
    [205] Rycenga, M.; Wang, Z. P.; Gordon, E.; Cobley, C. M.; Schwartz, A. G.; Lo, C. S.; Xia,Y.N.Probing the photothermal effect of gold-based nanocages with Surface-Enhanced RamanScattering (SERS). Angew. Chem. Int. Ed.2009,48,9924-9927.
    [206] Xu, S P; Cao, Y. X.; Zhou, J.; Wang, X. N.; Wang, X. M.; Xu, W. Q. Plasmonicenhancement of fluorescence on silver nanoparticle films. Nanotechnology2011,22,275-715.
    [207] Zhou, J.; An J.; Tang B.; Xu, S.P.; Cao, Y. X.; Zhao, B.; Xu W.Q.; Chang, J. J.; Lombardi, J.R.Growth of tetrahedral silver nanocrystals in aqueous solution and their SERSenhancement. Langmuir2008,24,10407-10413.
    [208] Tang, B.; Wang, J. F.; Xu, S. P.; Afrin, T.; Xu, W. Q.; Sun, Lu.; Wang, X. G. Multifunctionalrealization of wool fabric with anisotropic silver nanoparticles. J. Coll. Inter. Sci.2011,356,513-518.
    [209] Millstone, J. E.; Hurst, S. J.; M_traux, G. S.; Cutler, J. I.; Mirkin, C. A. Colloidal gold andsilver triangular nanoprisms. Small2009,510,646-664.
    [210] Tang, B.; An, J.; Zheng, X. L.; Xu, S. P.; Li, D. M.; Zhou, J.; Zhao, B.; Xu, W. Q. Silvernanodisks with tunable size by heat aging. J. Phys. Chem. C2008,112,18361-18367.
    [211] Tang, B.; Xu, S. P.; An, J.; Zhao, B.; Xu, W. Q. Photoinduced shape conversion andreconstruction of silver nanoprisms. J. Phys. Chem. C2009,113,7025-7030.
    [212] Xu, S. P.; Tang, B.; Zheng, X. L.; Zhou, J.; An, J.; Ning, X. H.; Xu, W. Q. The facetselectivity of inorganic ions on silver nanocrystals in etching reaction. Nanotechnology2009,20,415601-415607.
    [213]宁晓华,徐抒平,董凤霞,等. Au-Ag三角纳米环单层膜的原位转化制备及SERS效应.高等学校化学学报,2009,30,159-163.
    [214] Xue, C.; Métraux, G. S.; Millstone, J. E.; Mirkin, C. A.Mechanistic study of photomediatedtriangular silver nanoprism growth. J. Am. Chem. Soc.2008,130,8337-8344.
    [215] Zheng, X. L.; Zhao, X. J.; Guo, D. W.; Tang, Bin.; Shao, Y. L.; Xu, S. P.; Xu, W. Q.Photochemical formation of silver nanodecahedra: structural selection by the excitationwavelength. Langmuir2009,25,3802-3807.
    [216] Jia, H.Y.; Xu, W.Q.; An J.; Li, D. M.; Zhao, B. A simple method to synthesize triangularsilver nanoparticles by light irradiation. Spectrochim. Acta, Part A2006,64,956-960.
    [217] Tang, B.; An, J.; Zheng, X. L.; Xu, S. P.; Li, D. M.; Zhou, J.; Zhao, B.; Xu, W. Q. Silvernanodisks with tunable Size by heat aging. J. Phys. Chem. C.2008112,18361-18367.
    [218] Zheng, X.; Xu, W.; Corredor, C.; Xu, S.; An, J.; Zhao, B.; Lombardi, J. R. Laser-inducedgrowth of monodisperse silver nanoparticles with tunable surface plasmon resonanceproperties and a wavelength self-limiting effect.J. Phys. Chem. C.2007,111,14962-14967.
    [219] Chen, S. H.; Carroll, D. L. Silver nanoplates: size control in two dimensions and formationmechanisms. J. Phys. Chem. B.2004,108,5500-5506.
    [220] Wu, X.; Redmond, P, L.; Liu, H.; Chen, Y.; Steigerwald, M.; Brus, L. Photovoltagemechanism for room light conversion of citrate stabilized silver nanocrystal seeds to largenanoprisms. J. Am. Chem. Soc.2008,130,9500-9506.
    [221] Matijevie, E. Preparation and properties of uniform size colloids. Chem. Mater.1993,5,412-426.
    [222] Lee, S. M.; Cho, S. N.; Cheon, J. Anosotropic shpae control of colloid ingornic nanocrystals.Adv. Mater.2003,15,441-444.
    [223] Sau, T.K.; Murplhy, J. Room temperature, high-yield synthesis of multiple shapes of goldnanoparticles in aqueous solution. J. Am. Chem. Soc.2004,126,8648-8649.
    [224] Zhang, J.; Gao, Y.; Puebla, R. A.; Buriak, J. M.; Fenniri, H. Synthesis and SERS propertiesof nanocrystalline gold octahedra generated from thermal decomposition of HAuCl4inblock copolymers. Adv. Mater.2006,18,3233-3237.
    [225] Sun, J. H.; Guan, M. Y.; Gao, C. L.; Zhu, J. M. Selective synthesis of gold cuboid anddecahedral nanoparticles regulated and controlled by Cu2+ions. Cryst. Growth Des.2008,8,906-910.
    [226] Tosatti, E.; Prestipino, S. Materials science: Weird gold nanowires. Science2000,289,561-563.
    [227] Becker, R.; Liedberg, B.; Kall, P. O. CTAB promoted synthesis of Au nanorods-Temperatureeffects and stability considerations. J. Colloid Interface Sci.2010,343,25-30.
    [228] Kim, J. U.; Cha, S. H.; Shin, K.; Lee, J. C. Effects of deletions at the C-terminus of tobaccoacetohydroxy acid synthase on the enzyme activity and cofactor binding. Adv. Mater.2004,416,59-68.
    [229] Chen, S.; Carroll, D. L. Synthesis and Characterization of Truncated Triangular SilverNanoplates. Nano Lett.2002,2,1003-1007.
    [230] Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinducedconversion of silver nanospheres to nanoprisms. Science2001,294,1901-1903.
    [231] Jin, R.; Cao, Y.; Hao, E.; Metraus, G. S.; Schatz, G. C.; Mirkin, C. A. Controlling anisotropicnanoparticle growth through plasmon excitation. Nature2003,425,487-490
    [232] Sun, Y.; Mayers, B.; Xia, Y.; Transformation of silver nanospheres into nanobelts andtriangular nanoplates through a thermal process. Nano Lett.2003,3,675-679.
    [233] Shankar, S. S.; Rai, A.; Ankamwar, B.; Singh, A.; Ahmad, A.; Sastry, M. Biologicalsynthesis of triangular gold nanoprisms. Nat. Mater.2004,3,482-488.
    [234] Sharma, J.; Vijayamohanan, k. P. Organic dye molecules as reducing agent for the synthesisof electroactive gold nanoplates. Journal of Colloid and Interface Science2006,298,679–684.
    [235] Zhang, J. Q.; L, W. J.; C, Y. W.; Z, X. K.; H, S. X.; M, H. Y. A direct and facile syntheticroute for micron-scale gold prisms and fabrication of gold prism thin films on solidsubstrates. Materials Chemistry and Physics2010,119,188–194.
    [236] Xie, J.; Zhang Q, Lee, J.Y; Wang, D. C The synthesis of SERS active gold nanoflower tagsfor in vivo applications. ACS Nano2008,2,2473-2480.
    [237] Giannini, V; Rodríguez, O. R.; Sánchez-Gil, J. A. Surface plasmon resonances of metallicnanostars/nanoflowers for surface enhanced Raman scattering. Plasmonics2010,5,99-104.
    [238] Sau, T. K.; Murphy, C. J. Room temperature, high-yield synthesis of multiple shapes of goldnanoparticles in aqueous solution. J. Am. Chem. Soc.2004,126,8648-8649.
    [239] Nehl, C. L.; Liao, H.; Hafner, J. H. Optical properties of starshaped gold nanoparticles.Nano Lett2006,6,683-688.
    [240] Ahmed, W.; Kooij, E. S.; Silfhout, A.; Poelsema, B. Controlling the morphology ofmulti-branched gold nanoparticles. Nanotechnology2010,21,125605-125610.
    [241] Xu, X.; Jia, J.; Yang, X.; Dong, S. A templateless, surfactantless, simple electrochemicalroute to a dendritic gold nanostructure and its application to oxygen reduction. Langmuir2010,26,7627-7631.
    [242] Han, X.; Wang, D.; Huang, J.; Liu, D.; You, T. Ultrafast growth of dendritic goldnanostructures and their applications in methanol electro-oxidation and surface-enhancedRaman scattering. J Colloid Interface Sci2011,354,577-584.
    [243] Tang, X. L.; Jiang, P.; Ge, G. L.; Tsuji, M.; Xie, S. S.; Guo, Y. J. Poly(nvinyl-2-pyrrolidone)(PVP)-capped dendritic gold nanoparticles by a one-step hydrothermal route and their highSERS effect. Langmuir2008,24,1763-1768.
    [244] Selvan, T. S. Novel nanostructures of gold-polypyrrole composites. Chem Commun1998,3,351-352.
    [245] Bakr, O. M.; Wunsch, B. H.; Stellacci, F. High-yield synthesis of multi-branched urchin-likegold nanoparticles. Chem Mater2006,18,3297-3301.
    [246] Jeong, G.; Lee, Y.; Kim, M.; Han, S. High-yield synthesis of multi-branched goldnanoparticles and their surface-enhanced Raman scattering properties. J Colloid InterfaceSci2009,329,97-102.
    [247] Yuan, H.; Ma, W.; Chen, C.; Zhao, J.;Liu, J.; Zhu, H.; Gao, X. Shape and SPR evolution ofthorny gold nanoparticles promoted by silver ions. Chem Mater2007,19,1592-1600.
    [248] Cao, Y. C.; Jin, R.; C. Mirkin, A. Nanoparticles with Raman spectroscopic fingerprints forDNA and RNA detection. Science2002,297,1536-1540.
    [249] Nelson, E. C.; Braun, P. V. Chemistry. Enhancing colloids through the surface. Science2007,318,924-825.
    [250] Jung, D. R.; Kim, J.; Nam, S.; Nahm, C.; Choi, H.; Kim, J. I.; Lee, J.; Kim, C.; Park, B.Photoluminescence enhancement in CdS nanoparticles by surface-plasmon resonance. Appl.Phys. Lett.2011,99,041906-041908.
    [251] Derkacs, D.; Lim, S. H.; Matheu, P.; Mar, W.; Yu, E. T. Improved performance ofamorphous silicon solar cells via scattering from surface plasmon polaritons in nearbymetallic nanoparticles. Appl. Phys. Lett.2006,89,093103-093105.
    [252] Nakayama, K.; Tanabe, K.; Atwater, H. A. Plasmonic nanoparticle enhanced lightabsorption in GaAs solar cells. Appl. Phys. Lett.2008,93,121904-121906.
    [253] Rand, B. P.; Peumans, P.; Forrest, S. R. Long-range absorption enhancement in organictandem thin-film solar cells containing silver nanoclusters. J. Appl. Phys.2004,96,7519-7526.
    [254] Szunerits, S.; Boukherroub, R. Electrochemical investigation of gold/silica thin filminterfaces for electrochemical surface plasmon resonance studies. Electrochem Commun,2006,8,439-444.
    [255] Weisbecker, C. S.; Merritt, M. V.; Whitesides, G. M. Molecular Self-Assembly of AliphaticThiols on Gold Colloids. Langmuir,1996,12,3763-3772.
    [256] Mayya, K. S.; Patil, V.; Sastry, M. On the Stability of Carboxylic Acid Derivatized GoldColloidal Particles: The Role of Colloidal Solution pH Studied by Optical AbsorptionSpectroscopy Langmuir,1997,13,3944-3947.
    [257] Norman, T. J.; Grant, C. D.; Magana, D. Near Infrared Optical Absorption of GoldNanoparticle Aggregates. J. Phys. Chem. B2002,106,7005-7012.
    [258] Mie, G. BeitrAge zur Optik trüber Medien, speziell kolloidaler Metall sungen Ann. Phys.1908,25,377-445.
    [259] Millstone, J. E.; Hurst, S. J.; Me′traux, G. S.; Cutler, J. I.; Mirkin, C. A. Colloidal Gold andSilver Triangular Nanoprisms. small2009,5,646–664.
    [260] Nikoobakht, B.; El-Sayed, M. A. Preparation and Growth Mechanism of Gold Nanorods(NRs) Using Seed-Mediated Growth Method. Chem. Mater.2003,15,1957-1962.
    [261] Pe′rez-Juste, J.; Pastoriza-Santos, I.; Liz-Marza′n, L. M.; Mulvaney, P. Coord. Goldnanorods: Synthesis, characterization and applications. Chem. Rev.2005,249,1870-1901.
    [262] Sau, T. K.; Murphy, C. J. Room Temperature, High-Yield Synthesis of Multiple Shapes ofGold Nanoparticles in Aqueous Solution. J. Am. Chem. Soc.2004,126,8648-8649.
    [263] Xie, Z.; Wang, Z.; Ke, Y.; Zha, Z.; Jiang, C. Nanosilver Fabrication under the Control ofLigands Containing Pyridyl Group in Solution Phase with Photoreduction Method. Chem.Lett.2003,32,686-610.
    [264] Ha, T. H.; Koo, H. J.; Chung, B. H. J.; Shape-Controlled Syntheses of Gold Nanoprisms andNanorods Influenced by Specific Adsorption of Halide Ions. Phys. Chem. C2007,111,1123-1130.
    [265] Jana, N. R.; Gearheart, L. C.; Murphy, J. Seed-Mediated Growth Approach forShape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using aSurfactant Template. Adv. Mater.2001,13,1389-1393.
    [266] Pietrobon, B.; Kitaev, V. Photochemical Synthesis of Monodisperse Size-Controlled SilverDecahedral Nanoparticles and Their Remarkable Optical Properties. Chem. Mater.2008,20,5186-5190.
    [267] Pietrobon, B.; McEachran, M.; Kitaev, V. Synthesis of Size-Controlled Faceted PentagonalSilver Nanorods with Tunable Plasmonic Properties and Self-Assembly of These Nanorods.ACS Nano2008,3,21-26.
    [268] Zeng, J.; Zheng, Y.; Rycenga, M.; Tao, J.; Li, Z.-Y.; Zhang, Q.; Zhu, Y.; Xia, Y. Controllingthe Shapes of Silver Nanocrystals with Different Capping Agents. J. Am. Chem. Soc.2010,132,8552-8553.
    [269] Kilin, D. S.; Prezhdo, O. V.; Xia, Y. Shape-controlled synthesis of silver nanoparticles: Abinitio study of preferential surface coordination with citric acid. Chem. Phys. Lett.2008,458,113-116.
    [270] Bourg, M. C.; Badia, A.; Lennox, R. B. Gold Sulfur Bonding in2D and3D Self-AssembledMonolayers: XPS Characterization. J. Phys. Chem. B2000,104,6562-6567.
    [271] Li, C.; Cai, W.; Cao, B.; Sun, F.; Li, Y; Kan, C.; Zhang, L. Mass Synthesis of Large,Single-Crystal Au Nanosheets Based on a Polyol Process. Adv. Funct. Mater.2006,16,83-90.
    [272] Han, X.Y.; Wang, D. W.; Huang, J S.; Liu, D.; You, T.Y. Ultrafast growth of dendritic goldnanostructures and their applications in methanol electro-oxidation and surface-enhancedRaman scattering. Journal of Colloid and Interface Science2011,354,577–584.
    [273] Dollish, F. R.; Fateley, W. G.; Bentley, F. F. Eds. Characteristic Raman Frequencies ofOrganic Compounds; Wiley, New York,1974.
    [274] Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Van, Duyne R. R. Surface-Enhanced RamanSpectroscopy. Annual Review of Analytical Chemistry2008,1,601-626.
    [275] Tian, Z. Q.; Ren B. Adsorption and reaction at electrochemical interfaces as probed bysurface-enhanced Raman spectroscopy. Annu Rev. Phys. Chem.2004,55,197-229.
    [276] Bantz, K. C.; Meyer A. F.; Wittenberg, N. J.; Im, H.; Kurtulu, O.; Lee, S. H.; Lindquist, N.C.; Oh, S. H.; Haynes, C. L. Recent progress in SERS biosensing. Phys. Chem. Chem. Phys.2011,13,11551-11567.
    [277] Kneipp, J.; Kneipp, H.; Kneipp, K. SERS—a single-molecule and nanoscale tool forbioanalytics. Chem. Soc. Rev.2008,37,1052-1060.
    [278] Han, X. X.; Zhao, B.; Ozaki, Y. Surface-enhanced Raman scattering for protein detection.Anal Bioanal Chem.2009,394,1719-1727.
    [279] Xie, W.; Qiu, P.; Mao, C. Bio-imaging, detection and analysis by using nanostructures asSERS substrates. J. Mater. Chem.2011,21,5190-5202.
    [280] Campion, A.; Kambhampati, P. Surface-enhanced Raman scattering. Chem. Soc. Rev.1998,27,241-250.
    [281] Kim, K. L.; Lee, S. J.; Kim, K. Surface-Enhanced Raman Scattering of Benzyl PhenylSulfide in Silver Sol: Excitation-Wavelength-Dependent Surface-Induced Photoreaction. J.Phys. Chem. B2004,108,9216-9220.
    [282] Tian, Z. Q.; Ren, B.; Wu, D. Y. Surface-Enhanced Raman Scattering: From Noble toTransition Metals and from Rough Surfaces to Ordered Nanostructures. J. Phys. Chem. B2002,106,9463-948.
    [283] Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of MetalNanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B2003,107,668-677.
    [284] Halas, N. Playing with plasmons: tuning the optical resonant properties of metallicnanoshells. MRS Bull.2005,30,362-367.
    [285] Scwartberg, A. M.; Grant, C. D.; Wolcott, A.; Talley, C. E.; Huser, T. R.; Bogomolni, R.;Zhang, J. Z. Unique Gold Nanoparticle Aggregates as a Highly Active Surface-EnhancedRaman Scattering Substrate. J. Phys. Chem. B2004,108,19191-19197.
    [286] McLellan, J. M.; Xiong, Y. J.; Hu, M.; Xia, Y. N. Surface-enhanced Raman scattering of4-mercaptopyridine on thin films of nanoscale Pd cubes, boxes, and cages. Chem. Phys.Lett.2006,417,230-234.
    [287] Fleischmann, M.; Hendra, P. J.; McQuillan, A. Raman spectroscopy of pyridine adsorbed ata silver electrode J. Chem. Phys. Lett.1974,26,163-166.
    [288] Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman Spectrocelectrochemistry Part ⅠHetercoylic Aromatic and Apliphatic Amines Adsorbed on the Anoidzed Silver Electrode.J. Electroanal. Chem.1977,84,1-20.
    [289] Lee, P. C.; Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and goldsols. J. Phys. Chem.1982,86,3391-3395.
    [290] Leopold, N. Lendl B., A New Method for Fast Preparation of Highly Surface-EnhancedRaman Scattering (SERS) Active Silver Colloids at Room Temperature by Reduction ofSilver Nitrate with Hydroxylamine Hydrochloride. J. Phys. Chem. B2003,107,5723-5727.
    [291] Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.;Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J. Self-AssembledMetal Colloid Monolayers: An Approach to SERS Substrates. Science1995,267,1629-1632.
    [292] Schlegel, V. L.; Cotton, T. M. Silver-island films as substrates for enhanced Ramanscattering: effect of deposition rate on intensity. Anal. Chem.1991,63,241-247.
    [293] McFarland, A. D.; Young, M. A.; Dieringer, J. A.; Van Duyne, R. P. Wavelength-ScannedSurface-Enhanced Raman Excitation Spectroscopy. J. Phys. Chem. B2005,109,11279-11285.
    [294] Nie, S.; Emory, S. R.; Probing Single Molecules and Single Nanoparticles bySurface-Enhanced Raman Scattering. Science1997,275,1102-1106.
    [295] Michaels, A. M.; Nirmal, M.; Brus, L. E. Surface Enhanced Raman Spectroscopy ofIndividual Rhodamine6G Molecules on Large Ag Nanocrystals. J. Am. Chem. Soc.1999,121,9932-9939.
    [296] Talley, C. E.; Jackson, J. B.; Oubre, C.; Grady, N. K.; Hollars, C. W.; Lane, S. M.; Huser, T.R.; Nordlander, P.; Halas, N. J. Surface-Enhanced Raman Scattering from Individual AuNanoparticles and Nanoparticle Dimer Substrates. Nano Lett.2005,5,1569-1574.
    [297] Kneipp, K.; Haka, A. S.; Kneipp, H.; Badizadegan, K.; Yoshizawa, N.; Boone, C.;Shafer-Peltier, K. E.; Motz, J. T.; Dasari, R. R.; Feld, M. S. Surface-enhanced RamanSpectroscopy in single living cells using gold nanoparticles. Appl. Spectrosc.2002,56,150-154.
    [298] Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J. Surface-Enhanced Raman Spectroscopyof Self-Assembled Monolayers: Sandwich Architecture and Nanoparticle ShapeDependence. Anal. Chem.2005,77,3261-3266.
    [299] Zhang, J.; Li, X.; Sun, X.; Li, Y. Surface Enhanced Raman Scattering Effects of SilverColloids with Different Shapes. J. Phys. Chem. B2005,109,12544-12548.
    [300] Tiwari, V. S.; Oleg, T.; Darbha, G. K.; Hardy, W.; Singh, J. P.; Ray, P. C. Non-resonanceSERS effects of silver colloids with different shapes. Chem. Phys. Lett.2007,446,77-82.
    [301] Zhang, W. C.; Wu; X. L.; Kan; C. X.; Pan, F. M.; Chen, H. T.; Zhu, J.; Chu, P. K.Surface-enhanced Raman scattering from silver nanostructures with different morphologies.Appl. Phys. A2010,100,83-88.
    [302] An, J.; Tang, B.; Ning, X.; Zhou, J.; Xu, S.; Zhao, B.; Xu, W.; Corredor, C.; Lombardi, J. R.Photoinduced Shape Evolution: From Triangular to Hexagonal Silver Nanoplates. J. Phys.Chem. C2007,111,18055-18059.
    [303] Tang, B.; An, J.; Zheng, X.; Xu, S.; Li, D.; Zhou, J.; Zhao, B.; Xu, W. Silver Nanodisks withTunable Size by Heat Aging. J. Phys. Chem. C2008,112,18361-18367.
    [304] Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. PhotoinducedConversion of Silver Nanospheres to Nanoprisms. Science2001,294,1901-1903.
    [305] Sherry, L. J.; Jin, R. C.; Mirkin, C. A.; Schatz, G. C.; Van Duyne, R. P. Localized SurfacePlasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms. Nano Lett.2006,6,2060-2065.
    [306] Song, W.; Wang, Y.; Zhao, B. Surface-Enhanced Raman Scattering of4-Mercaptopyridineon the Surface of TiO2Nanofibers Coated with Ag Nanoparticles. J. Phys. Chem. C2007,111,12786-12791.
    [307] Guo, H.; Ding, L.; Mo, Y. Adsorption of4-mercaptopyridine onto laser-ablated gold, silverand copper oxide films: A comparative surface-enhanced Raman scattering investigation. J.Mol. Struct.2011,991,103-107.
    [308] Wang, Z.; Rothberg L. J. Origins of Blinking in Single-Molecule Raman Spectroscopy. J.Phys. Chem. B2005,109,3387-3391.
    [309] Hu, J.; Zhao, B.; Xu W.; Li, B.; Fan Y. Surface-enhanced Raman spectroscopy study on thestructure changes of4-mercaptopyridine adsorbed on silver substrates and silver colloids.Spectrochim. Acta A.2002,58,2827-34.
    [310] S, H.; Jung, Kim, K.; Kim, M. S. Raman spectroscopic investigation of the adsorption of4-mercaptopyridine on a silver-sol surface J. Mol. Struct.1997,407,139-147.
    [311] Chen, Y.; Wang, C.; Ma, Z.; Su, Z. Controllable colours and shapes of silvernanostructuresbased on pH: applicationto surface-enhanced Raman scattering. Nanotechnology2007,18,325602-325606.
    [312] Xu, S. P.; Tang, B.; Zheng, X. L.; Zhou, J.; An, J.; Ning, X. H.; Xu, W. Q. The facetselectivity of inorganic ions on silver nanocrystals in etching reactions. Nanotechnology,2009,20,415601-415607.
    [313] El-Sayed, I. H.; Huang, X.; El-Sayed, M. A. Surface plasmon resonance scattering andabsorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics:applications in oral cancer. Nano Lett.2005,5,829–834.
    [314] Daniel, M. C.; Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry,quantum-size-related properties, and applications toward biology, catalysis, andnanotechnology. Chem. Rev.2004,104,293–346.
    [315] Turkevich, J.; Hillier, J.; Stevenson, P. C. A study of the nucleation and growth processes inthe synthesis of colloidal gold. Discuss. Faraday Soc.1951,11,55–75.
    [316] Kimling, J.; Maier, M., Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich method forgold nanoparticle synthesis revisited. J. Phys. Chem. B2006,110,15700–15707.
    [317] Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse goldsuspensions. Nat. Phys. Sci.1973,241,20–22.
    [318] Kim, F.; Song, J. H.; Yang, P. Photochemical synthesis of gold nanorods. J. Am. Chem. Soc.2002,124,14316–14317.
    [319] Okitsu, K.; Sharyo, K.; Nishimura, R. One-pot synthesis of gold nanorods by ultrasonicirradiation: the effect of pH on the shape of the gold nanorods and nanoparticles. Langmuir2009,25,7786–7790.
    [320] Radziuk, D.; Grigoriev, D.; Zhang, W.; Su, D.; Mowald, H.; Shchukin, D.Ultrasoundassisted fusion of preformed gold nanoparticles, J. Phys. Chem. C2010,114,1835–1843.
    [321] Feng, C.; Gu, L.; Yang, D.; Hu, J.; Lu, G.; Huang, X. Size-controllable gold nanoparticlesstabilized by PDEAEMA-based double hydrophilic graft copolymer. Polymer2009,50,3990–3996.
    [322] Chen, S.; Guo, C.; Hu, G. H.; Wang, J.; Ma, J. H.; Liang, X. F.; Zheng, L.; Liu, H. Z. Effectof hydrophobicity inside PEO–PPO–PEO block copolymer micelles on thestabilization ofgold nanoparticles: experiments. Langmuir2006,22,9704–9711.
    [323] Leiva, A.; Saldías, C.; Quezada, C.; Toro-Labbé, A.; Espinoza-Beltrán, F. J.; Urzúa, M.;Gargallo,L.;Radic,D.Gold-copolymernanoparticles:poly(caprolactone)/poly(N-vinyl-2-pyrrolydone) biodegradable triblock copolymeras stabilizer and reductant. Eur. Polym. J.2009,45,3035–3042.
    [324] Song, W. J.; Du, J. Z.; Sun, T. M.; Zhang, P. Z.; Wang, J. Gold nanoparticles capped withpolyethyleneimine for enhanced siRNA delivery. Small2010,6,239–246.
    [325] Kemal, L.; Jiang, X. C.; Wong, K.; Yu, A. B. Experiment and theoretical study of poly(vinylpyrrolidone)-controlled gold nanoparticles. J. Phys. Chem. C2008,112,15656–15664.
    [326] Ogi, T.; Saitoh, N.; Nomura, T.; Konishi, Y. Room-temperature synthesis of goldnanoparticles and nanoplates using Shewanella algae cell extract. J. Nanopart. Res.2010,12,2531–2539.
    [327] Liu, B.; Xie, J.; Lee, J. Y.; Ting, P. Y.; Chen, J. P. Optimization of high-yield biologicalsynthesis of single-crystalline gold Nanoplates. J. Phys. Chem. B2005,109,15256–15263.
    [328] Chandran, S. P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of goldnanotriangles and silver nanoparticles using aloevera plant extract. Biotechnol. Prog.2006,22,577–583.
    [329] Das, R.,K.; Borthakur, B. B.; Bora, U. Green synthesis of gold nanoparticles using ethanolicleaf extract of Centella asiatica. Mater. Lett.2010,64,1445–1447.
    [330] Enustun, B. V.; Turkevich, J. Coagulation of colloidal gold. J. Am. Chem. Soc.1963,85,3317–3328.
    [331] Turkevich J. Colloidal gold. Part I: historical and preparative asepects, morphology andstructure. Gold Bull1985,18,86–91.
    [332] Turkevich, J. Colloidal gold. Part II: color, coagulation, adhesion, alloying and catalyticproperties. Gold Bull1985,18,125–131.
    [333] Kumar, S.; Gandhi, K. S.; Kumar, R. Modeling of formation of gold nanoparticles by citratemethod. Ind. Eng. Chem. Res.2007,46,3128–3136.
    [334] Biggs, S.; Chow, M. K.; Zukoski, C. F.; Grieser, F. The role of colloidal stability in theformation of gold sols. J. Colloid Interface Sci.1993,160,511–513.
    [335] Biggs, S.; Mulvaney, P.; Zukoski, C. F.; Grieser, F. Study of anion adsorption atgold-aqueous solution interface by atomic force microscopy. J. Am. Chem. Soc.1994,116,9150–9157.
    [336] Wall, J. F.; Grieser, F.; Zukoski, C. F. Monitoring chemical reactions at the gold/solutioninterface using atomic force microscopy. J. Chem. Soc., Faraday Trans.1997,93,4017–4020.
    [337] Henglein, A.; Giersig, M. Formation of colloidal silver nanoparticles: capping action ofcitrate. J. Phys. Chem. B1999,103,9533–9539.
    [338] G. Markovits, P. Klotz, L. Newman, Formation constants for the mixed-metal complexesbetween indium(III) and uranium(VI) with malic, citric, and tartaric acids. Inorg. Chem.1972,11,2405–2408.
    [339] Adin, A.; Klotz, P.; Newman, L. Mixed-metal complexes between indium(III) anduranium(VI) with malic, citric, and tartaric acids. Inorg. Chem.1970,9,2499–2505.
    [340] Kameda, T.; Takeuchi, H.; Yoshioka, T. Uptake of heavy metal ions from aqueous solutionusing Mg–Al layered double hydroxides intercalated with citrate, malate, and tartrate. Sep.Purif. Technol.2008,62,330–336.
    [341] Liu, J. Q.; Wang, Y. Y.; Ma, L. F.; Zhan, W. H.; Zeng, X. R.; Shi, Q. Z.; Peng, S. M.Solvothermal syntheses and structural characterization of a series ofmetal–hydroxycarboxylate coordination polymers. Inorg. Chim. Acta2008,361,2327–2334.
    [342] Amendola, V.; Meneghetti, M. Size evaluation of gold nanoparticles by UV–visspectroscopy.J. Phys. Chem. C2009,113,4277–4285.
    [343] Xue, C.; Millstone, J. E.; Li, S.; Mirkin, C. A. Plasmon-driven synthesis of triangularcore-shell nanoprisms from gold seeds. Angew. Chem. Int. Ed.2007,46,8436–8439.
    [344] Richardson, M. J.; Johnston, J. H.; Sorption and binding of nanocrystalline gold by Merinowool fibres—An XPS study. J. Colloid Interface Sci.2007,310,425–430.
    [345] Tang, B.; Wang, J.; Xu, S.; Afrin, T.; Xu, W.; Sun, L.; Wang, X. Application of Anisotropicsilver nanoparticles: multifunctionalization of wool fabric. J. Colloid Interface Sci.2011,356,513–518.
    [346] Chen, D.; Tan, L.; Liu, H.; Hu, J.; Li, Y.; Tang, F. Fabricating superhydrophilic wool fabrics.Langmuir2010,26,4675–4679.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700